
Copyright 1998 by Springer-Verlag. doi:10.1007/3-540-68671-1.
A chapter in the book "Mobile Agents and Security", edited by Giovanni Vigna.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

D’Agents: Security in a multiple-language,

mobile-agent system

Robert S. Gray1 and David Kotz2 and George Cybenko1 and Daniela Rus2

1 Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
2 Department of Computer Science, Dartmouth College, Hanover NH 03755, USA

Abstract. Mobile-agent systems must address three security issues: pro-
tecting an individual machine, protecting a group of machines, and pro-
tecting an agent. In this chapter, we discuss these three issues in the
context of D’Agents, a mobile-agent system whose agents can be writ-
ten in Tcl, Java and Scheme. (D’Agents was formerly known as Agent
Tcl.) First we discuss mechanisms existing in D’Agents for protecting
an individual machine: (1) cryptographic authentication of the agent’s
owner, (2) resource managers that make policy decisions based on the
owner’s identity, and (3) secure execution environments for each language
that enforce the decisions of the resource managers. Then we discuss our
planned market-based approach for protecting machine groups. Finally
we consider several (partial) solutions for protecting an agent from a
malicious machine.

1 Introduction

A mobile agent is a program that moves from machine to machine and executes
on each. Neither the agent nor the machines are necessarily trustworthy. The
agent might try to access or destroy privileged information or consume more than
its share of some resource. The machines might try to pull sensitive information
out of the agent or change the behavior of the agent by removing, modifying or
adding to its data and code. A mobile-agent system that does not detect and
prevent such malicious actions can never be used in real applications. In an open
network environment, intentional attacks on both machines and agents will start
as soon as the system is deployed, and even in a closed network environment
with trusted users, there is still the danger of misprogrammed agents, which can
do significant damage accidentally. Security is perhaps the most critical issue in
a mobile-agent system. We consider the following four inter-related problems:

– Protect the machine. The machine should be able to authenticate the agent’s
owner, assign resource limits based on this authentication, and prevent any
violation of the resource limits. To prevent both the theft or damage of
sensitive information and denial-of-service attacks, the resource limits must
include access rights (reading a certain file), maximum consumptions (total
CPU time), and maximum consumptions per unit time (total CPU time per
unit time).

2

– Protect other agents. An agent should not be able to interfere with another
agent or steal that agent’s resources. This problem can be viewed as a sub-
problem of protecting the machine, since as long as an agent cannot subvert
the agent communication mechanisms and cannot consume or hold excessive
system resources, it will be unable to affect another agent unless that agent
chooses to communicate with it.

– Protect the agent. A machine should not be able to tamper with an agent or
pull sensitive information out of the agent without the agent’s cooperation.
Unfortunately, without hardware support, it is impossible to prevent a ma-
chine from doing whatever it wants with an agent that is currently executing
on that machine. Instead we must try to detect tampering as soon as the
agent migrates from a malicious machine back onto an honest machine, and
then terminate or fix the agent if tampering has occurred. In addition, we
must ensure that (1) sensitive information never passes through an untrusted
machine in an unencrypted form, (2) the information is meaningless without
cooperation from a trusted site, or (3) that theft of the information is not
catastrophic and can be detected via an audit trail.

– Protect a group of machines. An agent might consume excessive resources in
the network as a whole even if it consumes few resources at each machine.
Obvious examples are an agent that roams through the network forever or
an agent that creates two child agents on different machines, each of which
creates two child agents in turn, and so on. An agent and its children should
eventually be unable to obtain any resources anywhere and be terminated. If
the network machines are under single administrative control, solutions are
relatively straightforward; if the machines are not, solutions are much more
complex.

Outline of this paper. Over the past few years we have developed a multi-
language mobile-agents system, D’Agents, formerly known as Agent Tcl. A sig-
nificant component of that effort has been to design and implement security
mechanisms and policies to deal the issues described in this section. In this
chapter we cover each of the above issues in turn, first describing how D’Agents
addresses the first two concerns, and then briefly discussing some possible solu-
tions for the second two concerns. Throughout our discussion we make a careful
effort to distinguish between the architectural features of the D’Agents system,
particularly its security mechanisms, and the security policies that are or could
be implemented within that framework.

2 Related work

Although all of the problems discussed above have been considered in the mobile-
agent literature [18, 4, 28, 22], most mobile-agent systems address only the first
two problems, namely, protecting a machine from malicious agents and agents
from each other. A growing number of mobile-agent projects, however, are exper-
imenting with techniques for protecting machine groups from malicious agents

3

and protecting agents from malicious machines. Here we consider some repre-
sentative mobile-agent systems.

Telescript [31, 33, 32, 34], later marketed as part of the Tabriz web-server
package and then withdrawn from the market, was the first commercial mobile-
agent system. It has two security mechanisms. First, each agent carries crypto-
graphic credentials so that the system could verify the identity of the agent’s
owner. Second, each agent carries a set of permits that give it the right to use
certain Telescript instructions and certain amounts of available resources. Each
machine imposes a set of permits on incoming agents to prevent that agent from
taking undesired action. Agents that attempt to violate their permits are termi-
nated immediately. Some permits involve resources that are “distributed” across
multiple machines (e.g., maximum number of times that an agent can migrate).
Since Telescript assumes that all machines are trustworthy, these permits are
simply counters that are decremented as the agent travels through the network.

Nearly all mobile-agent systems protect the machine in the same manner as
Telescript: (1) cryptographically verify the identity of the agent’s owner, (2) as-
sign access restrictions to the agent based on the owner’s identity, and (3) execute
the agent in a secure execution environment that can enforce these restrictions.
The commercial Java-based systems, such as Odyssey [8], Voyager [29], Concor-
dia [35], and IBM Aglets [17], all cryptographically sign the migrating Java code
and then enforce access restrictions with the standard Java security mechanisms,
i.e., customized class loaders and security managers [6].

Most research systems provide only partial protection for machines, simply
because the research focus is often something other than security (or some other
aspect of security). Tacoma [13] provides hooks so that a developer can add their
own encryption subsystem (and then use this encryption subsystem to sign mi-
grating agents), but does not provide secure execution environments for all of its
supported languages. The Tacoma Too project is experimenting with software
fault isolation and security automata as a flexible way to enforce access restric-
tions [26]. (A security automata is a state machine in which each transition
corresponds to an allowed resource access; software fault isolation instruments
the machine or object code with security checks.) Ara enforces restrictions on
CPU time and memory usage, but does not yet protect resources such as the
filesystem and network [22]; the Ara group is currently implementing a full se-
curity model, however, including digital signatures and access restrictions for all
system resources. Both Tube [10] and SodaBot [5] provide execute their agents
inside secure interpreters that enforce some access restrictions. (SodaBot agents
are written in a custom language called SodaBotl, while Tube agents are written
in Scheme.)

D’Agents does focus on security issues and provides relatively complete pro-
tection for machines. Agents are cryptographically signed using PGP [15], while
access restrictions are enforced with Safe Tcl [18], Java security managers [6], and
Scheme 48 modules. Unlike most mobile-agent systems, D’Agents is designed to
support multiple languages, and thus focuses on cleanly separating enforcement
from policy and on implementing as much of the security mechanisms as possi-

4

ble in a language-independent manner. The D’Agent mechanisms for protecting
machines is the focus of most of this chapter.

We plan to use electronic cash to protect groups of machines [2]. Most mobile-
agent projects, including Tacoma [13], Ara [22], and Messengers [1], have similar
plans. To our knowledge, however, little implementation work has been done by
any of these projects.

Finally, there are a range of possible techniques for protecting an agent
from malicious machines, most of which were introduced by other mobile-agent
projects, and none of which are currently implemented in D’Agents. Since a later
section is devoted to describing these techniques, we will present related work in
that section.

3 D’Agents

D’Agents is a mobile-agent system whose agents can be written in Tcl Java
and Scheme 1 D’Agents has extensive navigation services [23], security mech-
anisms [9], and debugging and tracking tools [11]. In addition, it is active use
at numerous academic and industrial research labs, including labs at Lockheed
Martin, Siemens, Cornell, and the University of Bordeaux, and is starting to find
its way into production-quality applications.

Like all mobile-agent systems, the main component of D’Agents is a server
that runs on each machine. When an agent wants to migrate to a new machine, it
calls a single function, agent jump, which automatically captures the complete
state of the agent and sends this state information to the server on the destination
machine. The destination server starts up an appropriate execution environment
(e.g., a Tcl interpreter for an agent written in Tcl), loads the state information
into this execution environment, and restarts the agent from the exact point at
which it left off. Now the agent is on the destination machine and can interact
with that machine’s resources without any further network communication. In
addition to reducing migration to a single instruction, D’Agents has a simple, lay-
ered architecture that supports multiple languages and transport mechanisms.
Adding a new language or transport mechanism is straightforward: the inter-
preter for the new language must support two state-capture routines, and the
“driver” for the new transport mechanism must support asynchronous I/O and
a specific interface. The primary language is Tcl, and we are currently adding
support for Java and Scheme. The primary transport mechanism is TCP/IP.

