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Abstract

We propose a method for increasing incen-
tives for sites to host arbitrary mobile agents
in which mobile agents purchase their com-
puting needs from host sites. We present a
scalable market-based CPU allocation policy
and an on-line algorithm that plans a mobile
agent’s expenditure over a multihop ordered
itinerary. The algorithm chooses a set of sites
at which to execute and computational prior-
ities at each site to minimize execution time
while preserving a prespecified budget con-
straint. We present simulation results of our
algorithm to show that our allocation pol-
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icy and planning algorithm scale well as more
agents are added to the system.

1 Introduction

A mobile-agent system provides an envi-
ronment that allows user programs (mobile
agents) to voluntarily relocate and resume ex-
ecution at another host site. Mobility is es-
pecially useful in reducing network latency
and in operating in disconnected environ-
ments [LO98|. These qualities make mobility
an attractive option for isolated applications
and closed administrative domains, but the



application of the technique has much greater
potential. An important issue is providing
hosts incentive to offer service for arbitrary
mobile agents.

There are several techniques to protect
host sites from visiting agents [Moo098], but
hosts will always suffer from higher loads
induced by visiting agents. To mitigate
this problem we investigate the possibility of
agents compensating host sites by purchasing
computational resources from hosts [Tsc97,
BKR98|. Resources include, but are not lim-
ited to, processor time, storage, and network
access, as well as abstract value-added ser-
vices.

In this paper, the resource on which we fo-
cus is CPU priority which we use to approxi-
mate general computational priority among
agents. We present a lottery-based CPU
scheduling policy and planning algorithms to
allow mobile agents to plan expenditure of
multi-hop itineraries. We describe a simula-
tion system for these algorithms. Our experi-
ments show that our algorithms allow agents
to complete lengthy trips with high confi-
dence in environments with bursty resource
contention. Additionally, we show that our
lottery-based allocation policy scales well as
the number of agents in the system increases.

The value of a mobile-agent system is de-
pendent on both the number of host sites
that an agent may migrate to as well as the
number of other agents with which an agent
may interact. Conventional wisdom is that
the value of a network increases quadratically
with the number of users and sites that have
access to it. We believe this also holds true
for a mobile-agent system.

Given the importance of the number of
sites, we would like to encourage site owners
to open up access to their resources to the
entire community of mobile-agent users. The
resources used by mobile agents are general
and often difficult to analyze. Not only do
hosts sacrifice access to their own resources,
but there are security risks inherent to pro-
viding any additional network service.

We propose that hosts be compensated for
these factors through agents using a scarce
verifiable electronic currency to purchases all
their computational and information needs.
We see several benefits of mobile agents par-
ticipating in markets to access their compu-
tational needs. Markets limit the extent of
agents’ impact, provide simple a means of
agent coordination through prices, and facil-
itate flexible administrative domains.

Because currency is scarce, agents’ activ-
ities are limited. The extent of denial-of-
service attacks are limited and, assuming that
prices are efficient, a host would actually ben-
efit from such an “attack,” though an of-
fender would not be able to carry out such
an action for long.

In market systems, there is generally
a strong correlation between demand and
higher prices. By providing agents with the
price of services, they become aware of their
environmental impact. We would like to use
this effect to give mobile agents incentive to
avoid congesting a site. A possible solution
for agents crowding a site is to either wait
until a more appropriate time to execute or
choose a less congested site.



2 An Allocation Policy

To encourage agents to act rationally, a rea-
sonable price mechanism must be in use.
In this section we explore an instance of a
pricing mechanism where owners of priority-
based resources (CPU’s) lease shares, or tick-
ets, for access. The quality of service a ticket
holder receives is proportional to the number
of tickets held relative to the number of tick-
ets in circulation, creating a modified lottery
or round-robin scheduling system.

The resource owner can fix the price of leas-
ing tickets and let the number of tickets in cir-
culation float; the real price of computation
is determined by the number of tickets held
by agents. Two major benefits of this pricing
scheme are that the computational responsi-
bilities of the price mechanism are distributed
among the users and it is easy to implement.

