
BASTION-SGX: Bluetooth and Architectural Support for
Trusted I/O on SGX

Travis Peters
Dartmouth College

Reshma Lal
Intel Corporation

Srikanth Varadarajan
Intel Corporation

Pradeep Pappachan
Intel Corporation

David Kotz
Dartmouth College

ABSTRACT
This paper presents work towards realizing architectural support for
Bluetooth Trusted I/O on SGX-enabled platforms, with the goal of
providing I/O data protection that does not rely on system software
security. Indeed, we are primarily concerned with protecting I/O
from all software adversaries, including privileged software. In this
paper we describe the challenges in designing and implementing
Trusted I/O at the architectural level for Bluetooth. We propose
solutions to these challenges. In addition, we describe our proof-of-
concept work that extends existing over-the-air Bluetooth security
all the way to an SGX enclave by securing user data between the
Bluetooth Controller and an SGX enclave.

CCS CONCEPTS
• Security and privacy→ Access control; Hardware-based security
protocols; Trusted computing; •Hardware→ Networking hardware;

KEYWORDS
Bluetooth, Trusted I/O, SGX, IoT

ACM Reference Format:
Travis Peters, Reshma Lal, Srikanth Varadarajan, Pradeep Pappachan, andDavid
Kotz. 2018. BASTION-SGX: Bluetooth and Architectural Support for Trusted
I/O on SGX. In HASP ’18: Hardware and Architectural Support for Security
and Privacy, June 2, 2018, Los Angeles, CA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3214292.3214295

1 INTRODUCTION
Trusted Execution Environments (TEEs), such as Intel’s SGX, have
generated considerable interest as a means to protect application
code and data from unauthorized access (e.g., [6, 7]). TEEs are
especially promising in light of the ubiquity of malware that threat-
ens to compromise applications and steal or modify security- and
privacy-sensitive data such as personally identifiable information
(PII), passwords, credit card numbers, and health data.

For many security applications, input/output (I/O) data has the
same level of sensitivity as the data protected inside a TEE-protected

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HASP ’18, June 2, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6500-0/18/06. . . $15.00
https://doi.org/10.1145/3214292.3214295

application, creating a need to protect I/O data against theft or tam-
pering from a malicious actor. Therefore, many applications that
need to use a TEE also need a mechanism to protect user I/O data;
this is especially so where sensitive user data is frequently commu-
nicated between client devices and I/O devices such as keyboards,
medical devices, and – increasingly – Internet of Things (IoT) de-
vices.

To address this need, past work has proposed to construct trusted
paths – secure channels between applications and a user’s I/O
devices. A common approach to construct such a path is to introduce
a combination of trusted drivers, middleware, operating systems
(OSes), virtual machines (VMs), and hypervisors. This approach,
however, is not effective for SGX applications since the software
outside of an SGX enclave does not have a way to attest itself to
the enclave. As a result, the application’s security is reduced to the
security of the drivers, middleware, OS, VM, and hypervisor. We
describe this problem in greater detail next.

The Trusted Path Problem. In the canonical trusted path prob-
lem, an application wants to send/receive data securely to/from
peripheral devices, including Human Interface Devices (HID) and
sensors. More precisely, there exists a collection of applications
(apps) that run on a client device (client); a client is, for exam-
ple, a desktop, laptop, tablet, or smartphone. Among the client’s
apps is one or more apps that handles sensitive data (e.g., banking
app, health app, messaging app). These apps want to securely com-
municate with peripheral devices connected with the client, even
in light of software-based adversaries (malware) that may have
compromised drivers, OSes, VMs, or hypervisors.

Today’s solution (Figure 1(a)) assumes that any apps, drivers,
middleware, OSes, VMs, hypervisors, and hardware are capable
and trustworthy with respect to handling sensitive I/O data. Not
all of these components of a system are equally worthy of user
trust, however. Figure 1(b) illustrates the general idea behind past
work towards addressing this problem (e.g., [12, 13]). Specifically,
given a client with TEE technology (e.g., SGX), TEEs are used as a
mechanism to protect the execution of an app (parts of its code and
data) by partitioning it into trusted and untrusted parts; this leads
to the notion of a trusted app [8], which is distinct from other
user apps. A combination of new, trusted components – trusted
drivers, middleware, OSes, VMs, and hypervisors – are then used
to construct trusted paths between the trusted app and user I/O
device through untrusted software. This approach, however, is
not effective for SGX-enabled apps since the software outside of
the enclave does not have a way to attest itself to the enclave.
Furthermore, these approaches include complex and error-prone
software within the trusted computing base (TCB). As a result, the

https://doi.org/10.1145/3214292.3214295
https://doi.org/10.1145/3214292.3214295

HASP ’18, June 2, 2018, Los Angeles, CA, USA T. Peters et al.

VM

App1

Privileged

Software

Hardware

CPU + I/O Controller FW/HW

Hypervisor

Drivers & Middleware

Operating System

CPU + I/O Controller FW/HW

Hypervisor

App2 AppN…
Unprivileged

Software

TApp App1 AppN… TApp

CPU + I/O Controller FW/HW

Hypervisor

Drivers & Middleware

Operating System

App1 AppN…

Operating System
Drivers & Middleware

Drivers

User I/O Device

(a) (b) (c)

Physical

Connection

Untrusted

Trusted

Insecure

Secure

User I/O Device User I/O Device

Figure 1: Overview of the trusted path problem. Today’s solution is illustrated in (a). Variations of proposed solutions are illustrated in (b), all of which rely
on a combination of trusted drivers, VMs, and hypervisors. Our approach, which depends on none of these trust assumptions, is illustrated in (c).

security of the trusted app is reduced to the security of the trusted
components that are relied upon in their solutions.