Figure 1 shows the D’Agents architecture. The core system, which appears
on the left, has four levels. The lowest level is an interface to each available
transport mechanism. The next level is the server that runs on each machine.
This server has several tasks. It keeps track of the agents running on its machine,
provides the low-level inter-agent communication facilities (message passing and
binary streams), receives and authenticates agents that are arriving from another

1 See URL http://www.cs.dartmouth.edu/~agent/ for software, documentation, and
related papers.

5

host, and restarts an authenticated agent in an appropriate execution environ-
ment. The third level of the architecture consists of the execution environments,
one for each supported agent language. All of our languages are interpreted, so
our “execution environments” are just interpreters, namely a Tcl interpreter, a
Scheme 48 interpreter, and the Java virtual machine. For each incoming agent,
the server starts up the appropriate interpreter in which to execute the agent.
It is important to note that most of the interface between the interpreters and
the servers is implemented in a C/C++ library and shared among all the inter-
preters. The language-specific portion is just a set of stubs that call into this
library.

Security
State

capture

Interpreter

Server

API

TCP/IP

Tcl

Electronic
mail

Java...

Server or engine

...

Agents

Fig. 1. The architecture of the D’Agents system. The core system, shown at left, has
four levels: transport mechanisms, a server that runs on each machine, an interpreter
for each supported agent language, and the agents themselves. Support agents (not
shown) provide navigation, communication and resource management services to other
agents.

The last level of the architecture are the agents themselves, which execute
in the interpreters and use the facilities provided by the server to migrate from
machine to machine and to communicate with other agents. Agents include both
moving agents, which visit different machines to access needed resources, as well
as stationary agents, which stay on a single machine and provide a specific service
to either the user or other agents. From the system’s point of view, there is no
difference between these two kinds of agents, except that a stationary agent typ-
ically has authority to access more system resources. The agent servers provide
low-level functionality. All other services are provided at the agent level by dedi-
cated service agents. Such services include navigation, high-level communication
protocols, and resource management.

Figure 2 shows one of the applications in which D’Agents is used. The applica-
tion’s task is to search a distributed collection of technical reports for information
relevant to the user’s query. The user enters a free-text query into a front-end
GUI. The GUI then spawns an agent to actually perform the query. This agent

6

makes two decisions. First, if the connection between the home machine (i.e., the
user’s machine) is reliable and has high bandwidth, the agent stays on the home
machine. If the connection is unreliable or has low bandwidth, which is often
the case if the home machine is a mobile device, the agent jumps to a proxy
site within the network. This initial jump reduces the use of the poor-quality
link to just the transmission of the agent and the transmission of the final result,
conserving bandwidth and allowing the agent to proceed with its task even if the
link goes down. The proxy site is dynamically selected according to the current
location of the home machine and the document collections.

Once the agent has migrated to a proxy site, if desired, it must interact with
the stationary agents that serve as an interface to the technical report collections.
If these stationary agents provide high-level operations, the agent simply makes
RPC-style calls across the network (using the inter-agent communication mech-
anisms). If the stationary agents provide only low-level operations, the agent
sends out child agents that travel to the document collections and perform the
query there, avoiding the transfer of large amounts of intermediate data. Infor-
mation about the available search operations is obtained from the same directory
services that provide the location of the document collections. Once the agent
has the results from each document collection, it merges and filters those results,
returns to the home machine, and hands the results off to the front-end GUI for
display to the user.

Although the behavior of this agent is relatively complex, it is actually quite
easy to implement. Figure 3 shows the Tcl code for a simplified version of the
information-retrieval agent. This simplified version always jumps to the proxy
site and always spawns child agents, rather than using the network-sensing and
directory services. Since using the network-sensing and directory services involves
only a few library calls, however, the real agent, including appropriate error-
checking and the code to merge and filter the query results, is only about three
times as long as the simplified agent.

In addition to excluding error checking, network-sensing and directory lookups,
the simplified version of the agent does not explicitly use the D’Agent security
services (although it is still subject to the security constraints set by the proxy
and collection machines). A version of the agent that does use the security ser-
vices is presented in the next section.

4 Protecting the machine (and other agents)

Protecting the machine involves two tasks:

– Authentication. Verify the identity of an agent’s owner.
– Authorization and enforcement. Assign resource limits to the agent based on

this identity and enforce those resource limits.

D’Agents, like other mobile-agent systems, handles these two tasks with
public-key cryptography and secure execution environments that perform autho-
rization checks before each resource access. More specifically, D’Agents has an en-

7

Jump

Jump

Stationary IR agent

smaller final result

Dynamically selected
proxy site where agent

to return only a much
merges partial results

on mobile device
Application front-end

Agent

Spawn child / get result Spawn child / get result

...

Tuolomne

Messages

Child Agent

Stationary IR agent

Muir

Messages

Child Agent

Fig. 2. An information-retrieval application in which D’Agents is used. The user enters
a free-text query via a front-end GUI; the GUI then launchs an agent that will search
a distributed collection of technical reports for documents relevant to the query. The
agent first jumps to a proxy site if the link between the user’s machine and the network
is unreliable or has low bandwidth. Then, if the query requires multiple operations
against each search engine, the agent launches child agents that travel to the search-
engine locations and perform the query steps locally to the engine. If the query requires
only a single operation, the agent will interact with the search engines remotely.

8

1 proc runQuery {query expansionWords} {

2 global agent

3 # send query to search engine

4 agent_send "$agent(local-server) search-engine" 0 $query

5 agent_receive code results

6 # expand query if we do not have enough results

7 ...

8 return $results

9 }

10

11 # register with the agent system and then migrate to the proxy site

12 agent_begin

13 agent_jump $proxySite

14

15 # send a child agent to each document collection

16 foreach site $collectionSites {

17 agent_submit $site \

18 -vars query expansionWords -procs runQuery \

19 -script {runQuery $query $expansionWords}

20 }

21

22 # receive the query results

23 for {set i 0} {$i < $numSites} {incr i} {

24 set source [agent_receive code results]

25 set queryResults($source) $results

26 }

27

28 # merge and filter the results and then return home

29 ...

30 agent_jump $agent(home-machine)

Fig. 3. Tcl code for a simplified version of the information-retrieval agent. First the
agent registers with the agent system (line 12). Then the agent jumps to the proxy
site (line 13). Once on the proxy site, the agent sends a child agent to the location
of each document collection (lines 15–20). The child agents, whose code consists of
the runQuery procedure (lines 1–9), communicate with the collection search engines to
perform the query, and then return their results to the main agent. Finally, the main
agent receives the results from each child agent, merges and filters these results, and
jumps back to its point of origin where the results are displayed to the user (lines 22-
30). (The variable agent is a global array that is always available to an agent and that
contains information about the agent’s current location.) The real version of the agent
performs several additional actions that are not shown here, namely (1) appropriate
error-checking, (2) using the network-sensing services to decide whether or not to jump
to a proxy site, (3) using the directory services to identify the proxy site (variable
proxySite) and the collection sites (variables collectionSites and numSites) and
to decide whether or not to spawn the child agents, and (4) obtaining the query and
expansion words (variables query and expansionWords) from the front-end GUI.

9

cryption subsystem, a language-dependent enforcement module, and a language-
independent policy module (for each system resource). These three components
are shown in Figure 4 and described in the subsections below.

4.1 Authentication

Each D’Agents server distinguishes between two kinds of agents: owned and
anonymous. An owned agent is an agent whose owner could be authenticated
and is on the server’s list of authorized users. An anonymous agent is an agent
whose owner could not be authenticated or is not on the server’s list of authorized
users. Each server can be configured to either accept or reject anonymous agents.
If a server accepts an anonymous agent, it gives the agent an extremely restrictive
set of resource limits.

RSA public-key cryptography is used to authenticate an agent’s owner. Each
owner and machine in D’Agents has a public-private key pair. The server can
authenticate the owner if (1) the agent is digitally signed with the owner’s public
key or (2) the agent is digitally signed with the sending machine’s key, the server
trusts the sending machine, and the sending machine was able to authenticate the
owner itself. In the second case, the sending machine would have authenticated
the owner in one of the same two ways: (1) the agent was signed by the owner or
(2) the agent was signed by one of the sending machine’s trusted machines (and
that trusted machine was able to authenticate the owner itself). Thus, trust
is transitive, and trust relationships must be established carefully. Typically
machines under single administrative control would trust each other and no one
else.

D’Agents uses Pretty Good Privacy (PGP) for its digital signatures and en-
cryption. PGP is a standalone program that allows the secure transmission of
electronic mail and is in widespread use despite controversies over patents and
export restrictions [15]. PGP encrypts a file or mail message using the IDEA
algorithm and a randomly chosen secret key, encrypts the secret key using the
RSA public-key algorithm and the recipient’s public key, and then sends the
encrypted key and file to the recipient. PGP optionally adds a digital signature
by computing an MD5 cryptographic hash of the file or mail message and en-
crypting the hash value with the sender’s private key. Although PGP is oriented
towards interactive use, it can be used in an agent system with minimal effort.
In the current implementation, D’Agents runs PGP as a separate process, saves
the data to be encrypted into a file, asks the PGP process to encrypt the file,
and then transfers the encrypted file to the destination server. This approach
is much less efficient than tightly integrating PGP with the rest of the system,
but is simpler and more flexible, especially since it becomes trivial to create an
D’Agents distribution that does not include PGP or that uses different encryp-
tion software [30].

