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We observe the advent of body-area networks of pervasive wearable devices, whether for health monitoring, personal
assistance, entertainment, or home automation. For many devices, it is critical to identify the wearer, allowing sensor data to
be properly labeled or personalized behavior to be properly achieved. In this paper we propose the use of vocal resonance, that
is, the sound of the person’s voice as it travels through the person’s body – a method we anticipate would be suitable for
devices worn on the head, neck, or chest. In this regard, we go well beyond the simple challenge of speaker recognition: we
want to know who is wearing the device. We explore two machine-learning approaches that analyze voice samples from a
small throat-mounted microphone and allow the device to determine whether (a) the speaker is indeed the expected person,
and (b) the microphone-enabled device is physically on the speaker’s body. We collected data from 29 subjects, demonstrate
the feasibility of a prototype, and show that our DNN method achieved balanced accuracy 0.914 for identification and 0.961
for verification by using an LSTM-based deep-learning model, while our efficient GMM method achieved balanced accuracy
0.875 for identification and 0.942 for verification.
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1 INTRODUCTION
With continuing advances in the development of low-power electronics, including sensors and actuators, we
anticipate a rapid expansion of wearable and pervasive computing. Today, it is common for people to carry
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multiple computing devices, such as smart phones, smart watches, and cameras; increasingly, they also carry, hold,
or wear devices to measure physical activity (e.g., Fitbit [17] or Lumo Run [32]), to interact with entertainment
devices (e.g., Virtual Reality (VR) headsets), or to monitor their physiology (e.g., a cardiac patient concerned
about heart arrhythmia, a diabetic managing her blood glucose, or a woman tracking her fertility cycle).
Many more devices have been proposed or developed as research prototypes [16, 28]. These unobtrusive

wearable devices make it possible to continuously or periodically track many health- and lifestyle-related
conditions at an unprecedented level of detail. Wireless connectivity allows interaction with other devices nearby
(e.g., entertainment systems, climate-control systems, or medical devices). Sensor data may be automatically
shared with a social-networking service, or (in the case of health applications) uploaded to an Electronic Medical
Record (EMR) system for review by a healthcare provider.
In this paper, we focus on a critical authentication problem involving wearable devices: who is wearing the

device? For a group-shared device, such as a VR headset, it can recognize the user and load the right game profile
or music playlist (identification) and confirm the user’s identity when the user tries to purchase through a web
store (verification). Most compellingly, we are concerned about health-monitoring devices. Such a device may
monitor the user’s health data, and transfer the data automatically to the user’s medical record. For example,
consider a headset that monitors the user’s brain data through EEG sensors, transfers them to a smartphone, and
detects stress and seizures [22]. A mix-up in use of such wearables may lead to incorrect treatment or diagnosis
decisions, and cause serious harm to the patient. An attacker may tempt the user’s health database by injecting
incorrect data.
In our vision, a person should be able to simply attach the desired set of devices to their body – whether

clipped on, strapped on, stuck on, slipped into a pocket, or even ingested, and have the devices just work. That is,
without any other action on the part of the user, the devices discover each other’s presence, recognize that they
are on the same body (as opposed to devices in radio range but attached to a different body), develop shared
secrets from which to derive encryption keys, and establish reliable and secure communications. Furthermore,
for many of the interesting applications described above, the devices must also identify who is wearing them so
that the device data can be properly labeled (for storage in a health record) or the devices may be used in the
context of the user’s preferences. Indeed, security and privacy are particularly important in both health-related
pervasive applications [24] and wearables [37].

Devices that can automatically recognize their wearer can be smaller and simpler than devices that require user
input, because they need no interface for user identification (or PIN or password for authentication). Cornelius
et al. developed a method for a networked set of devices to recognize that they are located on the same body;
their approach uses correlations in accelerometry signals for this purpose [9]. If even one device can identify
which body, then transitively the set of devices know who is wearing them. Indeed, it is unlikely that every device
will have the technology, or suitable placement, to biometrically identify the user; in our model, only one such
device needs to have that capability.

One easy solution, common in many devices today, is for the device to be permanently associated with a given
user. This smartphone is my phone, whereas that fitness sensor is your fitness sensor. The device is assumed to
be used by only that user; any data generated by a sensor is associated with that user. There are many situations
where this model fails, however. In some households, a given device might be shared by many users (e.g., a
blood-pressure cuff). In other settings, two people might accidentally wear the wrong sensor (e.g., a couple who
go out for a run and accidentally wear the other’s fitness tracker). In some scenarios, a person may actively try to
fool the system (e.g., a smoker who places his “smoking” sensor on a non-smoking friend in order to receive
incentives for smoking cessation).

Thus, what we need is a simple, wearable device that uses biometric techniques to identify the user, then share
that identity with a body-area network of other devices (earlier confirmed to be on the same body [9, 12]). This
device should be trained once, for each user that might wear it, but thenceforth be completely automatic and
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unobtrusive. Cornelius et al. developed a biometric wristband that used the physical property of bioimpedance
to recognize its wearer [11, 12]. While that method worked well, it requires the use of a wristband; we seek an
alternative biometric, notably, one that might work for devices mounted on the head, neck, or chest.
We propose to use vocal resonance, that is, the sound of the person’s voice as it travels through the person’s

body. Note that vocal resonance is related to the approach used by bone-conduction headphones, in which sound
travels through bones to the inner ear; in vocal resonance, however, the voice passes through bones and tissues
from the voice box to a microphone mounted on the surface of the body. In our method, a microphone is placed
into contact with the body. It records audio samples and compares them with a model built earlier during a
training phase. If the samples fit the model, then we conclude that (a) the speaker is indeed the person for whom
we trained the model, and (b) the microphone device is physically on the speaker’s body. If we train the device
for a set of users, e.g., the members of a household, then the device should be able to identify which of those
people is wearing the device, or that none of them are wearing the device.
In this paper we explore two machine-learning approaches to the use of vocal resonance as a biometric. Our

first on-device GMM approach runs stand-alone, processing all data within the microphone-enabled wearable
device. Our second off-device DNN approach relies on a remote host to run a more expensive deep-learning
algorithm; here, we aim to achieve higher accuracy in anticipation of the day when these complex algorithms can
be migrated into wearable or portable devices. The idea of vocal resonance as a passive biometric was presented
in a one-page abstract for a poster [29]. An unpublished technical report presented our preliminary work and part
of experimental results [10]. However, more experiments and discussions were needed; for example, to explore
the various microphone locations used, window sizes and window overlaps, the robustness against attacks, and
to optimize accuracy. This paper is an extension of our previous work and presents the full idea and experimental
results.
Challenges and contributions: In this paper we present vocal resonance as a novel, unobtrusive biometric

measurement that can support user authentication (identification or verification) in wearable body-mounted
devices. We evaluate the feasibility of this biometric through two distinct machine-learning algorithms, and
evaluate their performance on data from 29 volunteer subjects. The goal of this work is to evaluate whether vocal
resonance is a biometric that could support authentication rather than demonstrating an improved method for
speaker identification, which is a well-studied field [39, 44]. Our results show that vocal resonance could be used
as a biometric using concepts drawn from traditional speaker-identification approaches. There were two critical
challenges.