We propose new platform features to equip SGX-enabled plat-
forms with Trusted I/O capabilities for specific I/O paths (Fig-
ure 1(c)). These features are primarily concerned with ensuring
I/O protection from all software adversaries, including privileged
software. We posit that users already trust that system hardware
(e.g., CPU, chipset, peripherals) operates correctly and that it is ca-
pable of protecting user data. Rather than introducing non-standard
drivers or hypervisors, as past work does, we propose lightweight
extensions to the platform itself. By enabling Trusted I/O in the
platform – removing all system software from the TCB – we can
enhance I/O security significantly.

Scope. In this paper we consider the trusted path problem for
a specific wireless I/O technology: Bluetooth. Furthermore, we
specifically consider the challenges around securing only the sensi-
tive user data sent to/from Bluetooth devices (e.g., keyboard key
presses, health sensor data) on SGX-enabled platforms. All refer-
ences to I/O security throughout this paper are specifically aimed at
securing Bluetooth I/O. While we focus our attention on Bluetooth
and SGX, we postulate that similar notions apply to other wireless
(e.g., Wi-Fi, NFC) and TEE technologies.

Today, wireless I/O technologies – including Bluetooth – define
protection at the hardware link level and leave the client-side secu-
rity up to the OS. Specifically, all I/O between the client’s Bluetooth
Controller and its connected Bluetooth devices is secured with ex-
isting Bluetooth security, such as over-the-air (OTA) encryption.
I/O within the client, however, is transferred in plaintext between
apps and the Bluetooth Controller. Our work addresses client-side
security by securing I/O data between the Bluetooth Controller and
trusted apps; our work requires no modifications to the Bluetooth
protocol, the client’s hardware, or the Bluetooth devices.

Challenges. Today, client devices run a vast number of apps and
connect with a multitude of Bluetooth devices that enable human
users to interact with these apps. It is imperative that the client’s
Bluetooth Controller be capable of reliably managing multiple con-
nections with other Bluetooth devices. Therefore, in light of the
trusted path problem, we need a Trusted I/O mechanism that can

selectively secure only user data, and only between trusted apps
and designated devices, while allowing all other apps and devices
not requiring Trusted I/O to communicate as usual.

In this paper, we describe how it is possible to secure Bluetooth
I/O by creating a secure tunnel between an SGX enclave and Blue-
tooth hardware, and show how it possible to selectively protect I/O
for one or more Bluetooth devices connected to a client, all without
hindering the use of other Bluetooth devices by other (non-trusted)
apps, or requiring modifications to the existing Bluetooth protocol.

Contributions. The contributions of this work are:
(1) We identify and solve several challenges in realizing Trusted I/O

for Bluetooth. Namely, we describe an approach to connection
monitoring that can be applied within a client’s Bluetooth Con-
troller, allowing it to unobtrusively collect Bluetooth device and
channel metadata.

(2) We propose BASTION-SGX, an architecture for realizing Trusted
I/O specifically for Bluetooth on SGX-enabled platforms. Our ar-
chitecture proposes lightweight extensions to existing Bluetooth
I/O firmware to enable Bluetooth Trusted I/O.

(3) We present our proof-of-concept (PoC) work in a case study
that secures sensitive Bluetooth I/O between Human Interface
Devices (keyboard/mouse) and a trusted app. Specifically, our
work shows how it is possible to extend existing over-the-air
Bluetooth security all the way to a trusted app with our new se-
curity features that secure Bluetooth I/O between the Bluetooth
Controller and the trusted app.

We emphasize that all of our contributions enhance I/O security sig-
nificantly compared to today’s solution in terms of protecting user
I/O data from software-based adversaries on the client. Furthermore,
our work offers this security all without requiring modifications to
SGX, the Bluetooth devices that connect with the client device, or
the client’s system software; we only require modifications to the
firmware of the client’s Bluetooth Controller and the trusted apps.

2 BACKGROUND
In this section we present background information on the promi-
nent technologies featured in this paper: Bluetooth and Intel’s SGX.

Bluetooth and Architectural Support for Trusted I/O on SGX HASP ’18, June 2, 2018, Los Angeles, CA, USA

Controller

Host Software

Apps

Host Controller Interface

L2CAP

Profiles

App1 App2 AppN…

Bluetooth Baseband & Radio

Figure 2: A simplified view of the Bluetooth stack.

2.1 Bluetooth
Although a detailed description of the Bluetooth architecture and
its protocols is beyond the scope of this paper (a detailed description
can be found in the Bluetooth Specification [1]), a basic understand-
ing is required to appreciate the challenges and solutions we discuss.
Note that this paper describes specific insights into our work with
Bluetooth Classic. The main ideas carry over to Bluetooth Low En-
ergy (BLE) as well. Therefore, this paper refers simply to Bluetooth,
with the understanding that it applies to both Bluetooth Classic
and BLE.

A typical deployment of Bluetooth (within a client) consists of
a Host and one or more Controllers. The Host Controller Inter-
face (HCI) is a command interface between the Host and Con-
trollers. A Host is a logical entity made up of all the layers between
Bluetooth’s core profiles (i.e., Bluetooth applications and services)
and the HCI. A Controller is a logical entity made up of all of
the layers below the HCI, and enables the client to communicate
with other Bluetooth devices. In most client devices, the Host is
implemented in software, whereas the Controller is implemented
with a combination of firmware and hardware. A simplified view
of this deployment is shown in Figure 2.