An agent chooses whether to use encryption and signatures when it migrates
or sends a message to another agent. If the agent is not concerned with inter-
ception during migration, it turns off encryption. If the agent is not concerned
with tampering during migration and can accomplish its task as an anonymous

10

A

Filesystem Programs /
Libraries

Screen Network
Time /
Memeory /
...

A

Incoming
agent

8. Manager responds with
grant/deny/quantity

(Java virtual machine, Tcl interpreter, Scheme 48 interpreter)

6. Agent tries to access
a resource

4. Start up interpreter
5. Resume agent execution

Agent server

1. Verify digital signature
2. Accept or reject agent
3. Record owner’s identity

7. Ask resource manager
for permission

Resource managers

Enforcement module

Language interpreter

(Java security manager, Safe Tcl, Scheme 48 modules)

Fig. 4. The components of the D’Agents security architecture. When an agent arrives
at an agent server, the server verifies the agent’s digital signature if present (step 1),
and then either accepts or rejects the agent according to its current access lists (step
2). If the server accepts the agent, it records the identity of the agent’s owner for future
use (step 3), starts up an execution environment for the agent (step 4), and resumes
agent execution (step 5). Once the agent is executing, it might try to access some
system resource such as a particular file (step 6). The language-specific enforcement
module sends the access request to the appropriate resource manager, which is just a
stationary agent that defines the security policy for that resource (step 7). The manager
checks the request against its current policy and returns a grant or deny message to
the enforcement module (step 8).

11

agent, it turns off signatures. When sending a message, the agent makes the same
decisions, except that it turns off signatures only if the recipient does not need
to verify the sender’s identity. Turning off either encryption or signatures is a
significant performance gain due to the slowness of public-key cryptography, and
thus most agents will turn off encryption and signatures whenever the needed
resources and the network environment allow it. In the rest of this section, we
assume that the agent does not want to be an anonymous agent and does not
want to send anonymous messages, and thus has digital signatures turned on.

When an agent registers with its home server using the begin command
(Figure 5), the registration request is digitally signed with the owner’s private
key, optionally encrypted with the destination server’s public key, and sent to
the server. The server verifies the digital signature, checks whether the owner
is allowed to register an agent on its machine, and then accepts or rejects the
request. If the agent and the server are on different machines, all further requests
that the agent makes of the server must be protected to prevent tampering and
masquerade attacks.2 Ideally, the system would generate a secret session key,
known only to the agent and the server, and then use this session key to encrypt
the requests [15]. PGP does not provide direct access to its internal secret-
key routines, however, making it impossible to generate and use session keys
without modifying PGP. Therefore, the current implementation of D’Agents
handles the additional requests in the same manner as the initial registration
request, digitally signing them with the owner’s private key. Since public-key
algorithms are much slower than secret-key algorithms, we will switch to secret
session keys once we replace PGP with a more flexible encryption library. When
the agent and the server are on the same machine (which is the predominant
case), there is no need for a session key, since it is impossible to intercept or
tamper with the additional requests or to masquerade as the registered agent.3

Thus all additional requests are transmitted in the clear.
When an agent migrates for the first time with the jump command, the state

image is digitally signed with the owner’s private key, optionally encrypted with
the destination server’s public key, and sent to the destination server. The server
verifies the digital signature, checks whether the owner is allowed to send agents
to its machine, and accepts or rejects the incoming agent. This process is shown
in Figure 6. Of course, once the agent has migrated, the owner’s private key is no
longer available. Therefore, for all subsequent migrations, the agent is digitally
signed with the private key of the sending server. If the destination server trusts
the sending server, and the sending server was able to authenticate the owner
itself, the destination server considers the owner authenticated and gives the
agent the full set of resource limits for that owner. If the destination server does
not trust the sending server, or the sending server could not authenticate the
owner itself, the destination server considers the agent to have no owner and
will either (1) accept the agent as an anonymous agent or (2) reject the agent

2 A masquerade attack here is another agent passing itself off as the registered agent.
3 The server uses different communication channels for local agents and can tell with-

out cryptography whether a request came from a specific local agent.

12

Agent

Knows

Home

agent_begin

S

E

Fig. 5. Encryption for the begin command. When an agent uses the begin command to
register with the server on its home machine, the registration request is signed with the
owner’s private key (S) and optionally encrypted with the receiving machine’s public
key (E).

if it is not allowed to accept anonymous agents. Typically, D’Agents servers are
configured so that machines under single administrative control trust each other
but no one else.4 Thus, if an agent migrates from its home machine into a set
of mutually trusting machines (and then stays within that set), each machine
will be able to (directly or indirectly) authenticate the owner, and will give the
agent the full set of access permissions for that owner. Once the agent leaves
the set of machines, however, it becomes anonymous, and remains anonymous
even when it comes back, since the nontrusted machines might have modified
the agent in a malicious way. While the agent is on a particular machine, it will
make requests of that machine’s server. As in the case when an agent registers
with a server on the same machine, however, no encryption or digital signatures
are needed for these requests.

When a new child agent is created on a different machine (with the fork or
submit command), or when a message is sent to an agent on a different machine
(with the send command), the same strategy is used as with jump. The message
or child agent is signed with the owner’s key if the sending agent is still on
its home machine, and with the machine’s key if the sending agent has already
migrated (Figure 7). The recipient server will believe the owner’s identity if it
trusts the sending server. When receiving a message, the recipient agent gets both
the message and a security vector. The security vector specifies the owner of the
sending agent, whether the owner could be authenticated, the sending machine,
whether the sending machine could be authenticated, whether the message was
encrypted, and whether the sending agent is on the same machine. The recipient
agent, which might be controlling access to some resource such as a database,
bases its own security decisions on this security vector. When a new agent is

4 For example, all the machines in the Computer Science Department at Dartmouth
trust each other.

13

Knows

If trusts

E2

S2

F

Knows

yes

Agent

S1

E1

Knows

agent_jump

agent_jumpHome Machine A

Machine B

Fig. 6. Encryption for the jump command. On the first jump, the agent is signed with
the owner’s private key (S1). On the second and later jumps, the agent is signed with the
sending machine’s private key (S2), and the sending machine sets a flag (F) to indicate
whether it was able to authenticate the agent’s owner itself; if the target machine trusts
the sending machine, and the sending machine reports that it was able to authenticate
the agent’s owner, the target machine considers the owner authenticated.

14

S1

E
yes/noF

Agent

Machine A

S2

EOR

Agent

Machine B

Fig. 7. Encryption for the send command. If the agent has not left its home machine,
the message is signed with the owner’s private key (S1). If the agent has left its home
machine, the message is signed with the sending machine’s key (S2), and the sending
machine sets a flag (F) to indicate whether it was able to authenticate the agent’s owner
itself; if the target machine trusts the sending machine, and the sending machine reports
that it was able to authenticate the agent’s owner, the target machine considers the
owner authenticated.

created on the same machine, or a message is sent to an agent on the same
machine, no encryption or digital signatures are required. The new agent inherits
the security information of its parent. The recipient of the message gets the same
five-element security vector.

This authentication scheme has five weaknesses. First, and most serious, once
an agent leaves its home group of trusted machines, it becomes anonymous as
soon as it migrates again. Making the agent anonymous is essential in the cur-
rent system since a malicious machine can modify an agent arbitrarily (or lie
about the identity of its owner). Thus, when dealing with machines that do not
trust each other, an application that needs the full access rights of its owner to
accomplish its task cannot send out a single agent that migrates through the
machines, since the agent will become anonymous on the second jump. Instead
the application must send an agent to the first machine, wait for the results,
send a new agent to the second machine, and so on. Although this problem does
not prevent an application from accomplishing its task, it places an additional
burden on the programmer, and reintroduces some of the network traffic that
mobile agents are meant to avoid. At the same time, it is important to note that
many applications operate entirely within a set of trusted machines, and that
many others, especially in the Internet, can be accomplished with anonymous
agents. Solving the multi-hop authentication problem revolves around detect-
ing malicious modifications to an agent. Then, confident that certain kinds of
malicious modifications (such as modifications to the static code) will always
be detected, a machine can assign access rights that fall somewhere between
those of an anonymous agent and those of the actual owner. Detecting malicious
modifications is discussed below.