Distinguish individuals: We sought to support both identification and verification. We propose two methods: a
Gaussian Mixture Model (GMM) method and a Deep Neural Network (DNN) method to authenticate the individuals.
We found that our GMM method achieved balanced accuracy of 0.875 for identification and 0.942 for verification,
while the DNN method with Long Short Term Memory (LSTM), in combination with a fully-connected layer
architecture, achieved balanced accuracy of 0.914 for identification and 0.961 for verification. With these experi-
mental results, we demonstrate that it is possible to achieve reliable speaker authentication through a wearable,
body-contact microphone that can reliably distinguish among multiple individuals. Furthermore, this system
could successfully authenticate the wearers after a period of time (for example, two weeks).

Distinguish ‘body voice’ from ‘air voice’: In the context of vocal resonance, it is challenging to distinguish ‘body
voice’ and ‘air voice’ from multiple users. To distinguish the two kinds of voices, we propose to use two sets of
GMMs in the GMM method and a fully connected dense layer in the DNN method. For near-body ‘air voice’
that is several inches away from the microphone, the GMM method limits attackers to a 3.1% success rate, and
the DNN method kept attackers 3.6% success rate. For other-body ‘air voice’ that is one meter away from the
microphone, the GMM method restrains attackers to 0.3% success rate, while DNN method limits attackers to
0.1% success rate. Thus, this system can distinguish between the situation where the microphone is on the body
of the enrolled speaker and where the microphone is simply nearby, even on another body. We also demonstrate
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that vocal resonance is robust against replay attacks in which an enrolled user’s air voice is replayed through
another person’s body.
Furthermore, we implemented two wearable prototypes and verified that the algorithms have acceptable

latency and energy consumption when used for occasional or periodic identification or verification.
The remainder of this paper is organized as follows. In the next section, we provide more background on

biometrics. Then in Sections 3 and 4 we detail our two models and describe our machine-learning methods,
respectively. In Section 5 we describe our implementation of a wearable prototype on the Raspberry Pi Zero
platform. In Section 6 we present an evaluation of our methods on measurements from human subjects. Finally,
we compare our approach with related work in Section 7, discuss limitations and findings in Section 8, and
conclude in Section 9.

2 BIOMETRICS
Biometrics seek to learn some tell-tale characteristic of the person, and use this characteristic to determine whether
that same person is present at some later time. This problem, called biometric authentication, is well studied [6].
Biometrics leverage physiological or behavioral characteristics of a person to accomplish identification [5].
Physiological characteristics range from non-invasive characteristics like facial features and hand geometry to
more invasive characteristics like the impression of a finger, the structure of the iris, or the makeup of DNA.
Behavioral characteristics include things like the dynamics of using a keyboard, the acoustic patterns of the voice,
the mechanics of locomotion, and how one signs a signature. To qualify as a biometric, the chosen characteristic
must have at least three properties: universality, uniqueness, and permanence [23]. A universal characteristic is
one that every person possesses. Although everyone may possess such a characteristic, the characteristic must
also be individually unique within a given population. Lastly, the characteristic must have some permanence such
that it does not vary over the relevant time scale. These properties, with their stated assumptions, are necessary
but not sufficient for a biometric that we desire.
In the context of pervasive applications and particularly personal health sensors, a biometric must also be

unobtrusively measured yet difficult to circumvent. The ability to unobtrusively measure a biometric stems from
our desire to provide usable security for personal health-sensing systems. Apart from attaching the sensors to
their body, a person should expect the system to automatically and unobtrusively identify whom the system
is sensing. Likewise, a biometric needs to be difficult to circumvent because there are incentives for people to
circumvent them. For example, a person might want to game their insurance provider or fool a physician into
believing they have a certain ailment for prescription fraud. Thus, a sufficient biometric will be universal, unique,
permanent, unobtrusively measurable, and difficult to circumvent.
Not all of the above-mentioned biometrics are suitable for our purposes. While the makeup of DNA, the

structure of the iris, and the impression of a finger may be difficult, if not impossible, to forge, they are also
difficult to unobtrusively measure. Each of the examples above requires the user to stop what they are doing
to measure the biometric. The behavioral characteristics mentioned above are, however, more amenable to
unobtrusive measurement since they can be collected as the person goes about their day. On the other hand,
they might be easier to circumvent because they can be easily measured. A microphone can capture a person’s
voice, a malicious application could learn one’s typing rhythm [2], or smartphone-usage data can create a user
profile [36]. A biometric suited for our purposes would incorporate the difficulty of circumventing a physiological
biometric with the measurability of a behavioral biometric.

3 MODELS
We propose using a person’s vocal resonance as a biometric. Vocal resonance is measured by a microphone
placed on a person’s body. By virtue of being attached to the person’s body, we can use speaker-authentication
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Fig. 1. Possible placements are marked by the icons.

techniques to determine the speaker while simultaneously guaranteeing that the microphone is attached to the
speaker’s body. Like a typical speaker-authentication system, the microphone hears the person’s voice, but unlike
a typical speaker-authentication system, the microphone is hearing the voice as it travels through the body
itself, rather than through the air. By training the system using on-body voice recordings through the contact
microphone, the system can later identify who is speaking and verify that the detected voice is coming through
the body and not through the air.

3.1 Microphone Locations
A traditional speaker-authentication system makes no guarantees about the placement of the microphone; it may
or may not be attached to the person’s body. In fact, most traditional speaker-authentication systems make no
guarantees that the person is even present, because they can be fooled by capturing the person’s voice and playing
it back through a suitable speaker. Some systems alleviate this concern by employing a challenge-response
scheme, whereby the person is asked to speak a randomly selected phrase. However, this approach is obtrusive
and thus unsuitable. Capturing the vocal resonance of a person is unobtrusive: all the user must do is talk as
they go about their day. Unlike a traditional speaker-authentication system, however, it is difficult to circumvent
because an adversary would need to physically attach a microphone to the target individual.
The microphone’s location will be critical to the success of the system. A microphone placed near the chest

would pick up a person’s voice better than a microphone placed on their leg. Figure 1 shows three possible
placements: throat, back of the neck, or back of the ear. We imagine a piece of jewelry, such as a necklace, earpiece,
or glasses, that would contain a contact microphone to sample vocal resonance and another microphone to
sample ambient sound. Such a form factor has several technical advantages. First, these items are worn the same
way each time, more or less; issues with placement of the microphone are diminished because it can sense data
from nearly the same location each time. Second, the device can be instrumented to detect when it has been
placed on and taken off a person using, for example, a switch embedded in a clasp and sensors that detect skin
contact. These mechanisms (with details outside the scope of this paper) allow the device to conserve energy by
performing identification only when the microphone first comes into contact with a person.
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Fig. 2. The major components of our method. Most of the components would be computed on the device itself, except for
the enrollment algorithm (which can be done in the cloud). The DNN implementation performs its authentication algorithm
on the cloud.