During normal operation of Bluetooth, a physical radio channel
is shared by two or more devices. Within the context of a shared
physical channel, there is a complex layering of links and chan-
nels and associated control protocols that enables coordination
amongst the devices as well as data to be transferred between de-
vices. A detailed description of each of these channels and links is
beyond the scope of this paper (see the Bluetooth Specification [1],
Volume 1, Part A). Worthy of note in our work is, however, the
Logical Link Control and Adaptation Protocol (L2CAP) chan-
nel. L2CAP channels provide a channel abstraction to applications
and services. The L2CAP layer of the Bluetooth protocol carries
out many functions, including segmentation and reassembly of
application data, and multiplexing and de-multiplexing of multiple
channels over a shared logical link. Application data submitted to
the L2CAP protocol may be carried on any logical link that supports
the L2CAP protocol.

Summary. In our work we focus primarily on two aspects of
the Bluetooth protocol: the HCI and the L2CAP. The HCI is the
interface between software (i.e., the Bluetooth Host software) and
Bluetooth I/O hardware (i.e., the Bluetooth controller firmware
and hardware); by extending this interface, we can enable trusted
software to create secure channels for Bluetooth data within the

client. The L2CAP protocol is the primary protocol for enabling
applications and services; by applying Trusted I/O security at the
L2CAP layer, we can offer fine-grained, channel-based protection
for user data.

2.2 Intel SGX
Intel Software Guard Extensions (SGX) is a set of new instructions
and mechanisms that can be used by app developers to protect
selected code and data from disclosure or modification by parti-
tioning apps into CPU-enforced containers known as enclaves.
Enclaves offer protected areas of execution in memory that in-
crease security even on compromised platforms. Specifically, an
enclave provides confidentiality, integrity, and replay-protection
guarantees, even without trusting drivers, middleware, OSes, VMs,
hypervisors, firmware, or the BIOS. SGX also provides remote and
local attestation capabilities, allowing enclaves to be measured and
verified – or in other words, a means for an enclave to provide proof
of its authenticity. More information on SGX is available through
Intel’s official SGX documentation [2] as well as past academic re-
search (e.g., [10, 12]). Today, however, Intel’s SGX does not support
Trusted I/O features.

3 SECURITY MODEL & CHALLENGES
In this paper, we address the trusted path problem for Bluetooth
I/O (Figure 4). We break the path between the trusted software and
the user (device) into two subpaths: (1) the path between trusted
software and the trusted Bluetooth Controller (Figure 4, E1-E2), and
(2) the path between the trusted Bluetooth Controller and a trusted
Bluetooth device (Figure 4, E3-E4). As in related work [12, 13], we
assume that the latter path is secure today (e.g., through standard
Bluetooth OTA security). Our work focuses on the former path
and how trusted software and the trusted Bluetooth Controller
can secure I/O channels through untrusted Host software within
the client. Towards this end, this section describes our goals and
security model, as well as the challenges of this work.

3.1 Security Model
Threats & Adversaries. While there are certainly many types of
adversaries and threats that one can imagine, in this paper we are
primarily concerned with software-based adversaries, including
privileged software. Specifically, we concentrate on preventing two
types of software attacks: (1) unauthorized access attacks, which
aim to access sensitive user data transported via Bluetooth, and
(2) data injection or replay attacks, which aim to inject data that is
not authentic, or replay authentic data for malicious purposes.

To this end, we consider an adversary (malware) that has various
capabilities and employs various tactics to successfully perform
such attacks. Specifically, adversaries can read or write the code
and data of system software and untrusted apps on the client. Ad-
versaries can create their own trusted/untrusted apps. Adversaries
can also interpose on communication (i.e., intercept, insert, alter,
deny messages), be it between trusted software and Trusted I/O
hardware within the client, or between the client and device. Ad-
versaries cannot physically access the client device or any of its
connected Bluetooth devices. Adversaries cannot read or write the
data or code of trusted software that is protected within a TEE, nor

HASP ’18, June 2, 2018, Los Angeles, CA, USA T. Peters et al.

the data or code protected by the trusted hardware. Adversaries
cannot break encryption primitives or protocols known to be secure
today. Denial-of-Service (DoS) and side-channel attacks are out of
scope for our work.

Assumptions & Trust Model. In our work we assume the hu-
man user is not an adversary. We assume that the Bluetooth I/O
device is implemented correctly and is trusted by the user to faith-
fully handle I/O on their behalf; furthermore, we assume the de-
vice accurately identifies itself to the client. We assume the client
has SGX-enabled hardware. We assume that system software (e.g.,
drivers, OS) and other apps are not trusted. We assume all trusted
software and trusted hardware (including firmware) is implemented
and authenticated/loaded/initialized/booted correctly. We assume
trusted apps trust that the I/O Controller will comply with security
policies (Section 3.2), not disclose user I/O data to other devices
or apps, and implement OTA protection between the client and
any Bluetooth devices. We assume the physical channel between
the client and device (Figure 4, E3-E4) is protected with existing
Bluetooth OTA security.

Goals. In light of these threats and assumptions, we seek to
achieve the following four goals: (G1)We aim to design a client-side
architecture that is not dependent on trusted hypervisors, trusted
OSes, or trusted drivers for security. (G2) We aim to provide confi-
dentiality, integrity, and replay protection guarantees over select
user I/O data between trusted software and hardware. (G3)We aim
to provide protection against impersonation of trusted software
or hardware. And last, (G4) we aim to achieve these goals in a
way that does not interfere with existing I/O protocols (namely,
Bluetooth) or break existing routing mechanisms.

3.2 Bluetooth Trusted I/O Security Policies
Bluetooth applications and services rely on L2CAP channels to
transport user data. Thus, we apply Bluetooth Trusted I/O security
to select L2CAP channels; i.e., channels that carry user data.