Many traditional priority-based computa-
tional resources are allocated using prior-
ity queues or priority stratified round-robin
schedulers. These systems rely on users hav-
ing heterogeneous preferences to stratify pri-
orities. Such schemes do not scale well as
user preferences become more diverse, how-
ever. After the third or fourth priority
level, no real service is left to allocate among
users [GSW97, BKRIS].

Our allocation policy asks each agent to
submit a linear function describing the num-
ber of tickets each agent would buy given the
number of shares held by competing agents.
We restrict the function to be linear and de-
creasing.! Each time an agent arrives or de-

!Section 3.2.1 justifies restricting bid functions in

parts the server, the server searches for a
ticket circulation where each agent is content
with the value and size of its share, a Nash
equilibrium, and reallocates the new circula-
tion according to agents’ bidding functions.

Because agents cannot purchase negative
number of shares, the bid functions are not
convex. Thus a Nash equilibrium is not nec-
essarily guaranteed to exist. We find that
in practice, using a bisection search, we can
find an e-Nash equilibrium, where partici-
pants wish to change their bids by only a
small amount.

3 The Model

The model that we examine is one where each
agent is given a fixed endowment of currency
and an ordered set of tasks to complete. Each
task may be executed at one of several sites
of varying capacity. Agents must choose a
set of sites to visit and the quality of ser-
vice desired at each site. The goal is to mini-
mize time of execution while preserving bud-
get constraints.

3.1 Lottery Allocation

At each site they visit, agents decide to rent
some number of tickets at a fixed price per
second. Tickets represent relative computing
priority. The agent can then consume a com-
puting share proportional to its ownership of
lottery tickets relative to the total number in
circulation.

this way.
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Figure 1: An example of an agent’s itinerary.
At each hop of the schedule, there may
be multiple host sites willing to accept the
agent’s task.

Using this style of resource allocation, it
is possible to describe the load of a host
system with just a few parameters: ticket
circulation and a performance metric of the
host. Visiting agents do not need to disclose
any information to participate in the mar-
ket, other than the quantity of tickets desired
to be purchased. The accuracy of a host’s
published parameters can be tested through
benchmarking an agent’s performance.

The strategy of how an agent would par-
ticipate in a computational lottery market
resembles the Prisoner’s Dilemma [Axe84).
Agents can buy large quantities of tickets,
the analog of defection or confessing to the
police. Alternatively they may attempt to re-
ceive better performance by all buying small
amounts of tickets, which is the analog of co-
operating.

While agents may collaborate to form a
cartel by agreeing to buy no more than a
given amount of tickets (one each) from a
server, it is frequently to an agent’s advan-

tage to buy an extra amount of tickets to in-
crease performance at the collaborators’ ex-
pense. Axelrod [Axe84] finds agents are less
likely to cooperate if they are anonymous or
expect little future interaction, so our lottery
scheduling works better as the number of par-
ticipating agents increases. In addition, the
host system has incentive to protect the iden-
tity of visiting clients.

3.2 Utility Maximization

We need a metric for quality of service on
which to derive users’ utility. Frequently,
quality of service is indicated by end-to-end
latency of the task or by rate of computa-
tion. The accuracy or precision of the process
is important in some cases, for example in a
database query. The work in this paper only
considers utility to be a function of the rate
at which an agent computes. We assume that
an agent has K tasks to complete and each
task may be completed at one of any number
of comparable host sites.

We wish to maximize the expected per-
formance of all tasks in an agent’s itinerary.
¢k, My, and ny represent the capacity in in-
structions per second, ticket circulation, and
the agent’s ticket holdings at the site where
the kth task is executed. @ = E,le qk, 1s
the total quantity of computation in instruc-
tions to be done. We now compute an agent’s
expected rate of computation in Equation 1.
The numerator is the sum of all job sizes and
the denominator is the expected completion
time, the quotient of the kth job size and
expected rate of computation. The rate of
computation is just the agent’s ticket share,



nk, relative to the total circulation, ny + My,
weighted by the processing capacity of the
host, ¢;.
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We must also formalize the budget con-
straint. [ represents the agent’s initial bud-
get endowment constraining the the sum of
the amounts spent at each site, p,nty, where
tr = qr(nk+ My)/crny denotes the time spent
at the kth site, the quantity of the job size di-
vided by the rate of computation. p is the
price of renting a ticket at the kth host for
a fixed time unit. Substituting the value of
tr into the product pinitr and taking the ex-
pected value, we derive the budget constraint
to be:

i Prai (i + E[M}])