3.2 Adversary & Threat Model
In any system there is a set of assumptions the designers make about the intended adversaries the system is
designed to handle. We state these assumptions here.
The device cannot know a priori the universe of people, so we assume there is a known set of people who

intend to wear the device. The device needs to determine whether it is on the body of an intended person and
correctly identify that intended person using the data from its microphone. It should also correctly reject any
situation when an unintended person wears the device in the presence of speech by an intended person, whether
on a body (of an unintended person) or not.
Our prototypical attacker is passive. They are a person who mistakenly wears the device they believe they

were intended to wear. A couple, for example, might have two of these devices and accidentally mix them up.
The device should be able to handle this case properly.

We also consider attackers who are actively trying to fool the device. An active attacker might wear the device
and play a recording of an intended person’s air voice to fool the device into thinking it is on that intended
person’s body. They might also try to imitate an intended person’s voice or introduce noise. They may even
replay a recording of an intended person’s voice through their own body, e.g., by holding a speaker up to the
skin of their neck. However, we assume they will not physically alter the device or its firmware.

4 METHODS
We are inspired by the techniques from the speaker-authentication literature but account for the unique nature
of the data collected via a contact microphone [40]. Figure 2 shows the major components of our methods (on-
device or off-device), both of which follow a similar workflow. The system has two modes: enrollment mode and
authentication mode. The enrollment mode trains the device to recognize the users’ voice, and the authentication
mode authenticates the user to the wearable device. To collect the users’ voice, we use two microphones: a contact
microphone to collect the user’s vocal resonance and an ambient microphone to collect the user’s air voice.
Enrollment mode: When users first receive the device, they use the enrollment mode to establish identity.

In the enrollment mode, the device simultaneously collects audio data from both the contact and ambient
microphones, and then uses these data to create two models of the person’s voice using an enrollment algorithm.
The enrollment algorithm should model the user’s body voice and air voice separately. Thus, they could be used to
distinguish the user’s body voice from air voice later. The model computed from the contact microphone models
the speaker’s vocal resonance (“body voice”), while the model computed from the ambient microphone models
the speaker’s voice through the air (“air voice”). Typically, these models would be computed off-device because
the computational requirements for learning such a model are high.
Authentication mode: Once enrolled, the users use the authentication mode to get access to the wearable

devices. However, when should the wearable device collect audio samples and run the authentication algorithm?
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Fig. 3. Sliding windows and overlaps.

We assume the device can detect when it is placed on a body; it then wakes up periodically to collect a sample of
audio from the contact microphone. If the device determines the audio sample to contain speech, the device then
applies an authentication algorithm to this audio sample. At first, it uses an identification algorithm to determine
which enrolled user, if any, is the speaker. Later, it uses a verification algorithm to determine whether the speaker
is still the user identified earlier.
We consider two methods: a Gaussian Mixture Model (GMM) [38] and a Deep Neural Network (DNN),

specifically, one based on Long Short Term Memory (LSTM) [27]. In both cases we anticipate running the
computationally expensive enrollment (training) procedure on a remote host, such as a personal computer
or a cloud service. The GMM method is compact and fast, enabling the authentication (classifier) to run on
the local (wearable) device; the DNN is computationally expensive [3], so our implementation performs the
authentication (classifier) on a remote host. The on-device GMM method provides greater privacy and the remote
DNN method provides greater accuracy; we anticipate that future advances in deep-learning algorithms and
wearable-computing hardware will enable the DNN method to eventually run the classifier on-device (or, at least,
on a nearby personal computing device such as a smartphone).
Before we present the enrollment and authentication algorithms, we define the audio-segmentation and

feature-extraction algorithms used by both methods.

4.1 Audio Segmentation
As Figure 3 shows, the microphone delivers a series of audio samples, which are then divided into small windows
to ease processing. We experimented with several window sizes and overlap percentages (see Section 6.3) and
chose the one that resulted in the best accuracy metrics in authentication algorithms. Because not all audio data
contain speech, we first determine whether the window contains speech with a speech detection module; this
step is accomplished efficiently using time-domain features combined with a decision tree as described by Lu et
al. [31]. Specifically, the decision tree uses zero crossing rate (ZCR) and root mean square (RMS) to determine
whether the window contains speech. Windows that do not contain speech are discarded. (During enrollment,
corresponding windows from the contact and ambient microphones are discarded if either segment is determined
not to contain speech.)

4.2 Feature Extraction
Given a window of audio, we first extract some features that capture characteristics of the person’s voice. We
use the set of Mel-Frequency Cepstral Coefficients (MFCCs) [20], which characterize the cepstrum of the audio
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segment (the power spectrum of the log of the power spectrum). Because the power spectrum of the segment
is first mapped onto the mel scale, which is empirically based on the frequency scale of the human auditory
system, these coefficients model how we hear sound [46]. For this reason, MFCCs have been successful in many
voice-processing tasks.

For both GMM and DNN methods, inspired by other speech-recognition approaches [25, 38], we selected the
MFCC and their deltas (delta-spectral cepstral coefficients [25]) for a total of 26 features. This results in a feature
vector for each window; a feature vector computed from audio data sampled from the contact microphone is
called a contact feature vector, and a feature vector computed from the ambient microphone is called an ambient
feature vector.

4.3 Enrollment Algorithms
During enrollment, we collect audio from both the contact microphone and the ambient microphone. The
prospective user is asked to read a short passage of text; in our experiments (Section 6) the subjects took under
two minutes (107 seconds on average) to read this passage. As above, these recordings are segmented into short
40 ms windows; windows without speech are discarded; features are extracted from each of the remaining
windows; and the sequence of feature vectors is fed to the enrollment algorithm to train machine-learning models.
The GMM method builds four Gaussian mixture models for each speaker, two for each microphone; the DNN
method builds one model for all speakers and both microphones.