A Bluetooth Trusted I/O security policy specifies what Blue-
tooth I/O data needs to be protected between a trusted app and
the Bluetooth Controller, as well as information used to secure the
data. Specifically, a policy is made up of two elements: (1) infor-
mation to identify the specific channel(s) that should be secured
(e.g., user data from a Bluetooth keyboard), and (2) a symmetric
key; the symmetric key is used to apply cryptographic protection
over the specified channel’s data. Here, a secure channel is one
with the properties noted in goals G2 and G3 described above. We
discuss what information is needed to identify specific channels
that carry user I/O data in Section 3.3, and how security policies
can be programmed into the Controller in Section 4.1.2.

Because our architecture aims to provide confidentiality of user
I/O data (G2), a trusted app that programs a security policy has
exclusive access to the channel(s) defined in the policy. This ensures
that no other software can access the Bluetooth I/O data that the
trusted app aims to secure. The OS enforces exclusive use of some
devices today (e.g., keyboards, cameras) for security. For example,
by default, the OS ensures keyboard input is only sent to the app
that has focus to ensure that no other app can observe passwords
or other sensitive data entered by the user. Since the OS and other

L2CAP CID = 63

L2CAP CID = 64

PSM = 0x0011 (Control)

PSM = 0x0013 (Interrupt)

HCI CONN_HDL = 12

Client’s
Bluetooth
Controller

Device 1
Class of Device
Major = 0x05
Minor = 0x20
(HID mouse)

Device 2
Class of Device
Major = 0x05
Minor = 0x10

(HID keyboard)

L2CAP CID = 63

L2CAP CID = 64

PSM = 0x0011 (Control)

PSM = 0x0013 (Interrupt)

HCI CONN_HDL = 10

Wireless Channels

USER DATA

CONTROL

BD_ADDR = 00:A6:83:B3:91:02

BD_ADDR = 34:88:5D:29:A8:9B

Figure 3: An example of two Bluetooth devices connected with a client.
Trusted I/O requires fine-grained channel selection. For each device and
channel, a Trusted I/O-enabled Bluetooth Controller maintains information
about: the physical connection (HCI Connection Handle), logical channels
(L2CAP CIDs) and their respective protocol/service multiplexor (PSM; con-
trol vs. data), and Class of Device (COD; composed of Major and Minor
numbers).

system software is not within the TCB of our architecture, how-
ever, we aim to provide similar guarantees without relying on this
untrusted software.

3.3 Challenges
Today, the client’s Bluetooth Controller is the gateway for all pack-
ets transported between the client’s Host software and all connected
Bluetooth devices. An implication of the Controller’s current design
and role as gateway, however, is that all ingress Bluetooth packets
(device-to-host), from all connected devices, are multiplexed within
the Bluetooth Controller into a single stream and delivered to Host
software via the HCI. Similarly, all egress packets (host-to-device)
must be demultiplexed within the Controller and sent to the correct
Bluetooth device.

In our work we seek to not interfere with the Bluetooth protocol
or break existing routing within the client’s software (G4). There-
fore, our Trusted I/O solution aims to selectively secure only user
data, and only between trusted apps and designated devices, while
allowing all other apps and devices not requiring secure I/O to com-
municate as usual. Realizing Trusted I/O for Bluetooth has raised
three main issues: associating multiplexed and interleaved packets
to their respective devices and channels; isolating and protecting
only user data (without interferring with control channels or packet
headers); and overcoming tension between enforcing high-level
security policies given only low-level context. We discuss these
issues next and refer to aspects of Figure 3 and Figure 6.

3.3.1 Packet Multiplexing & Interleaving. Today, a Bluetooth
Controller must maintain basic metadata about connected devices
and their channels so that it can route packets to Host software.
Conceivably, a Bluetooth Controller need only maintain a mapping
between an HCI connection handle and the corresponding device’s
Bluetooth address, enabling the Controller to know which packets
belong to which devices. Knowing how to differentiate packets
by device, while necessary, is not sufficient for securing user I/O
data. To elaborate, actual user data is transported between Host
software and Bluetooth devices using L2CAP channels. All L2CAP
packets (Figure 6) have a channel identifier (CID), and according
to the Bluetooth specification, the L2CAP CID of a packet enables

Bluetooth and Architectural Support for Trusted I/O on SGX HASP ’18, June 2, 2018, Los Angeles, CA, USA

routing software to associate packets with specific L2CAP channels.
Unfortunately, the CID used in L2CAP packets is guaranteed to be
unique only per device. This can give rise to ambiguity. For example,
Figure 3 illustrates a client connected with two Bluetooth devices,
each with one channel used to exchange user data with the client.
Per the Bluetooth specification, it is actually reasonable for the
channels to have the same CID. The disambiguating attribute in this
case is the identifier for the physical link (i.e., the HCI connection
handle or Bluetooth Device Address, which identifies a unique
Bluetooth device), which is not part of the L2CAP packet. While all
of this information is not located in a single packet, we note that
together, an HCI connection handle and an L2CAP CID can be used
to uniquely identify channels.

3.3.2 Isolating & Securing User Data Only. Another issue that
arises is that L2CAP packets actually come in two different types:
those that carry control information and those that carry data. To
ensure all user I/O data is secure, it may initially seem like a good
idea to secure all packets – regardless of type – belonging to com-
munication with a specific device. This approach, however, can have
atrocious effects on existing Bluetooth functionality. For example,
as depicted in Figure 3, Device 1 has one channel (L2CAP CID =
63) dedicated to handling signaling (e.g., enable device options, de-
termine current device state) between the client and device; as a
consequence of securing all packets, Trusted I/O security would
obfuscate (encrypt) this signaling channel and “break" application-
level functionality. For other, primary signaling channels, this can
be even more destructive, breaking functionality that controls how
packets are routed, and how logical channels are created, main-
tained, and destroyed. In general, essential Bluetooth functionality
relies on access to HCI connection handles, L2CAP channel iden-
tifiers, and in some cases, even information in the L2CAP packet
payloads (e.g., control parameters). Thus, in order to not break exist-
ing Bluetooth functionality, packets that contain control information
should not be secured, and packets containing data should only be
secured if a relevant security policy exists.