I —

>0

(2)

k=1

To solve the problem of how many shares

an agent should buy, we initially make some
assumptions:

1. Once an agent chooses a site, it may not
choose another until its current task is
completed.

2. Each portion of the itinerary has only
one site alternative.

3. The size of each agent’s task is small
compared to the sum of the sizes of the
other tasks currently executing at any
host site.

4. The network of hosts is at or near equi-
librium.

5. The capacity, ticket price, and current
ticket circulations of all hosts are avail-
able to agents.

We will later relax Assumptions 2, 3, and 4.

When Assumption 2 is dropped, the prob-
lem of choosing the optimal expected path
is NP-complete if the agent has the esti-
mated costs and execution times at each
host. We note that the problem is the con-
strained shortest path problem [AMO93] and
show a transformation presented by Ahuja
et al [AMO93] from the knapsack prob-
lem [GJ79] to our problem. The constrained
shortest path problem (CSP) is given a di-
rected graph whose edges have associated
costs and lengths, a path length, [, and a cost
constraint, ¢, to find a path of at connecting
two points where the sum of the path’s edge
cost is at most a ¢ and the sum of the path’s
edge lengths is at most [.

The problem is in NP; a solution can be
verified in linear time by summing the costs
and lengths of all edges in the solution. We
can express any knapsack problem in terms of
CSP by creating a lattice graph in Figure 2.
The graph is divided into three levels. The
nodes in the top level, labeled ', represent
the choice of placing the #th object in the
knapsack. The nodes in the bottom level,
labeled ¢, represent the choice of excluding
the ith object. The edge from i to ¢ has
cost equal to the weight or volume, w;, of the
1th object, and distance equal to the negative
value, v;, of the i¢th object. All other edges
have zero cost and distance.
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Figure 2: A reduction of the knapsack prob-
lem to the constrained shortest path problem.

Since any knapsack problem can be ex-
pressed as a CSP problem and CSP is in NP,
CSP is NP-complete. We use Assumption 2
to create an estimator for the general case in
Section 3.2.2.

Assumption 3 allows us to reason about the
actions of a single agent without attempt-
ing to second guess the rest of the market.
Agents construct a purchasing policy, or bid-
ding function, based upon the assumption.
The bidding functions are then submitted to
the service providers who attempt to find a
resource allocation that satisfies every agent’s
bid function.

Our next task is to derive agents’ purchas-
ing policy that will minimize agents’ execu-
tion time. A purchasing policy must account
for estimating the random variables, M}’s, in
Equations 2 and 1, the topic of the next sub-
section.

3.2.1 A Simple Estimator

Efficient expenditure planning must forecast
future network conditions. In our prob-
lem, agents are concerned with the conges-
tion of resources represented by the size of
hosts’ ticket circulations. We now describe a
method for agents to estimate future resource

contention based upon current conditions.

Assumption 4 implies that the load of every
host in the network is approximately equal
to the current host’s load relative to price
and capacity. The agent observes that the
first site’s ticket circulation is m;. We set
M; = m; and weight hosts’ loads according
to capacity and price yielding:

(p1/01)
(pk/Ck) " (3)

The use of the estimator in Equation 3 makes
sense if there is a reasonable flow of agents re-
questing service. Incoming agents will choose
to hold ticket leases with the highest value.
Once a site becomes crowded, the value of
each additional ticket sold drops, new agents
will choose to execute at sites with higher
ticket values, and the local population growth
will slow.