4.3.1 GMM method. A GMM models the distribution of observations using a weighted linear combination of
Gaussian density functions, where each Gaussian is parameterized by a mean vector and covariance matrix. We
use GMMs to model the distribution of feature vectors for a given speaker. It is important to distinguish the user’s
body voice and air voice. To distinguish the two voices, for each enrolled user, we construct two sets of GMMs:
one modeling the characteristics of user’s body voice, and the other modeling the characteristics of user’s air voice.
It is also important to separate the user-dependent characteristics; we use one GMM to model the characteristics
of user’s voice and the other GMM to model the user-independent characteristics of the voice. Thus, we construct
four GMMs in total for each user:GMMb using the ‘contact’ feature vectors of the target user;GMMbu using the
‘contact’ feature vectors of all other users; GMMa using the ‘ambient’ feature vectors of the target user;GMMau
using the ‘ambient’ feature vectors of all other users. We useGMMbu andGMMau as universal background models
to represent the speaker-independent distribution of feature vectors [40]. To learn the underlying distribution of
feature vectors, we use the Expectation-Maximization (EM) algorithm [13] to iteratively refine the mixture of
Gaussian densities until the maximum likelihood remains stable (i.e., the difference between successive iterations
is less than 10−4) or after a maximum number of iterations (5000). We use the EM algorithm because 1) the EM
algorithm is efficient to optimize the GMMs and 2) it achieves the maximum likelihoods [13].
We choose initial Gaussian densities by clustering the set of feature vectors using k-means clustering [18],

where k is set to the desired number of Gaussian densities. We iteratively refine these initial Gaussian densities
using the EM algorithm, until it achieves the maximum likelihood. In our experiments, all the EM were finished
within 1000 iterations, which implies that all the GMMs achieved local maximum likelihood. We use diagonal
covariance matrices for the following three reasons: 1) a GMM with full covariance matrix could be equally
achieved by a larger-order diagonal covariance; 2) diagonal-covariance GMMs are computationally efficient; 3) it
has been shown that using a larger-dimensional diagonal covariance matrix outperforms a smaller-dimensional
full covariance matrix [4].

The likelihood of a feature vector, given a GMM, is the weighted linear combination of the probability density
function of each Gaussian given the feature vector. From a speaker’s GMM models we compute the log-likelihood
of a given contact feature vector corresponding to each model. For the given contact feature vector, we compute
LLb fromGMMb , LLbu fromGMMbu , LLa fromGMMa , and LLau fromGMMau . We compute a contact likelihood
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Fig. 4. Our proposed deep-neural-network model.

ratio LRb by subtracting the contact background likelihood (LRb = LLb −LLbu ) and similarly an ambient likelihood
ratio (LRa = LLa − LLau ). Then we compute the difference likelihood with LD = LRb − LRa .

Given a predetermined acceptance threshold τ , we say the audio segment corresponding to the contact feature
vector matches the speaker’s vocal resonance (“Accept”) if LD ≥ τ ; otherwise it does not fit the model and
therefore does not match the speaker’s vocal resonance (“Reject”). We choose τ to achieve the highest balanced
accuracy on a small random partition (5%) of the training data.

4.3.2 DNN method. We also employ a Deep Neural Network (DNN) inspired from other work investigating
speaker authentication algorithms [21]. A Recurrent Neural Network (RNN) is a Deep Neural Network architecture
that is useful for processing sequential data [27], such as the sequence of feature vectors extracted from a sequence
of audio windows observed by our hypothetical wearable device. We use a specific RNN layer known as Long
Short Term Memory (LSTM) [27]. LSTM processes a new event by referring back to the previous event. Others
have demonstrated that LSTM is more effective than traditional deep neural networks, or conventional RNN
models, for acoustic modeling [42].

The DNN model is made up sequentially of a LSTM layer, a Rectified Linear Unit (ReLU) activation layer, a fully
connected dense layer, and a softmax activation layer, as shown in Figure 4. The LSTM cells in the LSTM layer
generate the representations that capture the temporal dependencies in the feature vectors. To accelerate the
convergence of stochastic gradient decent, we employ a ReLU activation layer [34] after the LSTM layer. Then,
the fully connected dense layer and the softmax activation serve as a classifier of the temporal dependencies
captured by the LSTM and ReLU layers. Specifically, the fully connected dense layer aggregates the output from
the ReLu activation. In the last layer, we use softmax activation to output the probabilities of the classes. To
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distinguish among the users and the user’s body voice and air voice, the model’s output includes two classes for
each of N known persons: the body class representing their voice captured by the body microphone, and the air
class representing their voice represented by the ambient microphone. Each of these 2N classes indicates the
probability that the input feature vector is from that person and corresponding microphone. We built one DNN
model for each microphone location in Figure 1.

The DNN method then applies a prediction algorithm to the outputs of the neural network, given a predeter-
mined acceptance threshold θ . If none of the 2N output probabilities are greater than θ , the predictor outputs
“Reject”. Otherwise, the predictor considers the highest-probability model output; if that output is an air class, the
predictor outputs “Reject”; otherwise it outputs the identity of the user corresponding to that highest-probability
output. Thus, the DNN method outputs one of N + 1 possibilities every time it receives a feature vector as input:
either one of the N known users, or “Reject” (representing an unknown user or a non-body voice). As with the
GMM method, we choose θ to achieve the highest balanced accuracy on a small random partition (5%) of the
training data.

4.4 Authentication Algorithm
During the authentication phase we use the contact microphone only, sampling the microphone for 1 second. We
segment the 1-second chunk into windows, discard windows that do not pass the speech-detection test, then
extract a contact feature vector for each window, as described previously. We wish to determine whether these
newly measured contact feature vectors match the vocal resonance of an enrolled speaker. The window sizes and
overlap percentages used for GMM and DNN methods in this section are explained in Section 6.3.
GMM: For the GMM method we extract a feature vector every 10 ms. The feature vector is computed over a
40 ms window, and neighboring windows have 30 ms (75%) overlap so we have a new window and thus a new
feature vector every 10 ms. Each Gaussian mixture outputs a likelihood for each feature vector, i.e., LLb , LLbu ,
LLa , and LLau . Then we compute the difference likelihood LD for each feature vector. To achieve stability, we
average over a series of LD values for all the feature vectors; in our experiments there are 99 feature vectors in
each second of audio. To identify the wearer, the GMM method finds the model with highest log-likelihood LRb
and outputs that model’s identity as long as its averaged LD exceeds τ . To verify the wearer, the GMM method
examines only the target user’s model and reports ‘Accept’ if the averaged LD is greater than the threshold τ .
DNN: For the DNN method, we extract a feature vector every 30 ms for a 40 ms window. The feature vector is
computed over a 40 ms window as with the GMM method, and neighboring windows have 10 ms (25%) overlap,
so we have a new window and a new feature vector every 30 ms. For our DNN experiments, we ran n = 33
feature vectors (1 second of audio) simultaneously through the model. To identify the wearer, the DNN model
outputs the user with highest ‘body class’ probability as long as it exceeds θ . To verify the wearer, the DNN
model checks whether the probability of the ‘body class’ of the target user exceeds the threshold θ .

5 IMPLEMENTATION
In this section, we describe our implementation on a wearable device, and in the next section, we show how we
collected voice recordings from 29 human subjects to explore our methods’ ability to authenticate people.