The underlying issue here is that L2CAP packets have no type
descriptor in the packet that can be used to disambiguate control
packets from data packets. Such a descriptor is, however, present
at the time that new L2CAP channels are created. During L2CAP
channel creation, a Protocol and Service Multiplexor (PSM) value
is exchanged. PSM values are useful for securing channels as they
provide higher-level insight into the purpose of the channel and
the type of information that will be exchanged over the channel.
Furthermore, some data and control channels are defined in the
specification and are allocated reserved channel identifiers that
indicate their purpose (data vs. control). Thus, while channel type
information is not contained within all packets, such information
is either standardized (and therefore need not be directly observed)
or available during the creation of channels (and is therefore ob-
servable within the Controller).

3.3.3 Understanding Device Types. To enforce high-level secu-
rity policies, we seek a mechanism to map security policies that are
meaningful to humans and apps, to any connected devices. For in-
stance, a Trusted I/O security policy may require that all I/O from/to
a particular device, or particular class of device (such as all keyboard
devices; see Device 2 in Figure 3), should be secure. Fortunately,

BT Profiles

Privileged Software

Hardware (CPU+BT HW/FW)

TApp*

Hypervisor

BT Drivers & Middleware

Operating System

App1 AppN…

BT Device 1 BT Device M…

BT-TIO API*
Metadata Table*
BT-TIO Security*

(,)

Unprivileged Software E1

E2

E3

E4

TIO Profile *

Untrusted
Trusted

Plaintext
Secure

New*

Figure 4: Overview of our Bluetooth Trusted I/O architecture. Our goal
is to ensure data is secured in its transportation between two endpoints:
trusted software (E1) and a Bluetooth device (E4). We assume the path
between the client’s Bluetooth Controller and the device (E3-E4) is secure
via Bluetooth OTA security that exists today. Our work shows how I/O
channels between trusted software and the trusted Bluetooth Controller
(E1-E2) can be secured. Together, these paths achieve our goal.

Bluetooth defines the notion of Class of Device (COD), which pro-
vides higher-level information about the purpose and function of a
device. Each Bluetooth device belongs to some class, represented by
major and minor class information. Bluetooth currently defines 32
major classes (e.g., Computer, Phone, Peripheral, Health). There are
a multitude of minor classes that describe subclasses of a particular
major class; for example, given a major class of Peripheral, minor
class information further describes if that Peripheral is a keyboard,
mouse, or something else. According to the Bluetooth specification,
“The major device class segment is the highest level of granularity
for defining a Bluetooth device. A device’s main function deter-
mines its Major Class assignment." Using Bluetooth Class of Device
information to represent devices in security policies likely maps
well to the high-level understanding of devices that humans and
apps have.

4 PROPOSED ARCHITECTURE:
BASTION-SGX

In this section we present BASTION-SGX: our Trusted I/O archi-
tecture for Bluetooth on SGX (Figure 4). BASTION-SGX is com-
prised of the following components: the client’s trusted software,
the client’s Trusted I/O hardware, and some number of wirelessly
connected devices. Specifically, the trusted software consists of
standard SGX software and a trusted app. The trusted hardware is
an SGX-enabled CPU and a Bluetooth Controller with our Trusted
I/O extensions. Wireless devices connect with the client and com-
municate with apps.

4.1 Bluetooth Trusted I/O Controller
BASTION-SGX is centered around a Trusted I/O-enabled Bluetooth
Controller, which implements the following features: (1) monitor

HASP ’18, June 2, 2018, Los Angeles, CA, USA T. Peters et al.

Host Controller
HCI Connection Request

(BD_ADDR, COD)

HCI Connection Complete
(BD_ADDR, CONN_HDL)

L2CAP Connection Request
(REMOTE_CID, PSM)

L2CAP Connection Response
(LOCAL_CID, REMOTE_CID)

L2CAP Disconnection Response
(LOCAL_CID, REMOTE_CID)

HCI Disconnection Complete
(CONN_HDL)

…HCI connection active…

…L2CAP data exchanged…

(Client)

Figure 5: An example flow of a client-device connection with a summary
of the relevant HCI and L2CAP connection-related events. These events are
standard in Bluetooth’s HCI and L2CAP protocols today. We propose to
monitor and capture device- and channel-specific metadata during connec-
tion/disconnection events in our Trusted I/O-enabled Bluetooth Controller.
The relevant metadata is shown in parenthesis.

connection events and maintain a Metadata Table to store informa-
tion for connected Bluetooth devices and their respective channels;
(2) expose an API to support Trusted I/O-related interactions with
Host software; (3) filter packets in accordance with the Metadata
Table; and (4) apply cryptography to provide the desired security
properties over a channel. We discuss these components in greater
detail next (see Figure 4).

4.1.1 Connection Event Monitoring & the Bluetooth Trusted I/O
Metadata Table. The solutions we envision for the various chal-
lenges described in Section 3.3 rest in our ability to obtain metadata
about devices, and their respective HCI and L2CAP channels. We
assert that it is possible to obtain all of the necessary information
simply by extending the Bluetooth Controller’s firmware. Specif-
ically, BASTION-SGX proposes new features to monitor HCI and
L2CAP connection/disconnection events, and maintain a Metadata
Table that contains the information alluded to in Section 3.3. Fig-
ure 5 provides a summary of the relevant HCI and L2CAP events,
and the metadata that the Controller captures.