15

The remaining four problems are less serious and have clear solutions. First,
PGP is extremely slow, especially since D’Agents executes PGP as a separate
process. PGP must be replaced with a faster encryption library. Second, PGP
does not provide access to its internal encryption routines, making it impossible
to generate session keys for ongoing communication. The replacement library
must support both public-key and secret-key cryptography. Once the system
can generate session keys, it should use session keys rather than public/private
keys whenever possible due to the speed advantage of secret-key cryptography,
For example, two servers that are communicating extensively might generate a
shared session key, even if different agents are responsible for each communica-
tion. Third, D’Agents does not include an automatic distribution mechanism for
the public keys. Each server must already know the public keys of all autho-
rized users so that it can authenticate incoming agents (agents signed with an
unknown public key become anonymous). A modest key-distribution or certifica-
tion mechanism must be added to D’Agents to reduce the burden on the system
administrator. Finally, the system is vulnerable to replay attacks in which an
attacker replays a migrating agent or a message sent to an agent on a different
machine. Here a server could have a distinct series of sequence numbers for each
server with which it is in contact.

4.2 Authorization and enforcement

Once the identity of an agent’s owner has been determined, the system must
assign access restrictions to the agent (authorization) and ensure that the agent
does not violate these restrictions (enforcement). In other words, the system
must guard access to all available resources. We divide resources into two types.
Indirect resources can be accessed only through another agent. Builtin resources
are directly accessible through language primitives (or libraries) for reasons of
efficiency or convenience or simply by definition. Builtin resources include the
screen, the file system, memory, real time, CPU time, and the agent servers
themselves.5

For indirect resources, the agent that controls the resource enforces its own
access restrictions, rejecting or allowing requests from other agents based on the
security vector attached to the incoming communication. Typically, the resource
agent would simply check each request against an access list, although one re-
quest could return capabilities for use in later requests. Care must be taken with
capabilities, however, since a migrating agent will carry its capabilities along with
it, possibly through malicious machines. One reasonable solution is to allow an
agent to obtain a capability only if it is on the same machine as the resource, and
include sufficient identification information in the capability so that it becomes
invalid as soon as the agent leaves6; this solution makes it impossible for valid
5 The agent servers are accessed through the agent commands, such as begin, jump

and send. All agent commands use server CPU cycles; several use server memory;
and several require network access.

6 For example, the capability could include the agent’s id and the time at which it
arrived on the local machine. The agent will get a different timestamp (and usually

16

capabilities to exist on other machines, preventing theft and eliminating severe
administrative problems. D’Agents will eventually provide both access-list and
capability libraries for use in resource agents; currently each resource agent must
provide its own implementation.

For builtin resources, the agent servers enforce several absolute access poli-
cies. For example, an agent can terminate another agent only if its owner is the
system administrator or if it has the same owner as the other agent. The name
operation reserves certain symbolic names for certain agent owners, preventing
an arbitrary agent from masquerading as a service agent (such as a yellow page
agent that provides directory services). The notify operation requires the server
to remember which agent asked for the notification, taking up server memory.
Thus, the server has a per-agent limit on the number of outstanding notifica-
tions; the limit is small for visiting agents, but large for agents that belong to
the machine’s owner or administrator, since notifications are the most efficient
and convenient way to implement monitoring tools that track which agents are
currently on the machine.7 There are similar access policies for the other agent
operations. In particular, most operations can be configured to reject requests
from remote machines. In a typical configuration, for example, the begin oper-
ation rejects any request from a remote machine, allowing only agents on the
local machine to register with the server. The begin operation also imposes a
limit on the total number of agents and the total number of anonymous agents
executing on the machine at one time. The specific limits and access restrictions
are specified in a server configuration file.

For all other builtin resources, security is maintained using the language-
specific security (or enforcement) module and a set of language-independent
resource-manager agents. When an agent requests access to a builtin resource,
either implicitly or explicitly, the security module forwards the request to the
appropriate resource manager. The resource manager, which is just a station-
ary agent, implements a security policy that determines whether the access re-
quest should be approved or denied. The security module then enforces the
decision (and also caches the decision when appropriate to minimize the load
on the resource managers). This approach provides a clean separation between
security policy and mechanism, with the same resource managers making se-
curity decisions for all agents, regardless of their implementation language. A
system administrator can easily change the security policy by choosing a differ-
ent resource-manager implementation.

There are currently six resource managers and three enforcement modules
(one for each language)in the D’Agents system. Each of them are described
below.

id) if it leaves and returns, making it impossible to reuse the capability after a
migration. In addition, since the ids are locally unique, no other agent can ever have
the same combination of id and timestamp, making it impossible to transfer the
capability to another agent.

7 Or, more precisely, notifications will be the most convenient way once an agent can
request notifications for a wider range of events.

17

Resource managers

– Consumables. This resource manager handles consumable resources, such
as CPU time, wall-clock time, number of child agents, maximum depth of
the parent-child hierarchy, and number of migrations. Unlike other resources
(such as the file system), access control is not an issue, only allocation.
Furthermore, although there is an infinite supply of these resources, each
agent should be limited to a finite consumption to prevent system overload.
Since access to these resources is either implicit (as with CPU time) or takes
place through the generic agent core (migration), enforcement actually takes
place in the core, with the language-specific security module simply setting
the new limits after the manager returns its decision. In addition, in contrast
with the other builtin resources, the agent starts with a small allowance and
must explicitly ask the manager for more.
Limits on these resources are enforced across groups of mutually trusting
machines. When making its decision, the consumables manager considers
the amount of the resource used by the agent on other machines within the
group.8

Notably absent from this set of consumable resources is memory. Our con-
cern is that a visiting agent could mount a denial-of-service attack against
other agents by allocating all available virtual memory (or, indirectly, most
available physical memory). A coarse-grained solution is trivial for Java and
Scheme 48, which use their own memory-allocation routines and already
have command-line arguments to specify a maximum heap size. Tcl, on the
other hand, calls the standard malloc and free routines, and we have not
yet implemented the necessary wrappers for these routines.
Also absent from the current set of consumable resources is CPU seconds
per real second, i.e., the fraction of the CPU cycles available to the agent,
and agent operations per real second. Our concern is that a visiting agent
could mount a denial-of-service attack against other agents by sitting in a
computationally-intensive loop, or flooding the local server with requests. A
solution to this problem requires better support from the operating-system
scheduler.

– File system. This manager controls read and write access to files and direc-
tories. It also imposes a maximum size on writable files so that an agent
cannot fill up the file system. Thus it has two roles: access control and allo-
cation. Access control, as in most file systems, is determined on a file-by-file,
whole-file basis. (If record-based access control is necessary, the data should
be accessed through a stationary database-manager agent.) The main weak-
ness of the current file-system manager is that it does not impose a limit on
disk accesses per second, making it possible for an agent to thrash the local
disk. Again, we would require more support from the operating system.

– Libraries. This manager determines which libraries of Tcl functions, Scheme
functions, or Java classes each agent can load.

8 Migrating agents include a vector that specifies how much of each resource they have
used so far.

18

– Programs. The programs manager determines which external programs each
agent can execute. Since an external program is not subject to the same se-
curity checks as the agents themselves, policies implemented by this manager
tend to be conservative. Typically, visiting agents obtain necessary services
through requests to trusted stationary agents that perform sensitive tasks
with careful security checks.

– Network. This manager decides which agents are allowed to directly access
low-level TCP/IP and UDP network services. It either grants complete access
to the network, or no access at all. Again, the policies implemented here is
usually conservative.
We plan to expand this manager’s capabilities to allow the manager more
flexibility, for example, to distinguish between different hosts, domains, ports,
or protocols. In particular, one reasonable policy would allow all agents to
access certain RPC-based services, especially when they are on a dedicated
proxy site. Then, if a resource is not on an agent-enabled machine, an agent
can migrate as close as possible to that machine and interact with the re-
source using standard cross-network calls [19].
Again, as with the consumable and file-system managers, we do not currently
support usage-rate limitations, such as messages per second. Ideally, some
operating-system support would allow us to control access to the network
bandwidth.

– Screen. Our current screen-manager mechanism can, as with the network
manager, allow all access or allow no access. Thus, policies tend to be con-
servative, disallowing visiting agents any access to the screen. Our concern
is that malicious agents might, for example, create a window that covered
the entire screen and then grab the global focus.
We are currently expanding the capabilities of the screen manager to allow
more detailed control, making decisions about the number, placement, and
size of windows, among other things. Our initial policy will be determined
by the user: the screen-manager agent itself pops up a GUI window allowing
the user to set limits on each agent that arrives.

– Others. There are other resources for which we do not currently have resource
managers, such as microphones, speakers, cameras, and printers. They would
all fit into the same security architecture, which provides two options. The
resource may only be available indirectly, through requests sent to a special-
ized service agent, or it might be directly available (as with resources like
the screen and network) after access has been granted by the appropriate
resource-manager agent. The choice is determined primarily by performance
considerations.

Security policies Most of our resource managers are currently implemented
with extremely simple security policies. Each resource manager has a configu-
ration file that specifies the access rights and limits for a particular owner. The
manager loads this access list on startup and then checks the owner of each re-
questing agent against the list. Of course, the manager also takes into account

19

whether the owner could be authenticated and whether the requesting agent is
on the same machine. Anonymous agents are given limited access rights (mainly
read access to certain libraries and initialization files), and remote agents are
given no access rights.

