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ABSTRACT
We anticipate the advent of body-area networks of pervasive
wearable devices, whether for health monitoring, personal
assistance, entertainment, or home automation. In our vision,
the user can simply wear the desired set of devices, and
they “just work”; no configuration is needed, and yet they
discover each other, recognize that they are on the same body,
configure a secure communications channel, and identify the
user to which they are attached. This paper addresses a
method to achieve the latter, that is, for a wearable device
to identify the wearer, allowing sensor data to be properly
labeled or personalized behavior to be properly achieved.
We use vocal resonance, that is, the sound of the person’s
voice as it travels through the person’s body. By collecting
voice samples from a small wearable microphone, our method
allows the device to determine whether (a) the speaker is
indeed the expected person, and (b) the microphone device
is physically on the speaker’s body. We collected data from
25 subjects, demonstrate the feasibility of a prototype, and
show that our method works with 77% accuracy when a
threshold is chosen a priori.

1. INTRODUCTION
With continuing advances in the development of low-power

electronics, including sensors and actuators, we anticipate a
rapid expansion of wearable and pervasive computing. Today,
it is not uncommon for people to carry multiple computing
devices, such as smart phones, music players, and cameras;
increasingly, they also carry, hold, or wear devices to measure
physical activity (e.g., Fitbit [8]), to interact with entertain-
ment devices (e.g., the Wii), or to monitor their physiology
(e.g., a cardiac patient concerned about heart arrhythmia or
a diabetic managing her blood glucose). Many more have
been proposed or developed as research prototypes. These
unobtrusive wearable devices make it possible to continu-
ously or periodically track many health- and lifestyle-related
conditions at an unprecedented level of detail. Wireless con-
nectivity allows interaction with other devices nearby (e.g.,
entertainment systems, climate-control systems, or medical
devices). Sensor data may be automatically shared with
a social-networking service, or (in the case of health appli-
cations) uploaded to an Electronic Medical Record (EMR)
system for review by a healthcare provider.

In this paper, we focus on a fundamental problem involving
wearable devices: who is wearing the device? This problem is
key to nearly any application. For an entertainment device,
it can recognize the user and load the right game profile or
music playlist. For a home climate control, it can adjust the

environment to the wearer’s preference. Most compellingly,
for a health-monitoring device, it can label the sensor data
with the correct identity so that it can be stored in the
correct health record. (A mixup of sensor data could lead to
incorrect treatment or diagnosis decisions, with serious harm
to the patient.)

In our vision, a person should be able to simply attach
the desired set of devices to their body – whether clipped
on, strapped on, stuck on, slipped into a pocket, or even
implanted or ingested, and have the devices just work. That
is, without any other action on the part of the user, the
devices discover each other’s presence, recognize that they
are on the same body (as opposed to devices in radio range
but attached to a different body), develop shared secrets
from which to derive encryption keys, and establish reliable
and secure communications. Furthermore, for many of the
interesting applications described above, the devices must
also identify who is wearing them so that the device data can
be properly labeled (for storage in a health record) or the
devices may be used in the context of the user’s preferences.

We have earlier developed a method for a networked set of
devices to recognize that they are located on the same body;
our approach uses correlations in accelerometry signals for
this purpose [4]. If even one device can identify which body,
then transitively the set of devices know who is wearing
them. Indeed, it is unlikely that every device will have the
technology, or suitable placement, to biometrically identify
the user; in our model, only one such device needs to have
that capability.

One easy solution, common in many devices today, is for
the device to be statically associated with a given user. This
smartphone is my phone, whereas that fitness sensor is your
fitness sensor. The device is assumed to be used by only
that user; any data generated by a sensor is associated with
that user. There are many situations where this model fails,
however. In some households, a given device might be shared
by many users (e.g., a blood-pressure cuff). In other settings,
two people might accidentally wear the wrong sensor (e.g., a
couple who go out for a run and accidentally wear the other’s
fitness sensor). In some scenarios, a person may actively try
to fool the system (e.g., a smoker who places his “smoking”
sensor on a non-smoking friend in order to receive incentives
for smoking cessation).

Thus, what we need is a simple, wearable device that uses
biometric techniques to identify the user, then share that
identity with a body-area network of other devices (earlier
confirmed to be on the same body [4]). This device should be
trained once, for each user that might wear it, but thenceforth
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be completely automatic and unobtrusive.
Our approach is to use vocal resonance, that is, the sound

of the person’s voice as it travels through the person’s body.
In our method, a microphone is placed into contact with the
body. It records audio samples and compares them with a
model, built earlier during a training phase. If the samples
fit the model, then we conclude that (a) the speaker is indeed
the person for whom we trained the model, and (b) the
microphone device is physically on the speaker’s body. If
we train the device for a set of users, e.g., the members of a
household, then the device should be able to identify which
of those people is wearing the device, or that none of them
are wearing the device.

Such solutions have many advantages. Not all wearable
devices need have the ability to identify the user; only one
device need do so, assuming it can communicate the iden-
tity to other devices proven to be on the same body. The
devices may be smaller and simpler, needing no interface
for user identification (or PIN or password for authentica-
tion). Use of a biometric provides important security and
privacy properties, preventing unauthorized users from either
accessing sensitive data (e.g., in which an adversary Alice
tricks Bob’s sensor into divulging his activity data to her
smart phone), and preventing the mis-labeling of sensor data
that might later be used for medically important decisions.
Privacy is particularly important in health-related pervasive
applications [1]. Furthermore, these methods can support
personalization techniques so often envisioned in pervasive
computing.