When a Bluetooth device first connects with a client device, the
Controller creates anHCIConnectionHandle (CONN_HDL) that the
client’s Host software can use to communicate with that specific
device. As an example, when a device connects, the Bluetooth Con-
troller generates an HCI Connection Request event to inform Host
software that a device wishes to connect. The device is described
initially by its Bluetooth Device Address (BD_ADDR) and Class of
Device (COD). Upon completion of the physical connection between
the client and device, the Controller generates an HCI Connection
Complete event that provides Host software with the CONN_HDL
that can be used for future communication with the device. At

this point, the Host and Controller have an active HCI connection
that can be used for subsequent communications between the Host
software and device.

Once connected, these entities can exchange L2CAP connection
requests and responses to create logical links for exchanging con-
trol and data packets. For example, a device that sends a request to
the Host to create a new L2CAP channel sends two pieces of infor-
mation: a REMOTE_CID and PSM. The Protocol/Service Multiplexor
(PSM) indicates the purpose of the channel; i.e., what protocol or
service will operate over the new L2CAP channel. The L2CAP chan-
nel has two endpoints: one in the Host (LOCAL_CID) and one in the
device (REMOTE_CID). While the Host is free to assign any CID for
its local endpoint, it does not control the CID that the device uses
for its endpoint. Thus, when new L2CAP channels are formed, the
Host software and device carry out an acknowledgement of the
CID to be used for their respective endpoints. Events related to HCI
and L2CAP disconnections can be similarly observed.

By monitoring these HCI and L2CAP events, the Controller
can be made to capture and maintain fine-grained information
about each connected device (CONN_HDL, BD_ADDR), its type (COD),
its logical channels (LOCAL_CID, REMOTE_CID), and the protocols or
services (PSM) operating over each channel. This information can
then be used in accordance with security policies (Section 4.1.2) to
filter (Section 4.1.3) and secure packets (Section 4.1.4).

4.1.2 Bluetooth Trusted I/O API. Trusted I/O features are aimed
at giving trusted software the ability to create secure channels to
protect specific I/O data channels. Thus, in BASTION-SGX, security
policies (Section 3.2) are driven by the requirements of trusted
software. There are two issues worth considering here: first, how
trusted software can program security policies into the Controller,
and second, how trusted software can describe security policies,
based on metadata the Controller independently maintains.

Programming Security Policies. The HCI can be used to ad-
dress the first issue. The HCI is already used for communication
between the Host and Controller. Furthermore, the HCI protocol
supports an extensible interface, often referred to as the Vendor
Specific Debug Command (VSDC) interface. This interface en-
ables vendors to add non-standardized features to Bluetooth Con-
trollers and to enable apps to use those features. Thus, we can use
this interface to support new Bluetooth Trusted I/O APIs – such as
policy specification APIs for adding and removing security policies –
in Trusted I/O-enabled Bluetooth Controllers.

Class-of-Device Policy Specification. One approach to spec-
ifying security policies is to identify a class of devices that should
be secured along with a key (COD, KEY), and rely on the Controller
to determine which channels carry sensitive data versus those that
do not. As noted in Section 4.1.1, upon connecting, COD information
is exchanged; therefore the Controller can know the COD of each
of its connected devices. Furthermore, because PSM information is
exchanged during the creation of any L2CAP channel, the Con-
troller can know the purpose of each L2CAP channel, enabling
it to identify (and subsequently secure) channels that carry user
data (using the policy’s KEY). This approach for defining security
policies is conservative in that it allows trusted software to secure
I/O between it and any device matching the COD in its policy.

Bluetooth and Architectural Support for Trusted I/O on SGX HASP ’18, June 2, 2018, Los Angeles, CA, USA

HCI TypeUART Payload

CONN_HDLHCI PayloadLength

LENL2CAP PayloadCID Var. HDR

BT-HID PayloadProfile HDR

HID PayloadReport ID

Figure 6: An example of the Bluetooth packet hierarchy. In our PoC we
discuss how input data from HID devices can be secured. User data (e.g.,
key presses) is transported in HID packets (top level). These packets are
nested in multiple layers of the Bluetooth protocol for transportation from
a device to a client’s Host software.

4.1.3 Bluetooth Trusted I/O Filtering. The Bluetooth Trusted I/O
Filter is responsible for (1) identifying packets containing sensitive
user data based on known devices (Section 4.1.1) and security poli-
cies (Section 4.1.2), and (2) securing these packets (Section 4.1.4)
using the policy’s KEY. Thus, as L2CAP packets are transported
between the Host and Bluetooth devices, the filter examines each
packet to determine if some security policy applies to that packet.
Essentially, given an L2CAP packet, PACKET, an HCI connection
handle, CONN_HDL, and information about the direction of the packet
(host-to-device or device-to-host), DIR, the filter must decide to ei-
ther apply Trusted I/O security to PACKET or allow it to pass through
unaffected.

Each L2CAP PACKET contains a CID and packet length (LEN); for
reference, Figure 6 illustrates the L2CAP packet structure. Also,
the Controller knows the CONN_HDL to which the PACKET belongs,
and which direction the packet is being transported. Therefore, the
filter can check the Metadata Table to see if the PACKET belongs
to a secure channel and apply the appropriate security operations
(encrypt, decrypt, etc.) over the PACKET’s payload based on DIR.
Note that the boundary of the PACKET’s payload can be determined
from the LEN field in the header of PACKET; all Trusted I/O security
is applied to the payload. We discuss Bluetooth this step next.