We are currently implementing more involved security policies for the net-
work resource, in which the network-resource manager allocates bandwidth to
agents according to the outcome of a competition in which agents bid for access.

Enforcement modules Each language (Tcl, Java, and Scheme) needs its own
enforcement module, although as we mention above, some of the resource deci-
sions are enforced by the common code in the agent core. We discuss each of the
three languages below, but first we discuss features common to all three.

Decision caching. Since the resource managers are implemented as separate
agents, and communication between the visiting agent and the resource-manager
agent involves passing messages between processes, we need to keep that com-
munication to a minimum. In particular, it would be too inefficient to ask the
resource manager for permission to read each character of a file, to display each
pixel on the screen, or to send each packet on the network. Thus, our enforce-
ment modules cache the decision of the resource managers in an internal access
list.

For example, if an Agent Tcl program issues the Tcl command exec ls, the
Tcl enforcement module (see below) checks the internal program access list. If
permission to execute ls has already been granted, the command proceeds. If
permission to execute ls has already been denied, the command throws a secu-
rity exception. Otherwise the command contacts the program resource manager,
adds the response to the program access list, and then either proceeds or throws
the security exception.

Caching of the resource-manager decisions does not preclude dynamic changes
to access-control policy. The caches simply must be invalidated whenever the pol-
icy is changed. We are currently working on a graphical administrative utility
that lets the machine owner or administrator change the current policies of the
resource managers. This utility sends the policy changes to the resource man-
agers and cache invalidation messages to all running agents. Open issues involve
sending the cache-invalidation message efficiently and revoking a resource per-
mission that has already been granted to an agent. In the latter case, an agent
might have opened too many windows, and the user wants to not only change
the screen security policy, but also force the agent to close some of its existing
windows. Such revocation is quite complex if we allow the agent to continue
executing. For example, an agent must include significant error-handling code to
handle the sudden disappearance of a window or the sudden closure of a file to
which it previously had access. Simpler solutions would be to either terminate
the agent or to send the agent back to its home machine.

“Require.” An agent can also explicitly ask a resource manager for access permis-
sions with the require command. The require command takes the symbolic

20

name of the resource manager, e.g., filesystem, and a list of (name, quantity)
pairs that specify the desired access permissions, e.g., (/home/rgray/test.dat,
read). The require command causes the enforcement module to send the list
of desired access permissions to the appropriate resource manager. The proce-
dure waits for the response and then adds each access permission to the internal
access lists, indicating for each whether the request was granted or denied. Re-
gardless of whether an explicit request is made via the require command, or
an implicit request is made via the use of a sensitive command, the resource
manager will send back the most general access permissions possible, effectively
preloading the internal access lists and eliminating future requests. For example,
if an agent requests access to a particular file, but is actually allowed to access
the entire file system, the manager’s response will grant access to the entire file
system. In addition, although the current implementation does not prevent an
agent from contacting the resource managers directly, such contact accomplishes
nothing since the response will not go through the enforcement module and will
thus not have any effect on the internal access lists.

“Restrict.” An agent can impose access restrictions on itself with the restrict
command. In the case of the consumable resources, these access restrictions
remain in effect even when the agent migrates to a new machine. For example, the
agent can restrict itself to a particular number of children, even if it is migrating
and creating the children on different machines. More usefully, perhaps, the agent
can restrict itself to a specific amount of CPU or wall time.

Tcl enforcement module. The Tcl enforcement module is implemented with Safe
Tcl. Safe Tcl is a Tcl extension that is designed to allow the safe execution of
untrusted Tcl scripts [18, 21]. Safe Tcl provides two interpreters. One interpreter
is a “trusted” interpreter that has access to the standard Tcl/Tk commands. The
other interpreter is an “untrusted” interpreter in which all dangerous commands
have been replaced with links to secure versions in the trusted interpreter. The
untrusted script executes in the untrusted interpreter. Dangerous commands
include obvious things such as opening or writing to a file, creating a network
connection, and creating a toplevel window. Dangerous commands also include
more subtle things such as ringing the bell, raising and lowering a window,
and maximizing a window so that it covers the entire screen. Some of these
subtle security risks do not actually involve damage to the machine or access to
privileged information, but instead involve serious annoyance for the machine’s
owner.

Agent Tcl uses the generalization of Safe Tcl that appears in the Tcl 7.5
core [18]. Agent Tcl creates a trusted and untrusted interpreter for each in-
coming agent. The agent executes in the untrusted interpreter. All dangerous
commands have been removed from the untrusted interpreter and replaced with
links to secure versions in the trusted interpreter. The secure version contacts
the appropriate resource manager and allows or rejects the operation depending
on the resource manager’s response.

21

The Safe Tcl security module does not provide safe versions of all dangerous
commands. For example, an agent that arrives from another machine cannot use
the Tk send command, which sends a Tk event to another Tk interpreter.9 In
addition, there are (currently) no safe versions of the network and screen com-
mands, since the resource managers either grant complete access to the screen
and network or no access at all. The network and screen commands simply re-
main “hidden” until the resource managers grant access.

Java enforcement module. The Java enforcement module is implemented as a
Java security manager [6]. A Java security manager is a class that provides a
set of access-control methods, such as checkExec, checkRead, and checkExit.
The Java system classes call these methods to see if the corresponding operation
is allowed. For example, the System.exec method calls checkExec to see if the
Java program is allowed to execute the specified external program.10 Our security
manager for agents is exactly equivalent to the Safe Tcl mechanism above: each
checkXXX method checks its internal access list, and if necessary contacts the
appropriate resource manager ; it then throws a security exception if the resource
manager denies access. Implementation of the Java security manager is not yet
complete. Since the methods follow the same logic as the corresponding Safe Tcl
procedures, however, implementation is proceeding rapidly.

Scheme enforcement module. Scheme 48 has a module system [16]. A module is
a set of Scheme functions with some of those functions marked as exported or
public; a program can load the module and invoke any of the exported functions.
Implementing the Scheme enforcement module is mainly a matter of redefining
the system modules so that they no longer export dangerous functions, but in-
stead export secure versions of those functions that perform the same security
checks as in Tcl and Java. It appears that the necessary module redefinitions
can be accomplished without changing the Scheme 48 virtual machine. Imple-
mentation of the Scheme enforcement module is also not complete.

4.3 Status

The mechanisms for protecting the machine are nearly complete. There are a
few remaining issues, some of which will be resolved soon, and some are left for
future work:

– The implementation of the Java and Scheme enforcement modules is ex-
pected to be complete in Spring 1998.

– The screen manager and network manager are being expanded to allow finer-
grained control.

9 It is likely that the Tk send command will never be available since it is difficult to
make secure and agents should communicate within the agent framework anyway.

10 The filename of the external program is a parameter to checkExec.

22

– The current implementation requires that a new enforcement module be writ-
ten for each language. This approach minimizes the changes to the standard
interpreters, but is time-consuming and error-prone. Eventually we will move
to the Ara model in which the core provides secure versions of all system
functions [22]; these core functions would still contact the resource managers
to determine access rights.

– An agent can still mount several denial-of-service attacks: (1) it can sit in a
tight loop and consume CPU time as fast as possible; (2) it can flood the
local agent server with requests; (3) it can flood the local network by send-
ing requests to remote agent servers as fast as possible (or by using some
network service such as RPC to which it has been given direct access); (4)
it can allocate all available virtual memory; and (5) it can thrash the local
disk by randomly reading from any file to which it has been given access (or
by allocating a data structure that is too large for main memory and then
accessing the data structure in such a way as to cause frequent page faults).
Preventing these denial-of-service attacks is not difficult; preventing them
without artificially reducing performance is difficult (and impossible using
only our current enforcement modules). Efficient allocation of the available
resources to the current set of agents requires more support from the un-
derlying operating system, as well as an appropriate allocation policy. The
former is an implementation issue; the latter is an open research question.

– The specification of appropriate security policies, whether in the context of
our security infrastructure or another, is a critical area for future research.
The Aglets project has one preliminary proposal [14].

Finally, we note that other security models exist. D’Agents uses discretionary
access control, in which each resource has an associated access list that specifies
the allowed actions for each agent owner. Other security models include (1)
mandatory access control, in which programs, people and data are assigned
classification levels, and information can not flow from higher to lower levels, (2)
security automata [25], in which a program’s current allowed actions depend on
its past resource usage,11 and (3) computer immunology [7], in which a program
is considered malicious if its current pattern of resource usage does not match
its normal pattern. It is an open research question to decide which, if any, of
these models is most appropriate for mobile-agent systems.

4.4 Examples

Figures 8 through 11 show two sample agents that use the D’Agent security fea-
tures. One agent is an information-retrieval agent that jumps to a site, interacts
with a search engine to perform some query, and then jumps back to the home
machine. The other agent is the search engine itself. Figures 8 and 9 show the
agents implemented in Tcl. Figures 10 and 11 show the agents implemented in

11 For example, an agent might be permitted to communicate with a remote machine
as long as it has not read from a sensitive file.