For our prototype, we used the Raspberry Pi Zero Wireless platform [35]. The Pi has a 1GHz ARM Cortex-A8
processor, 512MB RAM, and a microSD slot, and it supports Wi-Fi (802.11b/g/n) and Bluetooth 4.1+BLE. For the
DNN algorithm, we used an Ubuntu Linux server with 2.20GHz Intel 12 Core Xeon and 64GB RAM, with an
NVidia Geforce GTX 1080 GPU card (8GB RAM, and 1607MHz base clock speed). We used the CUDA API for the
NVIDIA GPU to implement the DNN algorithm.

Figure 5 shows the mobile system: a Raspberry Pi Zero Wireless board, an external USB soundcard connected
to the USB On-The-Go port, and a piezo contact microphone connected to the soundcard. We used an external
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USB soundcard

Raspberry Pi Zero Wireless

Piezo contact microphone

Fig. 5. Raspberry Pi ZeroW, external USB soundcard, and piezo microphone. An amplifier was only required due to a software
driver issue and hence was left out of the picture. The photo only shows one microphone but the our experimental apparatus
included four similar microphones connected through a USB hub.

USB soundcard because the Pi is not equipped with any built-in audio ports. Specifically, we used the Amigo II
USB sound card by Turtle Beach. We used Radio Shack Mini Audio Amplifiers to amplify the microphones. These
amplifiers were connected to the USB external sound cards. We used the arecord utility for the ALSA soundcard
driver on the Raspberry Pi to capture the audio data at 44,100 Hz with 16-bit resolution.

We implemented audio segmentation (Section 4.1), feature extraction (Section 4.2), and the GMM authentication
algorithm (Section 4.4), on the Raspberry Pi. We implemented the DNN authentication algorithm on the server,
as noted above, and the Pi uses Wi-Fi to transfer the feature vectors to the server and receive back the DNN
predictor’s output. We used the server because we could not run the authentication algorithm on the Raspberry Pi,
due to the low computation capacity of Raspberry Pi and high computation capacity required. We implemented
both the GMM and DNN enrollment (training) algorithms on the server; our purpose here is to evaluate the
speed and energy cost of the authentication algorithm, because enrollment is a one-time operation that requires
more computation than feasible on a wearable device like the Raspberry Pi. We recorded audio samples on the
Pi using the arecord utility. We used the openSMILE tool to extract the MFCCs in the feature-extraction step;
we cross-compiled it for the Raspberry Pi [14]. For the GMM implementation, we used Python version 3.5 and
scikit-learn version 0.18.2. For the DNN implementation we used Tensorflow version 1.2.0 and CUDA Toolkit
version 8.0.

Implementing the DNN identification step on a remote host may allow for faster processing and higher accuracy
but yields two major disadvantages over the GMM method. First, it requires a network connection and access to
a remote service that hosts the trained model and runs the identification algorithm. Second, it may raise privacy
concerns because it may be possible to invert the feature vectors sent to the remote host and recover a meaningful
chunk of the wearer’s speech [7]. For now, we assume the remote host can be trusted with this task; in future
work we will explore means for moving the DNN computations to a trustworthy companion device (such as a
smartphone) or to the wearable itself. Or, explore a different set of features that cannot be inverted to recover
meaningful speech.

6 EVALUATION
In this section we explore the viability of vocal resonance as a biometric. Recall that we require a biometric
to be universal, unique, permanent, unobtrusively measurable, and difficult to circumvent. For the purposes
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of this study, we assume that speech is universal. We explore the uniqueness, permanence, measurability, and
circumventability properties.

6.1 Data Collection
Participants: We collected data from 29 human subjects using an IRB-approved protocol. We enrolled 18 males
and 11 females (age mean = 26, standard deviation = 3.83). All the experiments were conducted in English.

Apparatus: We used AXL PG-800 External Piezo Transducer suction cup microphones (as seen in Figure 5);
we anticipate that such microphones could be integrated into glasses, earpieces, VR headsets, and possibly
necklace pendants. We recorded data from five locations, including three locations on the subject’s body (body
microphones), one in the air (air microphone) and another on another person’s body (other microphone). The
speaker attached onemicrophone to his or her throat, one microphone at the back of the neck, and one microphone
at the back of the ear, as shown in Figure 1. The speaker held the air microphone six inches from his or her
mouth. The body microphones simulated the case when an enrolled person is wearing the device; we call
these microphones the throat microphone, the neck microphone, and the ear microphone respectively. The air
microphone simulated the case when an enrolled person is not wearing the device, but the device could still hear
them speaking. The other microphone was placed on the throat of a listener sitting about one meter away from
the speaker; this microphone simulated the case when another person, enrolled or unenrolled, is wearing the
device and an enrolled speaker is speaking nearby. The body and other microphones were secured by an elastic
bandage and a surgical tape.

Procedure: We instructed the subjects to read two passages. We selected the Rainbow Passage and theWind in
the Willows because they encompass most of the phonemes of the English language [15, 19]. We used the first
passage (Rainbow Passage) to train the GMM and DNN models. The second passage (Wind in the Willows) acted
as a control passage. We chose the first 24 lines from theWind in the Willows as a common test phrase for all
subjects. Subjects took an average of 107 seconds to read the Rainbow Passage, and 92 seconds to read theWind in
the Willows lines. To explore permanence of vocal resonance, we repeated the experiment for the same subjects
with the same procedure after a 2-week period.

Training: For training purposes, we used data from the throat microphone to represent the ‘body class’ and data
from the air microphone for the ‘air class’.

Testing: For evaluation purposes, we used data from the throat microphone as positive test cases and from the
air microphone as negative test cases. In Section 6.6 (only) we explore the other two body microphone locations,
neck and back, to explore whether accuracy varied with microphone location. To evaluate how well the vocal
resonance distinguishes the ‘body voice’ from ‘air voice’, we use the voice collected from air microphone and
other microphone in Section 6.7.

In both training and testing procedures, we used only speech data to demonstrate the vocal resonance as a passive
biometric and non-speech data were eliminated by the speech-detection module described in Section 4.

6.2 Metrics
Verification: Verification algorithms output positive (the speaker is the expected subject and the audio collected
is classified as a ‘body class’) or negative (otherwise); we thus have four cases: TP, where the algorithm outputs
positive and is correct; TN, where the algorithm outputs negative and is correct; FN, where the algorithm outputs
negative and is incorrect; and FP, where the algorithm outputs positive and is incorrect. We use Balanced Accuracy
(BAC = 1

2 (
T P

T P+FN +
T N

TN+F P )) to report the accuracy of verification, because the testing data is biased (only 3.45%
of the testing cases are positive). We also report the false accept rate (FAR = F P

T N+F P ) and false reject rate (FRR =
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FN
T P+FN ). FAR is the fraction of negative cases that were misclassified (i.e., they were classified as positive), while
the FRR is the fraction of positive cases that were misclassified (i.e., they were classified as negative). We also
present a Receiver Operating Characteristic (ROC) curve and report the Area Under Curve (AUC). The ROC
curve plots the True Positive Rate (TPR = T P

T P+FN ) against the False Positive Rate (FPR = F P
FP+T N ) and the AUC

is the area under the ROC curve.