4.1.4 Bluetooth Trusted I/O Security. The details of the security
applied to user data (e.g., encryption and decryption algorithms, key
sizes, MACs) are implementation and security-model specific. As
noted in Section 3.1, BASTION-SGX aims to provide confidentiality,
integrity, replay protection, and mutual authentication guarantees
(G2 and G3). In BASTION-SGX, any authenticated encryption al-
gorithm can be used to secure the channel. Such an encryption
algorithm is applied to user I/O data within trusted software and
the trusted Controller so that the data can be routed in the normal
way (G4) via untrusted software; by securing the I/O data before
moving it out of the trusted software or Controller, we ensure the
data is opaque to untrusted software (G1). Furthermore, in doing
so, we protect user I/O data against the malware attacks defined
in Section 3.1 – which raises the bar significantly from today’s
solution. Thus, assuming trusted software has a secure mechanism
to share (program) keys with the Controller, BASTION-SGX can
achieve its security goals. We discuss two approaches for how IA

platforms can accomplish this key sharing next. We note that this
key programming step is critical to Trusted I/O security, yet distinct
from the contributions we describe in this paper. In fact, there is
nothing especially novel behind how this key programming can be
done, and as such, is not an emphasis of this paper. To convince
the reader that this step is not an issue, we briefly describe two
approaches next.

Dynamic Key Provisioning. This approach requires further
extensions to the Bluetooth Controller that enable it to attest itself
to an enclave, enabling a Controller to prove to an enclave that
it is authentic Bluetooth hardware, executing authentic Bluetooth
firmware; the attestation we envision is similar to what is proposed
in the USB Type-C Authentication Specification [5] and the PCIe
Device Security Enhancements Specification [4].1 These specifi-
cations define nearly identical authentication architectures that
allow USB and PCIe devices, respectively, to have their identity and
capability cryptographically verified. These architectures provide a
specific example where cryptographic verification can be used to
subsequently exchange secrets to set up a secure channel between
software and a device; such a channel, in our work, would be used
to program security policies (Section 3.2) from trusted software
into the Controller.

At a high level, these authentication architectures adapt common
industry paradigms (i.e., PKI) for identity and capability verification.
Specifically, a trusted root certificate authority (CA) generates a
root certificate; the root certificate is used by an authentication
initiator (verifier) to verify the validity of signatures generated
by a device (prover) during authentication. The root certificate is
also used to endorse vendor certificates, which are then used to
endorse some combination of intermediate certificates and model
certificates; these certificates are ultimately used to endorse per-
device certificates.

Authentication happens in two steps: (1) Authentication Pro-
visioning, and (2) Runtime Authentication. In the authentication
provisioning step, the root certificate is provisioned to the authen-
tication verifier (in our case, trusted software) to enable the verifier
to verify the validity of signatures generated by a device (in our
case, a Bluetooth Controller) during the runtime authentication
step. Furthermore, a public/private key pair is generated for each
device; the private key is provisioned into the device at the time of
manufacturing along with a certificate that contains its correspond-
ing public key, along with a signature that can be verified using the
root CA’s public key in the root certificate. In the runtime authenti-
cation step, the verifier queries the device to obtain its certificate,
and sends a unique challenge (nonce) to the device; the device can
authenticate its identity and capability by signing the challenge
along with other authentication data (e.g., a measurement of its
firmware) with its private key. The verifier can verify the device’s
response/signature using the device’s public key and the root CA’s
public key (as well as any intermediate public key), and use the
result of its verification to make a trust decision.

Assuming the device (again, in our case this is the Controller)
successfully attests to its authenticity, standard protocols such as

1At the hardware level (i.e., within the client), components connected with the CPU
via PCIe, USB, UART, etc., are commonly referred to as “parts" or “devices." Thus,
references to “devices" in this context are distinct from how we use the word “device"
throughout the rest of the paper, which is to refer to Bluetooth devices.

HASP ’18, June 2, 2018, Los Angeles, CA, USA T. Peters et al.

DAA-SIGMA [11] can be used to share a secret and establish a
secure channel between an enclave and the Controller; the enclave
can then use the secure channel to program Trusted I/O keys into
the Controller.

New Platform Capability. An alternative approach envisions
a new platform capability, similar to previously-envisioned capabil-
ities. For example, the authors of the Secure Input/Output Device
Management patent [9] describe a scenario similar to ours: a pro-
cessor has secure execution environment support (e.g., SGX) and
wishes to establish a secure connection to an I/O controller. The
I/O controller includes an integrated Trusted I/O component that
can receive (unencrypted) requests to configure the Trusted I/O
component. In the patent, the authors provide details for how a
USB controller can be equipped with trusted I/O capabilities and
how encryption keys can be established between an enclave and
the USB controller. Our work can use similar features for a Trusted
I/O-enabled Bluetooth Controller. This new capability would make
secure key programming a feature of the platform (via ISA exten-
sions), and allow enclaves to send Trusted I/O keys securely to an
authentic Bluetooth Controller.

4.2 Trusted I/O Host Software
In BASTION-SGX, trusted apps are implemented as SGX enclaves.
Trusted apps are therefore subject to the same security model as
SGX, and benefit from existing work towards resources for enclave
software development [8, 10]. Trusted software that uses enclaves
to protect select code and data protects sensitive I/O data within
the enclave, and uses our Trusted I/O features to secure I/O data
between itself and the Bluetooth Controller.

In theory, a trusted app can be quite simple. To create secure
Bluetooth I/O channels, a trusted app needs to program security
policies into the Controller using the Bluetooth Trusted I/O API
(Section 4.1.2). For each new secure I/O channel, a trusted app
should use a new symmetric key, which can be generated using
third-party libraries such as mbedTLS [3], for example. The trusted
app can then use one of the secure programming mechanisms
described in Section 4.1.4 to securely send the key to the Controller.
A trusted app also needs to perform cryptographic operations on
incoming/outgoing data; the SGX SDK [2] offers various functions
to help developers with these sorts of operations, though again,
third-party libraries (e.g., [3]) can also be used.