Contributions.
In this paper we present a novel method for an unobtrusive

biometric measurement that can support user identification
in small, wearable pervasive devices. Drawing on known
methods for speaker identification, we show that it is pos-
sible to achieve reliable speaker identification through a
wearable, body-contact microphone, that can reliably distin-
guish among multiple individuals sharing a household, and
indeed that it can distinguish between the situation where
the microphone is on the body of the identified speaker and
where the microphone is simply nearby, even on another body.
We evaluate the feasibility of vocal resonance as a biometric
using data collected from 25 subjects. In addition, we imple-
mented a wearable prototype and tested it in stationary and
mobile settings in both quiet and noisy environments. Our
method achieves 77% accuracy when an a priori threshold is
optimized for minimizing the false acceptance rate.

In the next section, we provide more background on bio-
metrics. Then in Sections 3 and 4 we detail our model and
describe our method, respectively. In Section 5 we describe
our implementation of a wearable prototype based on the
Gumstix platform. In Section 6 we present our evaluation of
the method as a suitable biometric based on measurements
from human subjects. Finally, we compare our work with
related work in Section 7, discuss our findings in Section 8
and our conclusions in Section 9.

2. BIOMETRICS
To attach an identity to the sensor data, we first need

some method of identifying whom the device is sensing. One
approach is to learn some tell-tale characteristic of the person,
and use this characteristic to determine whether that same
person is present at some later time. This problem, called

biometric authentication, is well studied [3]. Biometrics
leverage physiological or behavioral characteristics of a person
to accomplish identification. Physiological characteristics
range from non-invasive characteristics like facial features
and hand geometry to more invasive characteristics like the
impression of a finger, the structure of the iris, or the makeup
of DNA. Behavioral characteristics include things like the
dynamics of using a keyboard, the acoustic patterns of the
voice, the mechanics of locomotion, and how one signs a
signature. To qualify as a biometric, the chosen characteristic
must have the following properties: universality, uniqueness,
and permanence. A universal characteristic is one that every
person (or most people) possess. Although everyone may
possess such a characteristic, the characteristic must also be
individually unique within a given population. Lastly, the
characteristic must have some permanence such that it does
not vary over the relevant time scale. These properties, with
their stated assumptions, are necessary but not sufficient for
a biometric that we desire.

Furthermore, in the context of pervasive applications and
particularly personal health sensors, a biometric needs to
be unobtrusively measured yet difficult to circumvent. The
ability to unobtrusively measure a biometric stems from our
desire to provide usable security for personal health sensing
systems. Apart from attaching the sensors to their body, a
person should not have to do anything more but expect the
system to automatically and unobtrusively identify whom the
system is sensing. Likewise, a biometric needs to be difficult
to circumvent because there are incentives for people to
circumvent them. For example, a person might want to game
their insurance provider or fool a physician into believing
they have a certain ailment for prescription fraud. Thus,
a sufficient biometric will be universal, unique, permanent,
unobtrusively measurable, and difficult to circumvent.

Not all of the above-mentioned biometrics are suitable for
our purposes. While the makeup of DNA, the structure of
the iris, and the impression of a finger may be difficult, if
not impossible, to forge, they are also difficult to unobtru-
sively measure. Each of the examples above requires the
user to stop what they are doing to measure the biometric.
The behavioral characteristics mentioned above are, however,
more amenable to unobtrusive measurement since they can
be collected as the person goes about their day. On the other
hand, they might be easier to circumvent because they can be
easily measured. A microphone can capture a person’s voice,
a camera can capture one’s gait, or a malicious application
could learn one’s typing rhythm [13]. A biometric suited
for our purposes would incorporate the difficulty of circum-
venting a physiological biometric with the measurability of a
behavioral biometric.

3. MODEL
We propose using a person’s vocal resonance as a biomet-

ric. Vocal resonance is measured by a microphone placed
on a person’s body. By virtue of being attached to the a
person’s body, we can use speaker identification techniques
to determine the speaker while simultaneously guaranteeing
that the microphone is attached to the speaker’s body. Like
a typical speaker-identification system, the microphone hears
the person’s voice, but unlike a typical speaker-identification
system, the microphone is hearing the voice as it travels
through the body itself, rather than through the air. Thus,
the system needs to identify who is speaking, and verify



Figure 1: Two types of microphones. On the left is a com-
mercial throat microphone intended to be worn around the
neck. On right are the contact microphones intended to be
used for a guitar. These are not on the same scale.

that the detected voice is coming through the body and not
through the air or some other medium.

A traditional speaker-identification system makes no guar-
antees about the placement of the microphone; it may or
may not be attached to the person’s body. In fact, most
traditional speaker-identification systems make no guaran-
tees that the person is even present, because they can be
fooled by capturing the person’s voice and playing it back
through a suitable speaker. Most systems alleviate this con-
cern by employing a challenge-response scheme, whereby
the person is asked to speak a randomly generated phrase.
However, this is obtrusive and thus unsuitable. Capturing
the vocal resonance of person is unobtrusive: all the user
must do is talk as they go about their day. Unlike a tradi-
tional speaker-identification system, however, it is difficult
to circumvent because an adversary would need to physically
attach a microphone to the target individual.

The microphone’s location will be critical to the success
of the system. A microphone placed near the chest would
pick up a person’s voice better than a microphone placed
on their leg. One would imagine a microphone placed on
the throat would be optimal for collecting a person’s vocal
resonance. However, it is difficult to imagine people opting
to wear something like a traditional throat microphone (seen
in Figure 1, at left). The mere presence of such a device on
a person indicates to others that they are using some type
of personal sensing system.