Identification: Identification algorithms output the identity of a subject, or “Reject” if the audio collected by
the device is classified as an ‘air class’ or if none of the subject’s models output high probability. We have four
cases: True Positive (TP), where the output identity is the same as the speaker’s ‘body voice’; True Negative
(TN), where the algorithm outputs “Reject” and is correct; False Positive (FP), where the algorithm outputs an
identity and is incorrect; False Negative (FN), where the algorithm outputs “Reject” and is incorrect. We compute
Accuracy (ACC = T P+T N

T P+T N+F P+FN ). When used for identification, Balanced Accuracy (BAC) is equal to Accuracy,
because we have the same number of positive and negative samples. For simplicity, we refer to BAC for both
verification and identification henceforth.

6.3 Window Size and Overlap Percentage
Both GMM and DNN are parameterized by the window size and the overlap percentage of the neighboring
windows. We explored combinations of window sizes {20ms, 40ms, 80ms} and overlaps {25%, 50%, 75%} for
each model on our dataset. We used the Rainbow Passage to train models with different parameters and tested the
models on theWind in the Willows passage to compute the accuracy metrics. Then, we chose the parameters that
led to the highest BAC for each model, from the following results.

GMM: We evaluated each combination with BAC for identification and verification. As Table 1 suggests, we
chose windows of 40 ms with 75% overlap (30 ms).

Table 1. GMM BAC for identification and verification with window sizes and overlaps

Window Size
Overlap

25% 50% 75%
Identification Verification Identification Verification Identification Verification

20 ms 0.869 0.940 0.874 0.940 0.874 0.945
40 ms 0.868 0.936 0.876 0.938 0.880 0.949
80 ms 0.847 0.925 0.862 0.932 0.873 0.938

DNN: Table 2 shows BAC for identification and verification for each combination. We chose windows of 40 ms
with 25% overlap (10 ms).

Table 2. DNN BAC for identification and verification with window sizes and overlaps

Window Size
Overlap

25% 50% 75%
Identification Verification Identification Verification Identification Verification

20 ms 0.891 0.946 0.913 0.960 0.893 0.951
40 ms 0.914 0.961 0.909 0.955 0.895 0.950
80 ms 0.898 0.958 0.903 0.955 0.900 0.953
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Fig. 6. ROC curves for GMM and DNN models in the uniqueness test. The x-axis represents the FPR; notice it is truncated
to 0.02. The y-axis represents the TPR.

6.4 Uniqueness
We consider vocal resonance to be unique over a given population if every person in that population can be
individually determined by their vocal resonance. To validate our method, we ran the described methods on our
dataset to see how well the method could accurately classify individuals.
GMM: For each user in our dataset, we trained four GMM models (two for body voice and two for air voice) and
learned a threshold of the difference likelihood using their training data.
DNN: We trained a single DNN model for all N = 29 users and two microphones (air and body).
Table 3 shows the accuracy metrics for both GMM and DNN models. Both methods achieved high BAC (> 0.87),
low FAR (< 0.04), and low FRR (< 0.01) for both identification and verification. The table also shows that the
DNN method outperformed the GMM method in all the metrics. Figure 6 shows the ROC curve for GMM and
DNN models. The AUC is 0.962 for DNN and 0.935 for GMM, which demonstrates both models could distinguish
the different individuals accurately using vocal resonance.

Table 3. Uniqueness

method Identification Verification
BAC FAR FRR BAC FAR FRR AUC

GMM 0.875 0.012 0.005 0.942 0.037 0.002 0.935
DNN 0.914 0.012 0.004 0.961 0.032 0.001 0.962

6.5 Permanence
The permanence property requires the biometric to remain stable over a period of time. To evaluate the permanence
of vocal resonance, we used the data collected during the second visit to test the GMM and DNN models trained
with the data from the first visit; Table 4 reports the results. When compared to Table 3, most of the accuracy
metrics for both models dropped. Nevertheless, both methods maintained relatively high accuracy on the second
visit. We note that the metrics for DNN did not drop as much as the metrics for GMM, which suggests that the
DNN method was not as sensitive to the biometric changes over time. We conclude that vocal resonance may
have sufficient permanence, though more extensive study (more subjects and longer periods) will be needed to
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Fig. 7. ROC curves for GMM and DNN models in the permanence test. The x-axis represents the FPR; notice it is truncated
to 0.02. The y-axis represents the TPR.

ensure permanence. Figure 7 shows the ROC curve for GMM and DNN models. The AUC is 0.957 for DNN and
0.928 for GMM, which demonstrates that both models are able to distinguish among the different individuals
accurately over a period of time using vocal resonance.

Table 4. Permanence

method Identification Verification
BAC FAR FRR BAC FAR FRR AUC

GMM 0.814 0.020 0.012 0.926 0.098 0.011 0.928
DNN 0.875 0.016 0.005 0.957 0.075 0.006 0.957

6.6 Measurability
Measurability is the property of being easy and unobtrusive to measure. The unobtrusiveness of the device will
highly depend upon its form factor. We argue for integration into existing devices, like a necklace or ear piece,
that people already wear. However, the ease of measuring vocal resonance will also depend on the placement of
the microphones. In Figure 8, we evaluate the accuracy metrics of vocal resonance on three locations: throat,
back of the neck, and back of the ear. The figure shows that different placements of the device had limited impact
on the accuracy metrics: for identification the differences among placements were generally small, although the
GMM method had some trouble with the ‘neck’ location.

6.7 Near-body and Other-body Test
To evaluate how well the vocal resonance distinguishes the body voice from air voice, we used the data collected
from the air microphone (near-body voice) and the other microphone (other-body voice) to test the GMM and
DNN models. The GMM and DNN models should reject the near-body voice and the other-body voice, which
represent accidental or malicious attack situations. We define the Failure Rate (FR) to be the fraction of attempts
in which a non-body voice is verified as an enrolled user (FR = F P

T N+F P ). We use the FR to evaluate how well
vocal resonance could distinguish the on-body from near-body or other-body voices. Table 5 shows that the
FR of near-body voice is higher than the FR of other-body voice, which but both are nonetheless very low. The
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Fig. 8. Accuracy metrics (BAC, FAR, FRR) for identification and verification on three different locations with GMM and DNN
models. The x-axes represent the different locations of the devices. The y-axes represent the values of the accuracy metrics.
GMM and DNN models are grouped to ease the comparison among the three locations.

results demonstrate that vocal resonance is able to distinguish on-body voice from near-body or other-body voice
(FR < 0.04). The FR is essentially the success rate for a nearby attacker, and was less than 4%.

