Event Dissemination via Group-aware Stream Filtering


Ming Li and David Kotz. Event Dissemination via Group-aware Stream Filtering. Proceedings of the International Conference on Distributed Event-Based Systems (DEBS), pages 59–70. ACM, July 2008. doi:10.1145/1385989.1385998. ©Copyright ACM. Later revised as li:ijcnds.


We consider a distributed system that disseminates high-volume event streams to many simultaneous monitoring applications over a low-bandwidth network. For bandwidth efficiency, we propose a group-aware stream filtering approach, used together with multicasting, that exploits two overlooked, yet important, properties of monitoring applications: 1) many of them can tolerate some degree of “slack” in their data quality requirements, and 2) there may exist multiple subsets of the source data satisfying the quality needs of an application. We can thus choose the “best alternative” subset for each application to maximize the data overlap within the group to best benefit from multicasting. Here we provide a general framework for the group-aware stream filtering problem, which we prove is NP-hard. We introduce a suite of heuristics-based algorithms that ensure data quality (specifically, granularity and timeliness) while preserving bandwidth. Our evaluation shows that group-aware stream filtering is effective in trading CPU time for bandwidth savings, compared with self-interested filtering.

Citable with [BibTeX]

Projects: [solar]

Keywords: [context-aware]

Available from the publisher: [DOI]

Available from the author: [bib] [pdf]
This pdf was produced by the publisher and its posting here is permitted by the publisher.

[Kotz research]