We imagine a piece of jewelry, not unlike a necklace or
earpiece, that would contain a contact microphone to sample
vocal resonance and another microphone to sample ambient
sound. The form factor of a necklace or earpiece has several
technical advantages. First, these items are worn the same
way each time, more or less; issues with placement of the
microphone are diminished because it can sense data from
nearly the same location each time. Second, the necklace
or earpiece can be instrumented to detect when it has been
placed on and taken off a person. This can be detected, for
example, by the ends of the necklace being clasped together
or when the earpiece has sufficient contact with the ear by de-
tecting properties of the skin such as temperature, moisture,
or electrical impedance. Because we require the microphone
to be in contact with the body and not all form factors will
afford continuous contact, a mechanism to detect when the
device is in contact with a body is necessary (but outside the
scope of this paper). Such a simple detection mechanisms
also allow us to conserve energy by only performing identi-
fication when the microphone is actually in contact with a
person.

3.1 Adversary & Threat Model
In any system there is a set of assumptions the designers

make about the intended adversaries the system is designed
to handle. We state these assumptions here.

The device cannot know a priori the universe of people,
thus we assume there is a set of people who intend to wear
the device. The device needs to determine whether it is on
the body of an intended person and correctly identify that
intended person using the data from its microphone. It should
also correctly reject any situation when an unintended person
wears the device in the presence of speech by an intended
person, whether on a body (of an unintended person) or not.

Our prototypical attacker is passive. They are a person
who mistakenly wears the device they believe they were
intended to wear. A couple, for example, might have two
of these devices and accidentally mix them up. The device
should be able to detect and handle this case properly.

We consider some attackers who are actively trying to fool
the device. An active attacker might wear the device and
play a recording of an intended person’s voice to fool the
device into thinking it is on that intended person’s body.
They might also try to imitate an intended person’s voice or
introduce noise into the environment. However, we do not
assume they will physically alter the device or its firmware.
We discuss how one might mitigate an active adversary in
Section 8.

4. METHOD
We are inspired by the techniques from the speaker identi-

fication literature [19] but account for the unique nature of
the data collected via a contact microphone. Figure 2 shows
the major components of our model. When a person first
receives the device, they must train the device to recognize
their voice. In enrollment mode, the device simultaneously
collects audio data from both the contact and ambient mi-
crophones, and then uses these data to create two models of
the person’s voice using an enrollment algorithm. The model
computed from the contact microphone models the speaker’s
vocal resonance, while the model computed from the ambient
microphone models the speaker’s voice through the air. Typ-
ically, these models would be computed off-device because
the computational requirements for learning such a model
are high. The enrollment algorithm produces two models of
that particular speaker; the models are loaded into the device
for later use. Because we anticipate the device being used
by multiple people, it may be loaded with multiple speaker
models.

Once its users are enrolled, the device performs periodic
verification to determine whether it is on a person’s body
and to identify the speaker. The device first checks whether
or not it has been placed on somebody, using the mechanisms
described above; if so, it periodically collects a sample of
audio from the contact microphone. If the device determines
the audio sample to contain speech, the device then uses an
identification algorithm to determine which enrolled person’s
models, if any, fit this audio sample.

Before we present the enrollment and identification al-
gorithms, we define the audio-segmentation and feature-
extraction methods common to both algorithms.

4.1 Audio Segmentation
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Figure 2: The major components of our method. Most of the components would be computed on the device itself, except for
the enrollment algorithm (which can be done in the cloud).

Given audio data from a microphone, the first task is to
divide it into smaller chunks to ease its processing. Our
method examines a brief 20ms segment of audio data, a
size at which speech is assumed to be quasi-stationary [16].
For each 20ms segment of audio data, we apply a Hamming
window to deemphasize the sides of the audio segment and
compensate for spectral leakage. Because the sides are deem-
phasized and to account for temporal effects, it is preferable
to have the segments overlap. We use a standard 50% (10
ms) overlap [19].

Because not all audio data will contain speech, it is first
necessary to determine whether the audio segment contains
speech; this can be accomplished efficiently using simple time-
domain features combined with a decision tree as described
by Lu et al. [12]. If an audio segment is deemed not to contain
speech, it is discarded. (During enrollment, corresponding
segments from the contact and ambient microphones are
discarded if either segment is determined not to contain
speech.)

4.2 Feature Extraction
Given such an audio segment, we first extract some features

that capture features of the person’s voice. We use the set
of Mel-Frequency Cepstral Coefficients (MFCCs) [14], which
characterize the cepstrum of the audio segment (the power
spectrum of the log of the power spectrum). Because the
power spectrum of the segment is first mapped onto the mel
scale, which is empirically based on the frequency scale of
the human auditory system, these coefficients model how
we hear sound [20]. For this reason, MFCCs have been
successful in many voice-processing tasks. Since the first
coefficient models the mean value of the signal, we discard
this coefficient. In addition to these coefficients, we include
the first and second derivatives (velocity and acceleration)
of each coefficient, to capture how the coefficients change
over time. These derivatives account for the fact that the
defining features of a person’s voice, formants, vary over time.
We approximate each derivative by computing the 5-point
central difference:

v
(1)
t =

c
(1)
t−2 − 8c

(1)
t−1 + 8c

(1)
t+1 − c

(1)
t+2

12

where v
(1)
t is the velocity of the first coefficient c

(1)
t at time

t. We compute acceleration in a similar matter except over
velocities instead of coefficients. The result is a feature
vector for each audio segment for some chosen number of
coefficients and their respective derivatives. We call a feature
vector computed from audio data sampled from the contact
microphone a contact feature vector, and we call a feature

vector computed from the ambient microphone an ambient
feature vector. In our experiments, we vary the number of
coefficients and fix the number of mel-scale filters equal to
the number of desired coefficients.