Using the Lagrange function [Lan87],
Equation 4, we minimize the denominator of
Equation 1, t(nq,...ng,m;), under the bud-
get constraint, Equation 2.

E[M;] =

L(?’Ll, oo N ml) = t(nl, oo N, ml)
—MI —e(ny,...ng,my))
(4)
Where t(ny,...ng,m;), the denominator of

Equation 1, and e(nq,...ng, my), the bud-
get constraint from Equation 2, denote the
expected amount of time an agent takes to
perform its itinerary and the expected expen-
diture completing it, respectively, given the
ticket share purchases at each site and the
ticket circulation at the first host site. The
resulting solution gives a ratio for the share



of computation at any two hosts:

_ pi/Ci (5)

n; Pk / Ck

ng

Using Equation 5 with the budget con-
straint, we obtain the optimal share to pur-
chase at the first site:

If the agent assumes that the current load
of future sites is equal to the future load, how-
ever, the optimal number of tickets to buy at
the first site is:

K pegem
I — PrqEM
k§1 Ck

(7)

ny = %

Assumptions 3 and 4 imply that a newly
arriving agent’s request for computing lottery
tickets will not effect the competition very
much. That is, agents already present will
not significantly change their ticket holdings
in response to one more agent arriving.

In order for a host to obtain a solution in
which all agents are content with their ticket
holdings, a host must repeatedly query agents
for their purchases given the result of the last
iteration. Fach iteration drives ticket hold-
ings towards a Nash equilibrium. Note that
Equation 6 is linear with respect to m;. On
this note, we would like to analytically com-
pute a fixed point solution where all agents
present at the host site will hold a stable

ticket share given their competitors’ holdings.
Let there be L agents at the site and each [th
agent submits parameters

K
161_11 = gk
a; = —K;l (8)
[D1Dk
kgl U ere
and
by (9)

I

e e—
to describe each client’s linear bidding func-
tion. a; and b, are the coeflicients of ny
in Equation 6. We omit subscripting of all
the parameters on the right-hand side of the
Equations 8 and 9 with [ to avoid clutter.

We can calculate the number of shares that
clients buy as an iterated process. At the
ith iteration, the [th client buys a number of
shares specified by the bidding function pa-
rameters and the number of competing shares
at the previous iteration, m;_; —mny,_, to yield:

ny, = max(0, a/(m;—1 —mny,_,) +b)  (10)

The total number of tickets sold at the ¢th
iteration is then:

L
m; = Zmax((), a(mi—1 —mny,_,) +b) (11)
=1

The max() function restricts agents to buying
a non-negative number of shares.

We cannot analytically solve Equations 11
and 10, but if we ignore the fact that the
a;(m;_1 — my,_,) terms may be negative, set



each n;, = n;,_, and m; = m;_;, and solve, we
get a good start on the search process for a
ticket share equilibrium. Every time an agent
arrives or leaves a site, the server runs a bi-
nary search shown in Figure 3.2.1 to set the
circulation. The search process runs until the
ticket circulation oscillates within a set toler-
ance, €, or exceeds a set number of iterations,
limat.

ServerAllocate
1 m <« Solving fixed point of
Equations 11 and 10
lastm <+ m
140
do
lastm < (m + lastm)/2
m<+ 0
foreach client [ do
m += q; x lastm + b;

© 00 ~J O Tt = W N

1++
10 while ((|m — lastm| > € or i < 2)
11 and (i < limit or m < 0))

Figure 3: The processor allocation algorithm
used by servers.

We assume that host sites are able to aug-
ment ¢, for each agent. It may be the case
that the series, mq, ms, ms, ..., does not con-
verge to a positive value. Experimentally,
though, we find that the series converges
more than 99% of the time, most of the time
in fewer than ten iterations. When the series
does not converge within [imit iterations, we
choose the last positive ticket circulation en-
countered in the search.

3.2.2 Considering Site Alternatives

We would like to expand our planning mecha-
nism to include information about more than
one host site per task. To handle site choice,
we augment Equation 6 slightly. We assume
that agents can observe ticket circulations at
prospective hosts for the next task to be com-
pleted. For later tasks, we use the means of
the prices and capacities of sites in each ser-
vice group.