23

1 # turn on digital signatures

2 security signatures on

3

4 # register with the agent system

5 agent_begin

6

7 # migrate to the search engine site

8 agent_jump $engineSite

9

10 # interact with the search engine

11 agent_send "$agent(local-server) search-engine" 0 $query

12 agent_receive code results

13 ...

14

15 # return home

16 agent_jump $agent(home-machine)

Fig. 8. Tcl code for a simple information-retrieval agent. The agent registers with
the agent system (lines 4–5), migrates to the location of a search engine (lines 7–
8), performs a multi-step query (lines 10–13), and then returns home (lines 15–16).
(The variable agent is a global array that is always available to an agent and that
contains information about the agent’s current location; initialization of the variables
engineSite and query is not shown.) The only security feature in this agent is line
2, which turns on digital signatures so that the machine engineSite can verify the
identity of the agent’s owner. (Since PGP is slow, the current default is both digital
signatures and encryption off; once we replace PGP with a faster encryption subsystem,
the default will be digital signatures on and encryption off.) The search-engine agent,
which is shown in Figure 9, makes more extensive use of D’Agent security features.

Java. In general, there is a one-to-one correspondence between the Tcl agents
and the corresponding Java agents, except that the Tcl agents access agent ser-
vices through a set of Tcl commands, while the Java agents access agent services
by creating an instance of a class Agent.

The retrieval agent only uses one D’Agent security feature. It turns on digital
signatures so that the search engine’s machine can verify the identity of the
agent’s owner. The search-engine agent uses more D’Agent security features.
First, it requests access to the needed system resources, namely, real time so
that it can live for a long time, and the filesystem so that it can access the index
to the document collection and the documents themselves. Then, after it receives
a query from a retrieval agent, it rejects the query unless the agent is on the
same machine and has a verifiable owner. It also rejects the query if the owner
is not on its own access list. Not all search engines will reject queries in these
situations. Some search engines that provide a high-level interface might allow
remote queries, whereas some search engines will make their service available to
anyone. Such search engines would simply exclude the corresponding security
checks.

24

1 # turn on digital signatures and register with the agent system

2 security signatures on

3 agent_begin

4 agent_name search-engine

5

6 # ask for a long lifetime and for access to the document collection

7 require wall $lifetimeSeconds

8 require file [list $documentIndex read]

9 require directory [list $documentDirectory read]

10

11 # wait for queries

12 while {1} {

13

14 # wait for a query

15 set id [agent_receive code string -security secVector -blocking]

16

17 # make sure that the querying agent is on the same machine

18 if {[lindex $secVector 3] != "agent-auth"} {

19 agent_send $id 1 ERROR; continue

20 }

21

22 # make sure that the querying agent has an authenticated owner

23 set ownerInformation [lindex $secVector 0]

24 if {[lindex $ownerInformation 1] != "owner-auth"} {

25 agent_send $id 1 ERROR; continue

26 }

27

28 # make sure that the authenticated owner is on our access list

29 set ownerName [lindex $ownerInformation 0]

30 if {[isAllowed $ownerName] != "yes"} {

31 agent_send $id 1 ERROR; continue

32 }

33

34 # handle the query

35 ...

Fig. 9. Tcl code for the search-engine agent. The search-engine agent handles queries
from the information-retrieval agents. This version of the search-engine agent will only
accept queries from agents that are on the same machine and only from agents whose
owner is on a collection access list. After registering with the agent system, the agent
requests access to the needed system resources (lines 6–9). Then the agent waits for a
query (lines 14–15). Once the agent has a query, it verifies that the querying agent is
on the same machine (lines 17–20), that the owner of the agent could be authenticated
(lines 22–26), and that the owner is on the collection access list (lines 28–32). As with
the other code examples, error-checking and some initialization code (and procedure
isAllowed) have been omitted for clarity. In addition, note that this search-engine
agent must be started by an owner (such as the machine administrator) whose agents
are allowed to access the filesystem and to live for a long time. (Also note that the
lindex command is simply used to access a particular element of a Tcl list.)

25

1 // create the agent

2 Agent agent = new Agent ();

3

4 // turn on digital signatures

5 agent.setSignatures (true);

6

7 // register with the agent system

8 agent.begin ("localhost", timeout);

9

10 // migrate to the search engine site

11 agent.jump (engineSite, timeout);

12

13 // interact with the search engine

14 Message queryMessage = new Message (0, query);

15 AgentId engineAgent = new AgentId (engineSite, "search-engine");

16 agent.send (engineAgent, queryMessage, timeout);

17 ReceivedMessage resultsMessage = agent.receive (timeout);

18 ...

19

20 // return home

21 String homeMachine = agent.getHomeId().getMachine();

22 agent.jump (homeMachine);

Fig. 10. Java implementation of the information-retrieval agent from Figure 8. The
Java agent first creates an instance of the class Agent, which provides all of the agent
operations. After that, the Java agent corresponds exactly to the Tcl agent. It turns
on digital signatures (lines 4–5), registers with the agent system (lines 7–8), migrates
to the location of the search engine (lines 10–11), performs the multi-step query (lines
13-18), and returns home (lines 20–22). As with the Tcl examples, error-checking and
some initialization code have been omitted. In addition, the definition of the enclosing
Java class (and method) has been omitted, but this class is a normal Java class.

26

1 # turn on digital signatures and register with the agent system

2 Agent agent = new Agent ();

3 agent.setSignatures (true);

4 agent.begin ("localhost", timeout);

5 agent.name ("search-engine");

6

7 # ask for a long lifetime and access to the document collection

8 FilePermission indexPermission =

new FilePermission (documentIndex, FilePermission.c_READ);

9 DirectoryPermission directoryPermission =

new DirectoryPermission (docDirectory, FilePermission.c_READ);

10 TimePermission timePermission = new TimePermission (lifeSeconds);

11 agent.require (indexPermission);

12 agent.require (directoryPermission);

13 agent.require (timePermission);

14

15 # wait for queries

16 while (1) {

17

18 # wait for a query

19 ReceivedMessage queryMessage = agent.receive (timeout);

20 AgentId senderId = queryMessage.getId();

21 Security securityVector = queryMessage.getSecurity();

22

23 # make sure that the querying agent is on the same machine

24 if (!securityVector.isAgentAuth()) {

25 ...; continue;

26 }

27

28 # make sure that the querying agent has an authenticated owner

29 if (!securityVector.isOwnerAuth()) {

30 ...; continue;

31 }

32

33 # make sure that the authenticated owner is on our access list

34 if (!isAllowed (securityVector.getOwnerKeyname())) {

35 ...; continue;

36 }

37

38 # handle the query

39 ...

Fig. 11. Java implementation of the search-engine agent from Figure 9. Aside from
the creation of the initial Agent instance, the Java code corresponds exactly to the Tcl
code. After registering with the agent system, it requests access to the needed system
resources (lines 7–13), waits for a query (lines 18–21), and makes sure that the querying
agent is on the same machine (line 23–26) and has an allowed, authenticated owner
(lines 28–36). As with the Java retrieval agent, error-checking, some initialization code,
and the definition of the enclosing class and method have been omitted.

27

5 Protecting a group of machines

There are two distinct types of machine groups to protect: (1) all the machines
are under single administrative control, as in a departmental LAN, or (2) all the
machines are not under single administrative control, as in the Internet. The key
difference is that machines within an administrative domain typically trust each
other, but distrust most other machines in the Internet.

5.1 Within an administrative domain

It is straightforward to protect a group of machines that are under single ad-
ministrative control. An agent is assigned a maximum resource allowance when
it first enters the machine group. The allowance and the amount that the agent
has used so far is propagated along with the agent as it migrates. If the agent
exceeds its group allowance, it is terminated.12

The current implementation of D’Agents provides this kind of group protec-
tion, by including a usage vector in migrating agents. The usage vector lists the
maximum allowance and the amount used, for each resource. Agents entering an
administrative domain have their maximum allowance reduced if it exceeds that
permitted to the agent’s owner in that domain. The usage is updated and the
limits enforced by the enforcement modules and resource managers described
above.

Normally, packet tampering is not a serious issue within an administrative
domain, so the agents and the agent’s usage vector do not need to be encrypted or
signed. If the administrative domain does span suspicious network links, however,
each machine must digitally sign the agent and its usage vector so that the usage
cannot be reduced, or the allowance increased, during transit. Thus, once an
agent is inside an administrative domain, its usage vector is securely maintained
and enforced.

5.2 The general case

When the machines are not in a single administrative domain, matters become
much more complex. The usage vector carried by an agent migrating between
mutually distrusting machines must, for all intents and purposes, be ignored,
for the destination machine cannot trust the fact that the source machine has
properly accounted for the agent’s usage or properly retained the maximum
allowances.

A more attractive solution, which we are currently exploring and implement-
ing [2], is to use a market-based approach in which agents pay for their re-
source usage with cryptographically-protected electronic cash (for example, [3,

12 Alternatively, the agent could be sent back to its home machine or to a designated
proxy site, although the current D’Agents system does not provide such functionality.
An agent can inspect its group allowance, however, and can migrate out of the
machine group if it sees that it is about to run out of some resource.