4.3 Enrollment Algorithm
During enrollment, we collect audio from both the con-

tact microphone and the ambient microphone, and build a
model for each. To do so, we segment the audio, extract
a feature vector for each segment, and statistically model
the distribution of feature vectors. The most effective such
model for speaker identification is a Gaussian Mixture Model
(GMM) [17]. A GMM models the distribution of observations
using a weighted linear combination of Gaussian densities
where each Gaussian density is parameterized by a mean
vector and covariance matrix. Thus, we use GMMs to model
the distribution of feature vectors for a given speaker. We
model the distribution of contact feature vectors and ambient
feature vectors separately. To learn the underlying distribu-
tion of feature vectors, we use the Expectation-Maximization
(EM) algorithm [5] to iteratively refine the mixture of Gaus-
sian densities until the maximum likelihood remains stable
(i.e., the difference between successive iterations is less than
10−4) or after a maximum number of iterations (5000). We
choose initial Gaussian densities by clustering the set of fea-
ture vectors using k-means clustering [11], where k is set
to the desired number of Gaussian densities. We iteratively
refine these initial Gaussian densities using the EM algorithm.
Modeling the covariance matrix in full is computationally
expensive, so we use diagonal covariance matrices because it
has been shown that using a larger-dimensional diagonal co-
variance matrix performs better than a smaller-dimensional
full covariance matrix [2]. Similarly, because some values of
the covariance matrix can become very small, as in the case
of outliers, we enforce a variance floor of 10−5.

In essence, a GMM serves to summarize the set of feature
vectors that capture the sound of a particular speaker’s voice.
The set of feature vectors is reduced to a diagonal covariance
matrix, mean vector, and weight for each Gaussian density.
We call a model trained on contact feature vectors a contact
model, while a model trained on ambient feature vectors is
called an ambient model. In our experiments, we vary the
number of Gaussian densities for each model.

Once we have learned a GMM, we also need learn a thresh-
old at which the likelihood of a contact feature vector should
be accepted or rejected. The likelihood of a feature vector
given a GMM is simply the weighted linear combination of
the probability density function of each Gaussian given the
feature vector. From a speaker’s contact and ambient models



we compute the likelihood of a given contact feature vector
corresponding to each model. A contact likelihood is one com-
puted from a contact feature vector given the contact model,
and ambient likelihood is computed from a contact feature
vector given the ambient model. Given these two likelihoods,
we compute a likelihood ratio to decide whether the sample
came from contact model or the ambient model. For numeri-
cal stability, we compute the log-likelihood which allows us
to take the difference between the two log-likelihoods, which
we call the difference likelihood. If the difference likelihood is
greater than some threshold, then we say the audio segment
correspond to the contact feature matches the speaker’s vocal
resonance; otherwise it does not fit the model and therefore
does not match the speaker’s vocal resonance. In this way the
ambient model acts as a kind of background model [18], albeit
not a universal one since it is only modeling the speaker’s
voice through the air.

Ideally a threshold should exactly classify each sample
correctly, but there is no good way to choose a threshold a
priori. Because we wish to use vocal resonance as a biometric,
it makes sense to minimize the number of times the device
will accept a contact feature vector that was computed from
an audio segment collected from an unenrolled person. This
is called a false accept, and we choose the threshold that
minimizes the number of false acceptances in the training set.
In Section 6 we evaluate how close this a priori threshold (as
computed on the training set) is to the a posteriori threshold
(as computed on the testing set).

4.4 Identification Algorithm
During the identification phase we use the contact mi-

crophone only. We segment the audio sample and extract
a series of contact feature vectors; we wish to determine
whether these newly measured contact feature vectors match
the vocal resonance of an enrolled speaker. For a given
speaker’s pair of models, built during enrollment, we com-
pute the difference likelihood for this new contact feature
vector. Because we extract a feature vector every 10 ms, it
is preferable to average over a series of difference likelihoods
to achieve stability; we compute this average likelihood using
a simple moving average over n difference likelihoods. As
above, if this average difference likelihood is greater than the
pre-computed threshold, then we assume those segments of
audio match the vocal resonance for that speaker.

Because we cannot know a priori who is wearing the device,
we compute these average likelihoods for each model the
device has trained. The device reports the speaker of the
trained contact model as the current speaker if the average
difference likelihood is greater than the model’s threshold. If
more than one model has a average likelihood greater than its
respective threshold, then we consider this an unclassifiable
segment of audio and the identification algorithm reports it
as such. Over a window of m predictions, we can further
smooth these reports to reduce spurious misclassifications
via a simply majority vote.

4.5 Parameter Settings
We explore several parameters that have a direct effect on

the computational, storage, and energy resources required
for enrollment and identification. First is the number of
MFCCs in the feature vector, which will affect how much
the higher frequencies contribute to the learning process.
Second is the number of Gaussians, which will affect how

well the GMM fits the underlying distribution. Third, we
can vary the number of recent likelihoods we average, where
an average taking into account more samples might be more
accurate but will require longer audio captures and thus
a delay in identification. Fourth, we can vary the number
of predictions we smooth over, where a longer smoothing
window will require more samples but might reduce spurious
misclassifications. In Section 6 we explore settings of these
parameters.

5. IMPLEMENTATION
To test our approach, we conducted two types of exper-

iments. In this section, we describe how we implemented
our approach on a wearable device, and the results of experi-
ments with the prototype. In the next section, we show how
we collected voice recordings from 25 users to explore our
method’s ability to identify and distinguish people.