Agents then choose host sites by construct-
ing an estimate of expected completion time
for itineraries beginining at each prospective
host using the averaged prices and capacities
for prospective hosts of the second and later
tasks. Again, agents assume that the reac-
tion of other agents already at the prospec-
tive hosts will be neglibible. The host site
with the lowest estimated completion time is
then chosen.

For example, an agent may have two tasks.
There are two sites able to accept the first
task and two more sites able to accept the
second. The second pair of sites have ca-
pacities 2.0 and 2.5, ticket circulations 5.2
and 7.0, and ticket prices 1.0 and 1.5, respec-
tively. The agent uses Equation 6 twice, set-
ting co = 2.25 and p, = 1.25, to determine
the rate of compuation if the agent were to
begin its itinerary at either of the first pair
of sites. In the calculations, m; is set to the
value of the current ticket circulations of each
of the first pair of hosts. The agent then
chooses the faster of the first pair of hosts.

We simulate strategies using both the fu-
ture site averaging and the reaction estimate
assumptions in the next section.



4 Simulation

We wish to see how our strategies perform
in planning resource expenditure. To do so,
we simulate a network with a fixed number
of servers using the DaSSF simulation pack-
age [NL99]. The servers are partitioned by
the service that they provide. Our simula-
tions represent a network of eight services
each provided by eight hosts resulting in a
network with 64 host sites. Host site capac-
ity is normally distributed to make site choice
more meaningful.

Agents in the system are created at a Pois-
son arrival rate with exponentially sized jobs
(qr) comprising itineraries whose length (K)
are exponentially distributed. Endowments
(I) are the product of a normally distributed
random variable and the agents’ job sizes
(@ =X ar)-

Agents choose a site based upon the con-
gestion of the network, represented by site
ticket circulation. Once the agent chooses
the site, it commits to attempting to com-
plete the current task at the chosen site.

We now present several strategies that
agents can use to choose sites and bid. Sev-
eral are simple baseline comparisons.

4.1 Cheapest Available

Our first comparison algorithm, CHEAP
shown in Figure 4.1, chooses the site which
will complete the next task with the low-
est estimated expenditure. The predicate
cheaperTask returns true if the site repre-
sented by the first argument requires lower
expenditures than the site represented by the

second argument for executing the task repre-
sented by the third argument. € is the small-
est number of shares that hosts will lease to
an agent. Once the agent chooses the site, the
agent bids for the smallest amount of shares
possible until the job completes.

CHEAP
1 foreach task i
2 Qma:v % @

3 foreach possible site j
4 if cheaperTask (¢maz,J, 1)

6 jumpTo ¢, leasing e shares

Figure 4: The CHEAP planning algorithm.

With little competition, budget expendi-
ture is a weak constraint and one would ex-
pect this algorithm to complete jobs with a
high degree of certainty.

4.2 Random

As another comparison, we have imple-
mented a strategy we call RAND which is
shown in Figure 4.2. Each site offering a
given service has an equal chance of being
chosen by the algorithm. Once a site has been
chosen, the algorithm uniformly chooses be-
tween zero and 90 percent, non-inclusive, of
the budget to spend at the current site.

4.3 Equilibrium Assumption

We implement a strategy from Equation 6 to
choose sites and bid for shares. We find that



RAND
1 foreach task i
2 host <— uniform {hosts offering i}
3 jumpTo host
spending (uniform (0,0.97))

Figure 5: The RAND planning algorithm.

frequently agents using this strategy bid too
aggressively. That is, agents buy too many
shares early in their itineraries to allow rea-
sonably fast completion of later tasks. To ac-
count for the strategy’s myopia, we multiply
agents’ job size estimates by a constant factor
for purposes of bidding. Figure 6 shows the
results of our empirical search for a good bias
factor. In the experiment, all agents use the
same job size bias factor and agents arrive at
a rate so that system utilization is half the
system capacity. Empirically, we find that
2.2 is a good bias factor.