Table 5. FR for near-body and other-body voice

method Failure Rate (FR)
near-body voice other-body voice

GMM 0.031 0.003
DNN 0.036 0.001

6.8 Circumventability
An active attacker may try to fool the method by introducing specially crafted audio into the environment. For
example, he could capture an enrolled person’s air voice and then replay that audio through his own body so as
to fool a device on his body into believing the enrolled person is wearing the device. In this scenario, we call the
enrolled person the victim. We define the Attack Success Rate (ASR) to be the fraction of attack attempts in which
the attacker is verified as the victim (ASR = F P

T N+F P ). ASR is a special case of FR, in which a non-body voice is
replaced with an attack. To test vocal resonance against this attack, we placed a loudspeaker on the throat of the
(i + 1)th subject (attacker) and played back the ith subject’s air voice (victim). The GMM achieved average ASR
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0.017 across all the subjects, while the DNN achieved average ASR 0.010. Both models are demonstrated to be
robust (ASR < 0.02) when faced with this attack.

6.9 Power Consumption and Response Time
For wearable devices, the energy capacity is always limited [37]. We measured the energy used by the Raspberry
Pi Zero for audio recording, feature extraction and identification/verification algorithms over 100 runs with
a Monsoon Power Monitor [33]. We excluded the amplifier from the power measurement since it would not
have been necessary if our USB soundcard had had enough gain. Likewise, we measured average end-to-end
latency incurred for feature extraction and speaker-authentication algorithms. Table 6 presents the results. If the
devices wake up to authenticate 1 second of audio every 10 mins, with a rechargeable battery pack (2200 mAh
and 5 V [1]), the GMM method could last 232 hours, while the DNN method could last 248 hours. Although these
results are encouraging, they reflect only a simple prototype built on off-the-shelf hardware; a true wearable
device would have power-optimized hardware that would likely process data much more efficiently.

Table 6. Power consumption and response time for a 1 second sample, averaged over 100 runs

method Power consumption (J) Response time (s)
Identification Verification Identification Verification

GMM 10.46 8.76 4.53 2.37
DNN 8.62 8.50 2.21 2.17

6.10 Threshold Sensitivity
The thresholds τ and θ will affect the performance of the verification algorithms. As described in Section 4, we
predetermine thresholds τ for GMM and θ for DNN models from a partition of the training data. Figure 9 depicts
the accuracy metrics of vocal resonance with varying thresholds τ and θ for GMM and DNN models. The figure
shows that lower thresholds yield lower FARs and higher FRRs for both τ and θ in GMM and DNN models,
while higher thresholds yield higher FARs and lower FRRs. Note that the scales of the x-axes for GMM and DNN
models are not identical, because we use log-likelihoods in GMM and likelihoods in DNN models, and thus we
do not compare the threshold sensitivity across the two algorithms. For strong security, the thresholds chosen
should yield a high BAC, a low FAR, and a low FRR. Figure 9 shows that the accuracy metrics were optimal when
τ = −99.468 for GMM algorithm and θ = 0.04 for DNN algorithm. Thus, we chose τ = −99.468 and θ = 0.04 in
our experiments.

7 RELATED WORK
Others have proposed some promising approaches to identify or verify users of pervasive devices, such as
smartphones [8] or tablets [43]. Here, we focus on a different, unobtrusive method for identifying the user of a
wearable device – one that does not require a display or touch screen or any particular user interface, only a contact
microphone. Speaker-identification and -verification systems have been studied for some time [4, 38, 40, 41].
State-of-the-art speaker-authentication systems use features and methods similar to the one described in this
paper. With the advent of Deep Learning, we anticipate a significant improvement over the quality of speech,
speaker and language recognition algorithms [41].

The most similar research to our own is by Yegnanarayana et al. [48]. They study the feasibility of a speaker-
recognition system for samples collected by a throat contact microphone in a simulated noisy environment,
compared to a microphone placed close to the speaker. To compare both microphones, they collected data
simultaneously from both microphones from 40 speakers. They note that the throat contact microphone is mostly
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Fig. 9. Accuracy metrics (BAC, FAR, FRR) for thresholds with GMM and DNN models. The x-axes represent the values of
thresholds. The y-axes represent the values of the accuracy metrics. Note that the scales of the x-axes for GMM and DNN
models are not identical.

immune to noise and reverberation, unlike the close-speaking microphone, but it also suffers from the attenuation
of higher formants in speech. To determine feasibility of speaker recognition, they extracted 19 linear predictive
cepstral coefficients as features from the audio, and use an auto-associative neural network to model these
features. They show that the performance of the system using throat and close-speaking microphones is the
same in a noise-free environment. In a noisy environment, the close-speaker microphone system degrades in
the presence of noise while the throat microphone system does not. Our work is complementary to theirs as we
study the feasibility of vocal resonance as a biometric. Furthermore, we build a novel speaker-authentication
approach using both DNN and GMM models, and implement those models on a wearable prototype device.
Tsuge et al. looked at bone-conductive microphones for speaker verification [45]. (A bone-conductive micro-

phone picks up sounds conducted through the skul much as our contact microphone picks up sounds passing
through bones and tissues.) They use this kind of microphone to study the feasibility of a speaker-verification
system over a dataset with more than 600 speakers. They extract a 25-dimensional feature vector from 12 MFCCs
and use 64 vector-quantization centroids to model a speaker. Their experiments show that the bone-conducting
microphone performs poorer than an air-conducting microphone, due to placement and noise. However, when
the two microphones are combined, the equal-error rate improves by 16% over just an air-conducting microphone.
As with Yegnanarayana et al. [48], this paper is focused on speaker-recognition, whereas our work explores the
potential for vocal resonance as a biometric that can also distinguish on-body from off-body cases.
Feng et al. proposed a continous authentication system VAuth for voice assistants, such as Alexa, Siri and

Google Now [16]. The VAuth system collects the body-surface vibrations of the user from wearable devices
and matches the vibrations with the speech signal received by the voice assistant’s microphone. They achieved
97% detection accuracy and less than 0.1% false-positive rate. They also showed that VAuth is robust against
replay attacks, mangled voice attacks and impersonation attacks. Their work focused on authenticating the
wearer of a wearable device to voice assistants, while we focus on authenticating a person to a wearable device, a
complementary and critical feature they did not address.
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There are efforts to make deep learning possible on devices with limited hardware capacities. Zeng et al.
proposed a system to recognize a pharmaceutical pill from images with a model compression framework that
significantly reduces the size of the deep-learning model without deteriorating its recognition performance [49].
Lane et al. showed the feasibility of running deep neural networks with fully connected layers for audio-sensing
applications on low-power mobile digital signal processors [26]. These results give hope that our DNN model
may someday be possible to run on a wearable device.
In short, we are the first to explore the use of vocal resonance as a biometric, and furthermore, to use it to

allow devices to distinguish between on-body and near-body situations.