For our prototype we used the Gumstix [9] platform, specif-
ically, the Gumstix Overo Fire COM with the Tobi expansion
board. The Overo Fire COM has a 700 MHz ARM Cortex-
A8 processor, 512MB RAM, 512MB flash, a microSD slot,
and it supports Wi-Fi (802.11b/g); using the Tobi expansion
board, we can connect a microphone to the COM. Figure 3a
shows the entire Gumstix setup: Overo Fire COM mounted
on the Tobi expansion board, USB sound card, and wearable
acoustic microphones; the Gumstix Overo COM itself is quite
small (see Figure 3b).

Although the Gumstix expansion boards have built-in
audio line-in ports, they have poor audio quality and we
could not use them.1 So we decided to use a USB sound
card to get good-quality audio; we used the Amigo II USB
sound card by Turtle Beach (as shown in the Figure 3a).

We implemented the audio segmentation (Section 4.1),
feature extraction (Section 4.2), and the identification al-
gorithm (Section 4.4) on the Gumstix processor. We also
implemented the enrollment algorithm (Section 4.3), but it is
a computationally heavy process, and needs to be done only
once, so we ran it offline on a desktop. We used the FFTW [7]
library for the feature-extraction step; we cross-compiled it
for the Overo. Our implementation requires approximately
5,800 lines of C++ code. For the Overo, we built a console
image (kernel version 3.0.0) using the OpenEmbedded build
framework.

5.1 Experiments
To evaluate the performance of our prototype, we mea-

sured two metrics: latency, that is, how quickly the system
identifies the user, and energy consumption. We recorded
an audio sample on the Gumstix (using the arecord util-
ity), and then ran the feature-extraction and identification
algorithms on the Gumstix multiple times, each time with dif-
ferent parameters, and we measured the latency and energy
consumption.

We ran the feature-extraction step for five different num-
bers of coefficients, shown in Table 1. In the feature-
extraction step, we generate three features for each coef-
ficient. Hence, as the number of coefficients increase, the
MFCC step runs longer, increasing the latency and thus the
energy consumed.

1We tried two expansion boards, the Tobi and Palo 35, and
both the boards had poor quality audio from the line-in, the
Tobi being slightly better.



Figure 3: a) Gumstix setup: Overo mounted on Gumstix Tobi expansion board, USB sound card, and two microphones, b)
Gumstix Overo Fire COM

Coefficients Energy (J) Latency (sec)
10 2.655 1.574
20 2.805 1.662
30 2.958 1.752
40 3.094 1.831
50 3.242 1.917

Table 1: Energy consumption and latency of the feature-
extraction step for different number of coefficients.

We ran the identification step 35 times, with five different
coefficient values (10–50), and using seven different GMMs
based on the number of Gaussians. As shown in Table 2,
increasing the number of Gaussians and the number of coeffi-
cients, increases the latency and energy of the identification
step, as expected.

The total energy required by our system on the Gumstix
for user identification is the sum of energy required to record
and segment audio, extract feature vectors, and run the
identification step on a single user’s speaker model. The total
time, however, is not the sum of these three steps, because
extraction and identification overlap with the recording of the
audio. For 20 coefficients, with 16 Gaussians, a window size
of 20, and a step size of 10, the feature-extraction step takes
about 1.66 seconds to run over a 20-second audio sample, and
the identification step takes about 5.53 seconds. The required
energy for recording and processing a 20-second audio sample
is 30.4 J (required energy for recording 20 second audio) +
2.8 J (required energy for feature-extraction step) + 13.3 J
(required energy for identification step) = 46.5 J; note that
the energy consumption is dominated by the audio recording
step, and the feature extraction and identification steps only
consume about 34% of the total energy.

With a 645 mA battery, the Gumstix can do continuous
recording and identification for an hour. However, continuous
speaker-identification is not required, in most settings, and
the system need only run periodically. If, for example, the
system collects a 20-second sample every 10 minutes, this
battery would last more than a day. If the device has the
capability to detect when it is removed from a person, then

it need only conduct verification when it is transferred to a
new person, and can last for much longer.

6. EVALUATION
In this section we explore the viability of vocal resonance

as a biometric. Recall that we require a biometric that is
universal, unique, permanent, unobtrusively measurable, and
difficult to circumvent. We explore the uniqueness, measur-
ability, and circumventability properties and provide argu-
ments for why the universality and permanence properties
hold as well.

6.1 Uniqueness
We consider vocal resonance to be unique over a given

population if every person in that population can be indi-
vidually determined by their vocal resonance. To validate
our method, we collected a dataset and ran the described
method to see how well the method could accurately classify
individuals in our dataset.

6.1.1 Dataset
We collected data from 45 human subjects using an IRB-

approved protocol. Three AXL PG-800 External Piezo Trans-
ducer suction cup microphones (as seen in Figure 1, at right)
recorded data from three locations, as shown in Figure 4.
The speaker attached one microphone to the side of his or
her neck, and held the second microphone six inches from
his or her mouth. The first microphone simulated the case
when an enrolled person is wearing the device; we call this
microphone the body microphone. The second microphone
simulated the case when an enrolled person is not wearing
the device, but the device could still hear them speaking;
we call this microphone the air microphone. In addition,
a listener sat two to three feet away from the speaker and
had a microphone attached to his own neck. This micro-
phone simulated the case when another person, enrolled or
unenrolled, is wearing the device and an enrolled speaker
is speaking; we call this microphone the other microphone.
The microphones were secured to each subject’s neck using
3M Micropore Tape. A pair of Radio Shack Mini Audio
Amplifiers amplified the body and air microphones; these
amplifiers were connected to the line-in port of a laptop. The



Coefficients
Gaussians 10 20 30 40 50

J sec J sec J sec J sec J sec
16 5.75 3.03 9.06 5.53 13.33 8.15 17.64 10.79 20.36 10.79
32 9.11 5.56 20.00 12.92 26.38 16.14 36.17 22.16 40.44 21.43
64 17.95 10.97 36.30 23.25 52.56 33.02 70.04 42.80 80.84 43.74
128 35.70 21.81 70.65 43.07 105.30 64.38 146.91 89.74 165.88 87.25

Table 2: Energy consumption and latency of the identification step for different number of coefficients and different number of
Gaussians.