T =
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linear fit-~-—--— 4
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Figure 6: Success rate of agents using the EQ
algorithm versus the job size bias factor.

EQ
1 foreach task ¢ € @
2 q < q * bias
3 foreach task i
4 Qmaz < @
6 foreach possible site j
7 t < tripTime
buying Eqn 6 shares

8 ift < tinin
10 jumpTo ¢e, withBidFunc Eqn 6

Figure 7: The EQ planning algorithm.

4.4 Complete Knowledge

The next strategy, COMP, is exactly like the
previous, except that the current load of all
servers to be used later in the itinerary is
known at the time agents choose a site and
bid for tickets. As with prices and capacities,
measures of load for future sites is averaged
over all sites offering the same service. This
strategy is less sensitive than the EQ strat-
egy to fluctuating loads, so we do not bias job
size. The bidding function for each agent is
Equation 7.

We augment the EQ algorithm with the
bidding function in Equation 7 to yield the
algorithm shown in Figure 4.4, the COMP
planning algorithm.

4.5 Simulation Results

We investigate two general classes of envi-
ronments: one where all participating agents

10



COMP
1 foreach task ¢
2 Umaz < 0
3 tinin < OO
4 foreach possible site j
Y t < tripTime
buying Eqn 7 shares
7 Gmaz < J
8 jumpTo ¢4, WithBidFunc Eqn 7

Figure 8: The COMP planning algorithm.

use the same bidding strategy, and one where
each agent uses a randomly chosen strategy.

We would first like to verify that agents
that pay more receive better service than
agents who pay less. Figure 9 shows obser-
vations of the amount that agents using the
EQ strategy spend relative to the size of their
jobs versus the performance that they receive.
We also plot a x? linear fit of the data. The
graph confirms that agents’ expected perfor-
mance is dependent to expenditure.

Figure 10 shows the rate at which agents
complete their itineraries compared to the job
arrival intensity rate. The rate of 6.4 jobs per
time unit is the system’s maximum capacity.
Agents using the EQ strategy complete their
itineraries over 97 percent of the time until
system utilization exceeds 85 percent of ca-
pacity. COMP performs marginally better.

Agents using the CHEAP strategy always
complete their task. We omit plotting the
outcome. The strategy’s success is due to the
fact that budgets dwarf expenditure. Agents
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Figure 9: Agent endowment relative to job
size versus performance with x? fit.
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Figure 10: Itinerary success rate when all
agents use a single strategy.

using the CHEAP strategy cooperate to keep
the effective price of computation to negli-
gible levels and effectively eliminate budget
constraints. All agents receive equal compu-
tational priority, however, and there is little
reason to enforce a market system if all par-
ticipating agents use the CHEAP strategy.
Figure 11 shows the mean performance
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Figure 11: Average computational rate for

completed itineraries when all agents use a
single strategy.

rates of agents using various strategies, again
where all agents in the scenario have the iden-
tical strategies. The mean host site capacity
is 2.0, but in light loads, agents are able to
find access to faster hosts and raise the mean
rate of computation above the mean host ca-
pacity.

Again, the EQ and COMP strategies have
similar results. The RAND strategy does not
perform nearly as well as EQ and COMP
since choosing host sites randomly tends to
result in pockets of moderate congestion. Ad-
ditionally, the wide spread in bids leads to
performance disparities that lower the mean
computation rate.

Agents using the CHEAP strategy have
dismal performance; they always pick the
cheapest service provider regardless of the
performance.  The result is that a few
providers handle much of the load and the
more expensive ones are left empty.
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Figure 12: Success rates of a agents in a sce-
nario where each strategy is used by one quar-
ter of the population.

Finally, we are interested in how the dif-
ferent strategies compete against each other.
In our next simulation, when an agent is cre-
ated, it is assigned one of the four strategies
uniformly.

Figure 12 shows the itinerary completion
success of the four strategies competing in a
common environment. The strategies, with
the exception of CHEAP, perform similarly
as they do in homogeneous environments.
The CHEAP strategy’s success is affected by
the other strategies crowding the agents us-
ing CHEAP. Once the ticket circulation rises
above a certain level, it becomes impossible
for a CHEAP agent to complete its task.