28

27]). When an agent is created, it is given a finite currency supply from its
owner’s own finite currency supply. The currency does not need to be tied to
legal currency, but it must be impossible to spend a currency unit more than
once, and it must be impossible for a user to quickly accumulate an arbitrarily
large supply. The agent pays for its resource usage with its currency and splits
its currency with any child agents that it creates. Eventually the agent and all
its children run out of currency and are sent back to the home machine, which
either provides more currency or terminates the agent. Resource managers ac-
cumulate payments on behalf of the machine’s owning user, who can then use
the cash to pay for his or her own agents’ travels.

There are several advantages to a market-based solution. First, all machines
need not trust each other; they need only trust a set of banks that manage the
currency. Second, by setting prices accordingly, each machine can express its
resource-allocation priorities, e.g., some users may raise the cost of their CPU
time during the work day, so that most agents stay away, and lower the cost
of CPU time when they are away to allow agents to visit. Third, the agents
can autonomously decide how to spend their currency to accomplish their task
according to their own priorities, e.g., choosing space-efficient algorithms when
memory is expensive, and time-efficient algorithms when CPU is expensive.

There are many detailed issues that must be resolved to make the market-
based approach work well, most notably the development of policies for resource
managers to set prices, and policies for agents to make decisions about prices.
We are examining all of these issues in the D’Agents project, and their full
exposition is beyond the scope of this paper.

6 Protecting the agent

Protecting an agent from a malicious machine is the most difficult security prob-
lem. Unless “trusted (and tamper-resistant) hardware” is available on each agent
server [4], something which is extremely unlikely in the near future, there is no
way to prevent a malicious machine from examining or modifying any part of
the agents that visit it. Thus, the real problem is not to prevent theft and tam-
pering, but instead to prevent the machine from using stolen information in a
meaningful way and to detect tampering as soon as possible, ideally as soon
as the agent migrates onto the next machine. Unfortunately, there is no single
mechanism that can solve this problem, and it is unlikely that there will ever
be a complete technical solution, due to the unimaginable variety of theft and
tampering attacks that can be mounted against a visiting agent. Instead, some
part of the solution will always be sociological and legal pressures [4].

There are, however, several partial technical solutions. Hopefully, by choos-
ing from these partial solutions, most agents will be able to protect themselves
adequately for their current task, but still move freely throughout the network.
Before considering some of these partial solutions, it is worthwhile to consider
two broad categories of tampering attacks.

29

– Normal routing. The malicious machine allows the agent to continue with its
normal itinerary, but holds the agent longer than necessary, charges the agent
extra money, or modifies the agent’s code or state. Holding the agent longer
than necessary prevents a time-critical agent from accomplishing its task.
Modifying the agent’s code or state causes the agent to perform some work on
behalf of the malicious machine, take some dangerous action, or simply reach
an incorrect result. These modification threats are why D’Agents agents
currently become anonymous as soon as they migrate through an untrusted
machine.

– Rerouting. The malicious machine reroutes the agent to a machine that it
would not have visited under normal circumstances, or prevents the agent
from migrating at all and pretends that it is the next machine on the agent’s
normal itinerary. The latter attack might be used against an agent that
is migrating through a sequence of service providers, attempting to find
the best price for some service or product. A service provider can hold the
agent on its machine, masquerade as the other service providers, and re-
port higher prices than its own price. Although such an attack requires the
service provider to recognize what a particular agent is doing and then up-
date the agent’s state as if it had actually visited the other machines, many
applications will involve pre-packaged agents that users purchase from the
application developers. Recognizing and fooling these well-known agents will
not be difficult.

Now, with both theft and tampering attacks in mind, we consider the partial
solutions.

– Trusted machines and noncritical agents. Note that many agents do not need
protection at all, either because they are performing some noncritical task
(e.g., an anonymous agent interacting with a free search engine), or because
they operate entirely on trusted machines (e.g., an agent that is installing
new software on a department’s machine). Trusted machines can include not
only all the machines in your own department, but also machines belong-
ing to large, well-known corporations, such as America Online, Microsoft,
Netscape, and United Airlines.

– Partitioning. An agent can migrate through trusted machines only, such as
a set of general proxy sites under the control of a trusted Internet service
provider. Then it either interacts with untrusted resources from across the
network using standard RPC, or sends out child agents that contain no sen-
sitive data and will not migrate again, instead just returning their result.
More complicated partitioning schemes can be used if needed. In fact, par-
titioning can achieve as much client protection as in traditional distributed
computing, since the sensitive portion of the agent can always be left on the
home machine.

– Replication and voting. Tacoma uses a replication and voting scheme to han-
dle malicious machines that either terminate an agent outright or provide
the agent with incorrect information [20]. Here, if the task requires a single

30

agent to visit n services in sequence, the application instead sends out sev-
eral agents, each of which visits distinct but supposedly equivalent copies
of the n services. The agents exchange results after each stage, each agent
keeping the majority result. Although this scheme prevents many kinds of
attacks, it also has several drawbacks. First, there must be multiple copies
of each service13 ; in addition, since the copies might be functionally equiva-
lent but not identical, the agent must be able to handle different interfaces
and different result formats. Second, if the agents are spending money to
access the services, the user will spend much more money than if a single
agent had migrated through a single copy. Finally, the cryptographic over-
head is large. Despite these disadvantages, replication and voting schemes
will be used in many agents, since they are the only way to handle services
that provide incorrect information (assuming that the incorrectness cannot
be easily detected). Tacoma also includes rear-guard agents that restart a
vanished agent.

– Components. Perhaps the most powerful idea is to divide each agent into
components [4]. Components can be added to the agent as it migrates, and
each component can be encrypted and signed with different keys. The agent’s
static code and the variables whose values never change would make up one
component, and would be signed with the owner’s key before the agent left
the home machine. If a malicious machine modifies the code or variables,
the digital signature becomes invalid and the next machine in the migration
sequence will immediately detect the modification. In addition, if an agent
obtains critical information from a service, it can put this information into
its own component. Then the component is signed with the machine’s key
to prevent tampering, and can even be encrypted with a trusted machine’s
key (e.g., the home machine or a proxy site) so that other machines can-
not examine it. Of course, the agent must return to that trusted machine
before it can use the information again itself. Similarly, any code or data
that is not needed until the agent reaches a particular machine can be en-
crypted with that machine’s key. For example, an agent might encrypt the
bulk of its electronic cash with a proxy site’s key, so that it could migrate
through untrusted machines without worrying about theft. The agent would
return to the proxy site when it needed to spend the cash. Depending on the
migration model, this component approach also allows a machine to place
greater trust in an agent that has migrated through untrusted machines.
For example, if the code to be executed on the current machine is in its own
component, digitally signed with the owner’s key, and this code does not
depend on any volatile variables, the code can be executed with the owner’s
permissions, rather than as anonymous. Finally, components make it easier
for an agent to use the partitioning approach above; an agent can leave a
particular component behind on a trusted machine, or can create and send
out a child agent that includes only certain components.

13 And the copies cannot be under the control of a single organization. Otherwise all
the copies might have the same malicious behavior.

31

– Self-authentication. In most agents, certain parts of the agent’s state will
change as the agent migrates from machine to machine, such as the variable
values and the control information on the interpreter’s stack. Although it
is impossible to detect all malicious modifications to this state information,
it is possible to construct an authentication routine that will examine the
state information for any obvious inconsistencies or impossibilities [22]. The
authentication routine could also examine the current set of components.
Such an authentication routine would be placed in its own component and
digitally signed with the owner’s key. Each agent server would execute the
authentication routine, terminating the agent (and notifying the home ma-
chine) if the routine finds any inconsistencies. The authentication routine
would run as anonymous and would only have authority to examine the
state image. Like the components themselves, such an authentication rou-
tine allows a machine to place greater trust in an agent that has migrated
through untrusted machines.

– Migration history. It is possible to embed a tamper-proof migration history
inside a moving agent [20]. This movement history allows the detection of
some rerouting attacks, particularly if an agent is following a fixed itinerary,
and, in combination with additional digital signatures, makes it impossible
for a malicious machine to drop an entire component from the agent. The
movement history could also be examined inside the authentication routine
above.

– Audit logs. Machines should keep logs of important agent events so that an
aggrieved agent or owner can request an audit from an authorized third-party
[4]. The auditor would seek to identify the machine responsible for a theft or
modification and penalize that machine appropriately. The exact contents of
the audit logs is largely an open question. It is clear that all electronic-cash
transfers must be logged, however, so that a machine cannot steal electronic
cash without providing the desired service. Of course, a malicious machine
can construct a false log, so the auditor must look for log entries that are
inconsistent with log entries from other machines, rather than just log entries
that explicitly indicate a malicious action. In addition malicious machines
can collude in their logging to make an honest, intervening machine look
malicious. Thus, in some situations, the auditor can impose serious sanctions
only after it has observed an apparent attack happening to multiple agents
(that are following different migration trajectories).