Figure 4: The sample collection setup. The microphone
locations are indicated by circles.

other microphone connected to the laptop using a Turtle
Beach Amigo II USB audio adapter, which has a built-in
amplifier. We used the PyAudio and wave modules for
Python to capture the audio data at 44100 Hz with 16-bit
resolution. Figure 5 shows an example spectrogram for audio
data collected at the described microphone locations.

We obtained usable data from 25 subjects (not 45, due
to equipment malfunction). The average of these subjects,
17 males and 8 females, was 21 years. We instructed the
subjects to read three passages. The first passage was used for
training. We selected the The Rainbow Passage [6] because it
encompasses most of the phonemes of the English language.
The second passage acted as a control passage. We chose the
first 24 lines from The Wind in the Willows as a common
test phrase for all subjects. The third passage was selected
randomly for each subject. We selected 20-26 consecutive
lines from the first two chapters of The Wind in the Willows
to act as a unique test phrase for each subject. Subjects took
an average of 107 seconds to read The Rainbow Passage, 92
seconds to read the control test passage, and 91 seconds to
read the randomized test passage.

6.1.2 Experiments
We ran several tests to experimentally evaluate the unique-

ness of vocal resonance. As mentioned previously, our method
can be parameterized by the number of extracted MFCCs,
the number of Gaussian densities used to model them, and
the number difference likelihoods used for smoothing. We
explored these parameters to find an optimal setting that
maximizes classification accuracy across all subjects.

Testing Procedure.
For each user in our dataset, we trained a GMM and

learned a threshold using their training sample collected
from their body microphone. Figure 6 shows a histogram
of likelihoods at bottom and the ACC, FAR, and FRR of
this training set for various thresholds. We computed these
likelihoods from the same training samples that were used to
compute the GMM. From this histogram of likelihoods, we
learned the threshold, indicated by the vertical line in the
figure, that minimizes the FAR.

We then tested the subject against all other subjects in
our dataset using the collected testing data to determine how
well the chosen threshold performed. A positive sample is any
sample that came from the same subject and came from the
body microphone. A negative sample is any other sample,
including those containing speech from the same subject
collected by either the air or other microphones. Thus,
the number of negative samples outnumber the number of
positive samples by a factor of 74 since we collected 3 separate
sets of testing samples (one for each of the microphones) from
each of the other 24 subjects.

Measures.
A sample is classified as positive if it is greater than the

threshold, otherwise it is classified negative. Given a partic-
ular threshold, we report the false accept rate (FAR), false
reject rate (FRR), accuracy (ACC), and balanced accuracy
(BAC) for each test. For a set of classified samples, the
FAR is defined as the fraction of negative samples that were
misclassified (i.e., they were classified as positive), while the
FRR is the fraction of positive samples that were misclassi-
fied (i.e., they were classified as negative). Since we can vary
the threshold – which implies different FARs and FRRs for
different thresholds – the EER is the rate at which the FAR
equals the FRR. We cannot know the EER a priori, however
it is useful to see how well an a priori threshold fares with
an a posteriori selected threshold that is the EER. Balanced
accuracy is the sum of half of the true accept rate (i.e., the
fraction of positive samples that were correctly classified, or
1 − FRR) and half of the true reject rate (the fraction of
negative samples that were correctly classified, or 1 − FAR).
Balanced accuracy weights the negative and positive exam-
ples equally. Accuracy is ratio of correctly classified samples
and the total number of samples. Because we perform each
test for every subject, we report the average over all subjects.

Results.
We tested each subject with varying parameters. Fro each

subject we varied the number of MFCCs from 10, 20, 30, 40,
and 50; the number of Gaussian densities from 16, 32, 64, 128,
256, 512, and 1024; the length of the average window from 10,
100, and 1000; and the length of the smoothing window from



Figure 5: Spectrograms of a training sample collected from a subject. The top spectrogram was generated from audio collected
via the microphone attached to the subject, the middle spectrogram was generated from audio collected via the microphone
held in front of the subject, and the bottom spectrogram was generated by from audio collected via the microphone on another
subject.

1, 17, 33, 65, 129, 257, 513, 1025. Each point in Figures 7a,
7b, 7c, and 7d represents a setting of these parameters where
the value of that point is the BAC averaged over all users.
The BAC tends to stay relatively the same, hovering around
65% for most parameter settings. However, the ACC goes as
high as 100% when the number of Gaussians densities is low
and the average window length is 1. This is a conservative
setting because, although the FAR is very low, the FRR is
also very high.

From Figures 7a, 7b, 7d, and 7c, we chose the parameter
settings of 30 MFCCs, 128 Gaussian densities, length 10
averaging window, and length 129 smoothing window. On
average, subjects a priori tested with 77% accuracy with an
8% standard deviation.