Figure 13 shows the mean rate that agents
compute their tasks in job units per time
unit. Again, the results are similar to those
in the homogeneous environments.

12
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Figure 13: Average rate of computation for
completing agents in an environment where
each strategy is used by one quarter of the
population.

5 Discussion

Both EQ and COMP strategies perform well.
Good performance is evident in Figures 11
and 13. While the network load is under half
capacity, the majority of agents are able to
achieve service better than the average host
can provide.

Since the level of service degrades gradu-
ally with increasing arrival intensities, we be-
lieve that our lottery allocation policy scales
nicely and that the EQ and COMP strategies
will work well in many environments.

In our experiments, complete knowledge of
the network state does not give agents signif-
icant gains in performance. In part, this is
because loads of servers across services are
correlated. If the loads were uncorrelated
(or perhaps even negatively correlated), the
equilibrium assumption used in the EQ strat-

egy would hinder agents’ performance, while
agents using complete knowledge would be
less effected.

The equilibrium assumption, however,
does have one benefit when shares are up-
dated: it is not necessary to obtain the loads
of all servers in the network. This feature is
especially important if the network is discon-
nected as in the case of many mobile-agent
applications.

Another benefit of using the EQ and
COMP strategies is their simplicity. Much
of the EQ and COMP algorithms’ simplicity
is is due to the fact that the agents do not
attempt to preserve savings; they attempt to
spend all of their funds on computation. This
behavior justifies the use of a linear bid func-
tion.

If savings were an issue, however, linear
functions would not suffice. Agents would
then desire to bid small amounts in situations
with little congestion as well when resource
contention is high. Agents would bid most
under moderate resource contention. Dis-
pensing agents’ need to save facilitates equi-
librium finding and avoids the problem of
measuring the value of savings versus faster
execution.

5.1 Structure

In running many simulations and devising
bidding algorithms we have noticed a few
properties of our lottery-based resource allo-
cation system. Information regarding the dis-
tribution of ticket circulation at host sites cer-
tainly effects planning decisions on the part
of agents. We observe that the distribution of

13



ticket sales at sites is roughly Gaussian. Fig-
ure 14 shows histograms of ticket frequencies
at two different sites with 50 percent load.
Each histogram is generated by collecting the
ticket circulation whenever an agent arrives
or departs a site.
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Figure 14: Histogram of ticket circulation at
two sites over a run with a relative load of
50% and Gaussian distributions with the cor-
responding mean and variances.

We believe that this distribution is heavily
dependent on the distribution of the sum of
agents’ endowments relative to their job sizes
(also Gaussian). We believe that the distri-
bution of wealth at sites is valuable knowl-
edge for expenditure planning and our future
expenditure planning algorithms will use the
distribution to estimate resource congestion.

The distribution of ticket sales at sites will
become important if we wish to consider the
possibility of allowing agents to restart or
continue their unfinished current execution at
another site. Agents could estimate their ex-
pected time savings given the time taken to

jump across the network (a feature we do not
vet model) and the mean and variances of
other sites’ tickets sales.

We now turn our attention to general prop-
erties of our system at equilibrium. Specif-
ically, we are interested in the relationship
between price of tickets and congestion, the
ticket circulation relative to system capacity.

At equilibrium, the relationship of price to
congestion is strictly decreasing. The argu-
ment is simple: agents will choose cheaper
service from faster hosts over more expensive
service from slower hosts.

Currently, we do not model agents’ abil-
ity to split the execution of one task across
multiple servers. Breaking up computation is
not unreasonable if the mobile-agent system
supports a transparent jump command, like
D’Agents’ agent_jump command. An agent
can execute a portion of its task at one server
and then relocate to another host to continue
the rest of the task. The resulting perfor-
mance is a weighted average of the two sites
with an amount of overhead to account for
relocating the agent.