8 DISCUSSION AND LIMITATIONS
Our experiments demonstrate the efficiency of vocal resonance as a biometric for personalizing wearable devices;
however, several important issues need to be addressed to incorporate this new biometric into real devices. In the
following we describe these challenges and our planned extensions to this work.
Length of audio samples: We conducted all the experiments in Section 6 with 1-second audio samples. For

audio samples that are longer than 1 second, we could partition each audio sample into smaller audio chunks,
perform authentication on each audio chunk, and use majority-voting to determine the authentication decision.
An interesting future work would be to study the length of audio samples and utilization of majority voting.

Wake-upmechanism: The wake-up mechanism depends on the specifications of the wearable. If the wearable
device is equipped with a sensing module that detects when the wearer puts on/off the device, then authentication
could be triggered at the moment when the device is put on. Or, the wearable device should wake up periodically,
for example, every 10 mins, to authenticate/re-authenticate the wearer. We did not analyze the wake-up period in
detail. On the one hand, the period should be short so the wearable device can quickly detect context changes and
take action. On the other hand, the period should be long, to reduce battery usage. The best choice will depend
on application needs, and on patterns in user behavior, which is a study for future work.
Size of cohort: For identification, we tested accuracy metrics on the entire cohort of 29 subjects in Section 6.

Smaller or larger cohorts may also influence the identification accuracy metrics; for example, intuitively it is
easier to distinguish between two people rather than among a group of 100 people. To understand how the sizes
of cohorts affect the identification accuracy metrics, we need to conduct experiments on cohorts of different sizes.

Other body parts: This work is focused on head-mounted wearable devices and we show in Section 6 that
vocal resonance to be viable for throat, back of the neck, and back of the ear. Human voice also resonates through
other body parts, and thus it may be possible to collect vocal resonance from those body parts, for example,
the chest or lower body. To learn how other locations perform, we need to collect sound from those locations,
although we anticipate that locations distant from the head and chest will have poorer results.
Features used: We employed 26 MFCC features in the evaluation of GMM and DNN algorithms, in Section 6.

We need to conduct extensive experiments with different feature subsets to explore effects on accuracy metrics,
energy consumption, and the response latency. Liu et al. analyzed different feature-selection algorithms and
different feature subsets from time-domain and frequency-domain features for speaker identification and speaker
verification on wearable devices [30]. We could employ the analysis suggested by this work.

Permanence: Our studies in Section 6.5 demonstrate the robustness of vocal resonance in authentication
under changes of physiological conditions over a period of time (2 weeks). We need to consider longer periods.
Moreover, all the subjects were comfortable and calm when we collected vocal resonance data. However, vocal
resonance’s physiological features may change due to illness, stress or intensive exercise. Physiological changes
such as a hoarse voice, when the subject has a cold, may yield low accuracy metrics. Such sensitivity is common
to other biometrics as well. For example, a gait-based authentication system will be heavily influenced by injury,
footwear, or surface conditions. To eliminate these unwanted sensitivities, we need to learn how vocal resonance
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changes under certain physiological conditions. To understand how the physiological conditions affect our
proposed system, we need to perform more extensive studies, over longer periods and in more contexts.
Native languages: In Section 6, we conducted all the vocal resonance experiments in English. Our subjects

were drawn from two populations: 10 native English speakers and 19 native Mandarin Chinese speakers. Curious
about the potential effects of “accent” on speaker authentication, we tested our methods on the two populations
separately, using models built from the universal training data. Table 7 shows the BAC for authentication of native
English speakers and native Mandarin Chinese speakers. For both methods and both authentication problems,
the balanced accuracy of native Mandarin Chinese speakers was statistically significantly higher (p < 0.02) than
those of native English speakers. It appears that native Mandarin Chinese speakers were more distinguishable
than native English speakers when speaking English. Similarly, Van Leeuwen et al. found that the ‘air voices’
from native Mandarin Chinese speakers are more distinguishable than ‘air voices’ from native English speakers
when they are speaking English [47]. However, we need larger populations for both languages to demonstrate
this argument is also true in terms of ‘body voices’. It would be an interesting follow-up study to determine how
accents and native languages affect our system, via experiments for different languages and including native
speakers from other languages.

Table 7. BAC on identification and verification

method native English speakers native Mandarin Chinese speakers
Identification Verification Identification Verification

GMM 0.870 0.929 0.888 0.960
DNN 0.898 0.935 0.920 0.970

Resource use: In this work we propose two approaches, GMM in a stand-alone mode on the wearable device,
and DNN on a remote server or cloud service. The stand-alone approach has weaker accuracy and higher energy
use, but does not require network access and maintains privacy by processing all audio on-board. The off-board
approach has higher accuracy, but requires network access and places trust in the remote server to process speech
features that may contain personal or sensitive information. We plan to seek optimizations in the algorithm to
allow a personal smartphone to be used as a trusted server to run the DNN algorithms. There are promising
works in progress to implement resource-efficient deep-learning algorithms for small devices [3].

Signal quality: We collected vocal resonance data from subjects in a quiet lab environment. The signal quality
may change due to noisy environments, for example, busy streets. Moreover, the accuracy metrics may be affected
by the signal quality, specifically, the signal-noise-ratio (SNR). In our dataset, the average SNR of vocal resonance
from the subjects is 26.9 dB. To learn how signal quality affects our system, we need to collect vocal resonance
data from other environments and perform extensive studies.

9 CONCLUSION
In this paper we present vocal resonance as a novel, unobtrusive biometric that can support user authentication
(identification and verification) in small, wearable pervasive devices. Notably, it goes well beyond traditional
speaker-recognition methods by specifically confirming whether the device is on the speaker’s body, not simply
nearby. In addition, we implemented a wearable prototype and tested it with two different machine-learning
methods, an on-board GMM method and a remote-assisted DNN method. Using data from 29 subjects, we found
that the DNN method achieved balanced accuracy 0.914 for identification and 0.961 for verification, while the
GMM method achieved 0.875 and 0.942 respectively. Our results show that 1) it is possible to achieve reliable
speaker authentication through a wearable, body-contact microphone, that can reliably distinguish among
multiple individuals, 2) it can distinguish between the situation where the microphone is on the body of the
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enrolled speaker and where the microphone is simply nearby, even on another body, 3) it can authenticate the
wearers after a delay of two weeks, and 4) it is robust against replay attack when one’s air voice is replayed
through another body. Our prototype, based on a Raspberry Pi and a USB sound card, was able to collect and
process the data in a reasonable amount of time and with a reasonable battery lifetime, given a suitable duty cycle.
In future work we anticipate refining these methods, optimizing their performance, and using the smartphone as
a platform to execute the DNN classifier.
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