Finally, we determined the a posteriori threshold for each
subject by searching for the threshold that maximizes EER
for each subject. On average, subjects a posteriori tested
with 75% accuracy with an 5% standard deviation. Thus
our choice of threshold was not too too far off from the a
posteriori threshold.

6.2 Measurability
Measurability is the property of being easy and unobtrusive

to measure. The unobtrusiveness of the device will highly
depend upon its form factor. We argue for integration into
existing devices, like a necklace or ear piece, that people
already wear. However, the ease of measuring vocal resonance
will also depend on the location of the device.

Background noise will also affect the measurability of vocal
resonance, although we believe better contact microphones
would alleviate most noise-related concerns. Table 3 shows
how our method responds to different types of artificial noise.
We trained GMMs for four users in a non-noisy environment,
then we tested them in two simulated noisy environments –

Mobility & Noise Type ACC FAR FRR
Moving & None 86.71% 5.15% 35.56%
Moving & Restaurant 86.90% 3.23% 41.31%
Moving & White 87.50% 0.26% 48.70%
Non-Moving & None 85.43% 12.15% 22.00%
Non-Moving & Restaurant 84.70% 9.53% 31.53%
Non-Moving & White 87.30% 0.93% 48.98%

Table 3: Classification measures for different types of noise
averaged across four users.

a pre-recorded restaurant, and white noise – along with a
quiet environment for control. Table 3 also shows the effect
on the mobility of the speaker on our methods. Moving
samples were taken while the speaker paced across the room;
non-moving samples were taken while the speaker sat calmly.

6.3 Circumvention
The number of negative misclassifications determines how

easy it is to circumvent the biometric. An active attacker will
try to fool the method by introducing specially crafted audio
into the environment. For example, they could capture an
enrolled person’s voice and then replay that audio through
their body so as to fool the device into believe the person is
speaking. To simulate this attack, we placed a loudspeaker
on the body of subject and played back an enrolled users
voice. We then moved the loudspeaker up to 100cm away,
with increments of 10cm, from the subject. Table 4 shows
the effect on the classification measures when this scenario
occurs for varying distances to the device.

An adversary could also swallow a loudspeaker and re-
play an enrolled user’s voice through their own physiology.
However, this is unpractical because identification occurs
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window to 100. The vertical lines with percentages represent the learned thresholds and their corresponding ACC measures at
that threshold.

Distance from User FAR
0 cm 7.9%
10 cm 0.58%
20 cm 0.33%
30 cm 0.95%
40 cm 1.23%
50 cm 3.23%
60 cm 0.75%
70 cm 1.93%
80 cm 0.65%
90 cm 1.43%
100 cm 1.23%

Table 4: Classification rates when the distance of a hypothe-
sized attacker varies.

repeatedly and it would be uncomfortable for an adversary
to maintain a loudspeaker in their throat. A less invasive
approach would be learning a filter that changes speech cap-
tured in the air to mimic like it was captured via the body.
With such a filter, all an attacker would have to do is capture
an enrolled person’s voice, apply the filter, and play it back
to the device. However, the feasibility of such an attack
remains unclear, and we leave it for future work.

6.4 Universality
The universe of people that can use this device is limited

to those that can speak, primarily because there must be
some structure in the audio data collected by the microphone
in the device. The major structures captured by our method
are formants, which are the resonances of the human vocal
tract. While our dataset consists of all English-speaking
participants, our method could be used for other languages
as well. We leave this testing of universality as future work.

6.5 Permanence
Permanence is the property of remaining unchanged. It

is well known, however, that each person’s voice changes

over their lifetime, both temporarily and permanently. A
prominent physical changes occurs at puberty in the vocal
cords, which are the primary source of speech production,
causing them to thicken on into old age. Disease can also
have a temporary or permanent effect on one’s vocal cords;
hoarse voice is a symptom of many diseases. Similarly, the
physical dimensions of the person affect vocal resonance. The
area which the device records vocal resonance can vary based
upon the amount of fat, muscle, and bone density present.
These could differ depending on caloric intake and exercise,
or traumatic injury to the area.

Other than retraining, there is no good solution for abrupt
changes to one’s vocal resonance. Any kind of extraordinary
change to the vocal tract would require retraining. For
more subtle changes over time, we could employ a scheme
similar to Darwin [15]. Darwin uses “classifier evolution,”
which is “an automated approach to updating models over
time such that the classifiers are robust to the variability in
sensing conditions common to mobile phones (e.g., phone in
the pocket, in pocket bag, out of the pocket), and settings
(e.g., noisy and loud environments).” Darwin’s classifier
evolution might be used to relearn a model used for speaker
identification in a mobile setting.

7. RELATED WORK
Speaker-recognition and -identification systems have been

studied for some time [2, 17, 19]. State-of-the-art speaker
verification systems use features and methods similar to the
one described in this paper. However, we differ from the
state-of-the-art methods by not incorporating a background
model. The purpose of a background model is to model all
the possible audio segments that are not from the intended
speaker; typically one learns a model of all other speakers in
the dataset resulting in a “universal background model” [18].
Any kind of background model has the disadvantage that
one must know beforehand all the representative speakers
of the desired population. We sidestep this challenge by
thresholding on the likelihood of the model trained on each
enrolled user. While the accuracy of our method might be
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Figure 7: The average BAC, ACC, FAR, and FRR computed over all subjects for all explored parameter settings.



lower than one that incorporates a background model, our
method does not necessarily preclude the use of such a model.
It is, a priori, difficult to collect representative background
data and impossible to collect data from all other speakers
the device might hear over its lifetime.