If we allow splitting of tasks, then we may
make further assumptions on the relation-
ship between price and congestion; at equi-
librium the relationship may not be concave
downward. Breaking up the execution al-
lows agents to use portfolio strategy to blend
performance of multiple sites to achieve a
weighted average of site performance. Hence
if the relationship becomes concave down-
ward, agents will prefer splitting their execu-
tion between sites cheap congested sites and
expensive fast sites rather than jump to sites
less extremely characterized sites. The argu-
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ment is illustrated in Figure 15.

M/C

Price

Figure 15: Relative congestion as a function
of ticket price at equilibrium may not be con-
cave downward if agents’ jobs can be broken
up to be executed at multiple sites. If the
function is concave downward as represented
here, agents will choose to execute parts of
their jobs at A and C until the weighted per-
formance of such a portfolio becomes at least
as congested as the performance at site B.

One final note on price concavity: if
agents use mean metrics for planning ex-
penditure as done in Section 3.2.2 and the
price-congestion relationship is concave up,
the price-congestion pair representing the av-
erage of several hosts will provide a conserva-
tive estimator.

6 Related Work

Waldspurger [WW94] uses lotteries as a re-
source allocation model to manage computa-
tional resources such as network bandwidth,
processor time, and memory. Two major dif-
ferences between standard lotteries and ours

is that tickets are leased, not bought, and
are consumed only when the lease expires.
Scheduling can be done in a simple round-
robin time slicing manner.

An implementation a lottery market-based
system is in the Geneva Messengers [Tsc97]
mobile-agent system where a currency system
is used to allocate CPU time as well as mem-
ory for mobile agents. Processing resources
are allocated through agents buying tickets.
At each quantum, a ticket is chosen and the
owning agent is given access to the CPU for
the quantum. One feature of lotteries im-
plemented in this way, is that the while the
price of computational priority may fluctu-
ate, the price of a quantum of CPU time is
fixed, facilitating budget planning. Pricing in
this manner does not enforce a positive corre-
lation between the demand and the price of a
scarce resource, however, giving agents little
incentive to balance network load.

Memory in the Messengers system is also
allocated using a currency system. Agents
“sponsor” persistent blocks of memory. A
block of data is endowed with currency by
interested parties (readers). Periodically, the
sponsored blocks’ accounts are charged and
blocks having depleted accounts are flushed
from the system. The rate at which blocks
are charged varies over time depending on the
contention for additional block space.

While Messengers has market resource al-
location mechanisms, the system presents no
means for expenditure planning on the part
of agents.

Moizumi [Moi98] attacks similar mobile-
agent problems. He derives a general pro-
cedure for mobile agents to plan an itinerary
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visiting a known set of hosts using dynamic
programming is presented. Much of the work
is based on NP-completeness work through
reduction to the Traveling Salesman Problem
and approximation solutions. Our work takes
a different slant; we assume that the basic se-
quence of computation is predetermined and
that refinements of location and priority de-
cisions are made along agents’ travels.

In our investigations concerning the appli-
cability of our system to load balancing, it is
certainly worth mentioning that it has been
shown that heterogeneity of preferences can
improve load balancing substantially by en-
couraging adaptive systems to further explore
the parameter space than agents in a homo-
geneous populations [SST95].

7 Summary

We believe that mobility would be of far
greater use to software developers if a larger
number of host sites would be willing to host
arbitrary agents. There is little reason for
sites to accept foreign mobile agents, how-
ever. To remedy this shortfall, we propose
that agents purchase the resources that they
consume from hosts.

We present a market-based CPU priority-
allocation policy and simple algorithms that
allow mobile agents to plan multi-hop trips
through a network of host systems provid-
ing various services. The algorithms that we
present produce both a route through the
network and the desired computational pri-
ority to be received at each site on the route.
The constructed plans minimize agent exe-

cution time while preserving a fixed budget
constraint.

Our simulations show that the algorithms
scale smoothly. Evidence of our algorithms’
effectiveness is that we are frequently able to
plan routes through a network with perfor-
mance greater than the average host is capa-
ble of providing and that we are able to com-
plete agent itineraries with empirically high
confidence.
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