– Encrypted algorithms. Finally, recent work [24, 12] involves encrypting a pro-
gram and its inputs in such a way that (1) the encrypted program is directly
executable, (2) the encrypted program performs the same task as the original
program, and (3) the output from the encrypted program is also encrypted
and can only be decrypted by the program encrypter. Although this work
is in its infancy and remains either theoretical or unproven, it has great
promise for mobile-agent systems, since it would become much harder for a
malicious machine to make a targeted modification, i.e., a modification with
a known, useful effect, to an agent or its state.

32

Even taken together, these techniques cannot provide complete protection.
In addition, many of the techniques involve substantial cryptographic and log-
ging overhead, forcing an agent to trade performance for protection. Most agents
should be able to realize adequate protection through some combination of these
techniques, however, while still maintaining reasonable performance. The over-
riding issue is how to design a protection interface that allows the agent to easily
use the desired combination of techniques.

None of these solutions are currently implemented in the D’Agents system.

7 Conclusion and future work

D’Agents is a simple but powerful mobile-agent system that supports multiple
languages, namely, Tcl, Java and Scheme, and protects machines from malicious
agents with a straightforward security model. It has been used in numerous
distributed applications, particularly information-retrieval applications, both at
Dartmouth and in external research labs. Several areas of security-related future
work remain, however. We must address several denial-of-service attacks, finish
the electronic-cash system and develop the market-based control policies, and
extend the screen and network resource managers to provide finer-grained access
control. We are also continuing to develop information-retrieval applications so
that we can experimentally compare mobile agents with other approaches, to
better evaluate the feasibility of our security mechanisms and policies. As part
of this work, we hope to formally characterize when an agent should remain
stationary and when and how far it should migrate. Finally, we are continuing
to develop support services, such as a debugger, a hierarchical service index,
a docking system for mobile computers, and several network-sensing and plan-
ning modules. As this work progresses, D’Agents will be able to realize its full
potential and become a convenient, efficient, and secure platform for general
distributed applications.

8 Availability

The Tcl portion of D’Agents version 2.0, which is the version of D’Agents de-
scribed in this paper, is available now on the D’Agents web page14. The Java
portion will be available by the time of publication. The Scheme portion, which
is farther from completion, may be available at the time of publication. D’Agents
runs on most Unix platforms. A port to Windows 95 and Windows NT is planned,
but the completion date is uncertain.

9 Acknowledgments

Many thanks to Scott Silver, Jeffrey Steeves and Jonathan Bredin for their
work on the encryption and resource-management subsystems; to Eric White,
14 http://www.cs.dartmouth.edu/~agent/

33

David Gondek, Alik Widge, Bill Bleier and Joshua Mills for their work on the
Java and Scheme components; to the Air Force and Navy for their generous
financial support (ONR contract N00014-95-1-1204, AFOSR contract F49620-
93-1-0266, and Air Force MURI grant F49620-97-1-0382); and to all the graduate
and undergraduate students who have contributed to the D’Agents (Agent Tcl)
system over the past four years.

References

1. Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt. Distributed com-
puting using autonomous objects. IEEE Computer, 29(8):55–61, August 1996.

2. Jonathan Bredin, David Kotz, and Daniela Rus. Marked-based resource control
for mobile agents. To appear in the conference Autonomous Agents ’98, October
1997.

3. David Chaum and Stefan Brands. “Minting” electronic cash. IEEE Spectrum,
34(2):30–34, February 1997. Special issue on Technology and Electronic Economy.

4. David Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin Parris, and
Gene Tsudik. Itinerant agents for mobile computing. IEEE Personal Communi-
cations, 2(5):34–49, October 1995.

5. Michael H. Coen. SodaBot: A software agent environment and construction system.
In Yannis Labrou and Tim Finin, editors, Proceedings of the CIKM Workshop on
Intelligent Information Agents, Third International Conference on Information and
Knowledge Management (CIKM 94), Gaithersburg, Maryland, December 1994.

6. Gary Cornell and Cay S. Horstmann. Core Java. Sunsoft Press (Prentice Hall),
1997.

7. Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji. Computer immunology.
Communications of the ACM, 40(10):88–96, October 1997.

8. Odyssey: Beta Release 1.0, 1997. Available as part of the Odyssey package at
http://www.genmagic.com/agents/.

9. Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In Proceed-
ings of the 1996 Tcl/Tk Workshop, pages 9–23, July 1996.

10. David Halls, John Bates, and Jean Bacon. Flexible distributed programming using
mobile code. In Proceedings of the Seventh ACM SIGOPS European Workshop,
pages 225–231, September 1996.

11. Melissa Hirschl and David Kotz. AGDB: A debugger for Agent Tcl. Technical
Report PCS-TR97-306, Dept. of Computer Science, Dartmouth College, Hanover,
NH, February 1997.

12. Fritz Hohl. Protecting mobile agents with blackbox security. In Proceedings of the
1997 Workshop on Mobile Agents and Security, University of Maryland, October
1997.

13. Dag Johansen, Robbert van Renesse, and Fred B. Scheidner. Operating system
support for mobile agents. In Proceedings of the Fifth IEEE Workshop on Hot
Topics in Operating Systems (HTOS), pages 42–45, May 1995.

14. Günter Karjoth, Danny B. Lange, and Mitsuru Oshima. A security model for
Aglets. IEEE Internet Computing, 1(4):68–77, July/August 1997.

15. Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security: Private
Communication in a Public World. Prentice-Hall, New Jersey, 1995.

16. Richard Kelsey and Jonathan Rees. A tractable Scheme implementation. Lisp and
Symbolic Computation, 7(4), 1995.

34

17. Danny B. Lange and Mitsuru Oshima. The Aglet cook-
book. 1997. In progress. Selected chapters available at
http://www.trl.ibm.co.jp/aglets/aglet-book/index.html.

18. Jacob Y. Levy and John K. Ousterhout. Safe Tcl toolkit for electronic meeting
places. In Proceedings of the First USENIX Workshop on Electronic Commerce,
pages 133–135, July 1995.

19. Mobile Agent Facility Specification (joint submissions). Technical report, Crys-
taliz, General Magic, GMD FOKUS, Internal Business Machine Corporation, and
The Open Group, 1997. Response to OMG’s Common Facility Task Force RFP3.
Draft 5 is available at http://www.genmagic.com/agents/MAF/.

20. Yaron Minsky, Robbert van Renesse, Fred B. Schneider, and Scott D. Stoller.
Cryptographic support for fault-tolerant distributed computing. In Proceedings of
the Seventh ACM SIGOPS European Workshop, pages 109–114, September 1996.

21. John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch. The Safe-Tcl security
model. Technical report, Sun Microsystems Laboratories, 1997. In progress. Draft
available at http://www.sunlabs.com/people/ john.ousterhout/safeTcl.html.

22. Holger Peine and Torsten Stolpmann. The architecture of the Ara platform for mo-
bile agents. In Proceedings of the First International Workshop on Mobile Agents
(MA ’97), volume 1219 of Lecture Notes in Computer Science, Berlin, April 1997.
Springer-Verlag.

23. Daniela Rus, Robert Gray, and David Kotz. Transportable information agents.
Journal of Intelligent Information Systems, May 1997. To appear.

24. Thomas Sander. On cryptographic protection of mobile agents. In Proceedings
of the 1997 Workshop on Mobile Agents and Security, University of Maryland,
October 1997.

25. Fred B. Schneider. Security in Tacoma Too. In Proceedings of the 1997
DAGSTUHL Workshop on Mobile Agents, September 1997.

26. Fred B. Schneider. Towards fault-tolerant and secure agentry. In Proceedings of
the 11th International Workshop on Distributed Algortithms, September 1997.

27. Marvin Sirbu and J. D.Tygar. NetBill: An Internet commerce system optimized
for network delivered services. In Proceedings of 40th IEEE Computer Society
International Conference (COMPCON 95). IEEE Computer Society Press, March
1995.

28. Joseph Tardo and Luis Valente. Mobile agent security and Telescript. In Proceed-
ings of the 41th InternationalConference of the IEEE Computer Society (CompCon
’96), February 1996.

29. Voyager technical overview. ObjectSpace White Paper, ObjectSpace, 1997.
30. Peter Wayner. Agents Unleashed: A public domain look at agent technology. AP

Professional, Chestnut Hill, Massachusetts, 1995.
31. James E. White. Telescript technology: The foundation for the electronic market-

place. General Magic White Paper, General Magic, Inc., 1994.
32. James E. White. Telescript technology: An introduction to the language. General

Magic White Paper, General Magic, 1995.
33. James E. White. Telescript technology: Scenes from the electronic marketplace.

General Magic White Paper, General Magic, 1995.
34. James E. White. Telescript technology: Mobile agents. 1996.
35. D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. Concordia:

An infrastructure for collaborating mobile agents. In Proceedings of the First
International Workshop on Mobile Agents (MA ’97), volume 1219 of Lecture Notes
in Computer Science, Berlin, April 1997. Springer-Verlag.