The most similar research to our own is by Yegnanarayana
et al. [22]. They study the feasibility of a speaker-recognition
system for samples collected by a throat microphone in a sim-
ulated noisy environment, compared to a microphone placed
close to the speaker. To compare both microphones, they
collected data simultaneously from both microphones from
40 speakers. They note that the throat microphone is mostly
immune to noise and reverberation, unlike the close-speaking
microphone, but it also suffers from the attenuation of higher
formants in speech. To determine feasibility of speaker recog-
nition, they extracted 19 linear predictive cepstral coefficients
as features from the audio, and use an auto-associative neu-
ral network to model these features. They show that the
performance of the system using throat and close-speaking
microphones is the same in a noise-free environment. In
a noisy environment, the close-speaker microphone system
degrades in the presence of noise while the throat microphone
system does not. Our work is complementary to theirs as
we study the feasibility of vocal resonance as a biometric.
Furthermore, we build a state-of-the-art speaker-recognition
model using MFCCs and GMMs.

Tsuge et al. have looked at bone-conductive microphones
for speaker verification [21]. (A bone-conductive microphone
picks up sounds conducted through the skull.) They use
this kind of microphone to study the feasibility of a speaker-
verification system over a dataset with more than 600 speak-
ers. They extract a 25-dimensional feature vector from 12
MFCCs and use 64 vector-quantization centroids to model a
speaker. Their experiments show that the bone-conducting
microphone performs poorer than an air-conducting micro-
phone, due to placement and noise. However, when the two
microphones are combined, the equal-error rate improves by
16% over just an air-conducting microphone.

8. DISCUSSION AND FUTURE WORK
Our experiments demonstrate the usefulness of vocal res-

onance as a biometric for personalizing wearable devices;
however, a number of important issues still need to be ad-
dressed to incorporate this new biometric into real devices.
The following paragraphs describe our goals and planned
extensions to this work.

8.1 Improving Classification
Our work, to date, has focused primarily on the use of

state-of-the-art speaker verification techniques to explore
a novel biometric – vocal resonance. While this approach
allows us to build on existing knowledge and works well in
practice, these tools do not take full advantage of the unique
characteristics of vocal resonance. For example, we assume
that each user’s vocal sounds are filtered differently, due to
anatomical variation, as they pass through the body.

Moving forward, we plan to explore classification approaches
that learn the parameters of a body’s individual filter, to
improve verification accuracy. Better understanding how
the sound is filtered will also allow us to explore differential
approaches using two microphones, that directly compare
ambient sound to vocal resonance directly.

8.2 Optimizing Prototype Hardware
A major goal of this work is a working, wearable prototype

device that can identify its wearer based on vocal resonance.
We need to adapt our initial prototype so we can expand our
experiments to include longitudinal studies that measure the
effect of contact quality, time of day, exertion, stress, illness,
and other potentially voice-altering phenomena on speaker
identification.

Achieving this goal presents a range of challenges. Continu-
ously analyzing audio samples requires significant processing,
especially for a small resource-constrained device. While our
initial feasibility experiments demonstrate that a software-
only implementation achieves acceptable execution times on
a low-power computer (Overo Gumstix), we are currently
exploring techniques that improve both speed and energy
efficiency.

A common solution for improving the efficiency is to em-
ploy specialized analog hardware to accomplish tasks that
are much more computationally or energy intensive when per-
formed digitally. Extracting spectral features (like MFCCs),
from a signal using analog circuitry before converting be-
fore it is handed off to a DSP or other digital processor has
been shown to dramatically improve both processing speed
and energy efficiency [10]. In order to expand our ability
to conduct longitudinal experiments on a much tighter en-
ergy constraints, we plan to implement the MFCC-extraction
portion of our system in analog circuitry.

Finally, our prototype device is not very wearable. With
custom hardware the device could easily be smaller and
more amenable to the kind of wearable devices we see today.
However, while miniaturization is possible, one also needs to
account for the location of the microphone in the device itself
and how the microphone is intended to hear the person’s vocal
resonance. We plan to explore these design considerations in
future work.

8.3 Testing Stronger Attacks
Our experiments have evaluated the impact of simple

threats—such as when the device is placed on the wrong
person or when the owners voice is heard over the air but the
devices is not being worn. Of course, other stronger attacks
are possible. For example, an adversary might be able to fool
the worn device by imitating the owner’s voice, or by playing
speech recorded from the device’s owner through their own
body using a contact speaker. In the future, we plan to
evaluate how effective these attacks are and whether anatom-
ical differences in bodies result in detectable differences in
acoustic filtering.

We also plan to explore the use of better microphone
isolation techniques as well as coordinated use of air and
body microphones to correctly authenticate users even in the
presence of these stronger adversaries.

9. SUMMARY
In this paper we present a novel method for an unobtrusive

biometric measurement that can support user identification
in small, wearable pervasive devices. We evaluate the feasi-
bility of vocal resonance as a biometric using data collected
from 25 subjects. In addition, we implemented a wearable
prototype and tested it in stationary and mobile settings in
both quiet and noisy environments. Our results show that it
is possible to achieve speaker identification through a wear-
able, body-contact microphone, that can reliably distinguish



among multiple individuals sharing a household, and indeed
that it can distinguish between the situation where the mi-
crophone is on the body of the identified speaker and where
the microphone is simply nearby, even on another body. Our
prototype, based on a Gumstix processor and a USB sound
card, was able to collect and process the data in a reason-
able amount of time and with a reasonable battery lifetime,
given a suitable duty cycle. A purpose-built device – with
hardware support for FFT and with extraneous hardware
removed – would be substantially smaller and more efficient.
In future work we anticipate refining the method, optimizing
its performance, and testing it in realistic settings.
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