In some cases there may be a need for additional trusted software
(e.g., Trusted Bluetooth Profiles) to support trusted apps that use
Trusted I/O features. (See Section 5 for an example.) In today’s
solution, theOS and various drivers are trusted, so it is not a problem
to have them process and interpret the contents of I/O packets to
make them useful for apps. Our security model rules the OS and
these subsystems out of the TCB; our work is therefore unable to
rely on them for these services. Alternatively, a trusted app can opt
to implement any data processing/interpretation that is needed (as
we do in our work). Both of these options are viable.

Ideally, we envision extending the existing SGX SDK [2] to
include our proposed Bluetooth Trusted I/O extensions for SGX.
Specifically, SGX SDK extensions would implement common Blue-
tooth Trusted I/O operations such as key generation and encryp-
tion/decryption for securing I/O data, a security policy API, and

so forth, alleviating the need for developers to implement these
features in their apps.

5 PROOF OF CONCEPT
Here, we aim to validate the Trusted I/O Controller and its role
in our architecture (Section 4.1). Specifically, we seek to validate:
(1) that our proposed metadata table can be built and enables unique
channel selection for Trusted I/O security; (2) that security policies
can be added/removed to/from the Controller by creating new
VSDCs; (3) that packet filtering can isolate data-carrying packets
and encrypt only packet data; and (4) that only the trusted app can
recover (decrypt) I/O data over the secure channel it establishes
with the Controller. In our current implementation, we modified
Bluetooth firmware that runs within an Intel Bluetooth Controller,
adding the features we describe in Section 4.1.

On initialization of the Controller, we allocate space for the
metadata table. We added hooks into the existing firmware to mon-
itor HCI and L2CAP connection/disconnection events, and update
the metadata table accordingly. We also extended the Controller
to support two new VSDCs for adding/removing security polici-
ces: TIO_SET_KEY and TIO_CLEAR_KEY. As packets arrive in the
Controller, the Controller looks up information about the packet
(i.e., to which channel it belongs) to determine whether further
action is necessary (Section 4.1.3). We use the KEY programmed
via TIO_SET_KEY to secure the relevant channel between trusted
software and the Controller. Because the metadata table maintains
information about each connected device and all of their logical
channels, our current implementation uses the presence of a KEY
for a particular channel as a flag to indicate whether or not that
channel is currently a secure channel. Together, these steps enabled
us to validate the above-mentioned objectives.

We also implemented a trusted app (TA). We specifically consid-
ered a TA that prompts the user for a password and wants to ensure
that password entry is secure. We installed a privileged keylogger
on the client to verify that the channel is in fact secure during
password entry; the keylogger monitored all transactions over the
HCI and logged all HID data.

At the time a user enters the password field context, the TA
generates a symmetric key and sends it to the Controller, indicating
that it wants to secure input from the connected keyboard device
(Section 4.1.2). As a user types her password, the Bluetooth device
generates packets containing the key presses. Because the device
and client were previously paired, they share a symmetric key and
use it to protect user data in the OTA segment of the I/O path.2
As L2CAP packets arrive in the Controller, the Controller uses the
OTA key to decrypt them. Without Trusted I/O, the Controller
need only map the link identifier to the HCI connection handle,
and transport packets to Host software. With Trusted I/O, however,
the Controller first checks to see whether the packet belongs to
a Trusted I/O channel (Section 4.1.3). If the packet belongs to a
Trusted I/O channel, channel security is applied (Section 4.1.4)
using the KEY programmed by the TA previously. If the packet does
not belong to a Trusted I/O channel, no channel security is applied.
In either case, the packet is encapsulated within an HCI packet and

2The OTA symmetric key is negotiated between the client’s Controller and device’s
Controller. Host software (trusted or untrusted) does not have access to the OTA key.

Bluetooth and Architectural Support for Trusted I/O on SGX HASP ’18, June 2, 2018, Los Angeles, CA, USA

sent to Host software via the normal transport (e.g., UART). When
the TA receives the packet, it decrypts and verifies the contents.

One technical challenge that arises in our PoC work is the han-
dling of Human Interface Device (HID) input. Because HID devices
are an important part of modern computers, there are drivers and
other middleware that help to process and interpret HID data. For
example, keyboard input is sent through a HID subsystem that
translates scan codes into text characters. In reality, this translation
is fairly simple, and the TA can implement it in its own code –
indeed, the TA in our PoC handles the translation itself. Alterna-
tively, one can envision trusted middleware that handles these sorts
of standard operations. In light of this, we need to prevent Host
software from trying to interpret certain (HID) packets which have
been secured as part of a Trusted I/O channel.

In Bluetooth, HID packets are encapsulated within Bluetooth
HID packets, which are then encapsulated within L2CAP packets
(Figure 6). The Bluetooth HID layer serves as a lightweight wrap-
per of the HID protocol defined for USB; this enables the re-use
of Host software that already exists to support USB-based HID.
By default, when a Bluetooth HID device connects, Host software
routes its HID packets through the relevant HID subsystems, pro-
cesses the packet contents, and then makes the data available to
apps. To prevent the Host software from routing Trusted I/O HID
packets through these HID subsystems – and erroneously inter-
preting packet contents – we installed a new Bluetooth profile:
the Trusted I/O HID Profile. This profile is functional software
that exists solely to prevent premature interpretation of data, and
instead, passes data to the intended trusted software for handling.
We emphasize that this “glue” software is not part of our TCB: it is
untrusted functional software that is needed only to prevent Host
software from incorrectly handling certain packets.

6 SUMMARY & RELATED WORK
Addressing the trusted path problem for Bluetooth I/O raises a
number of challenges that we confront in this work. Our approach
bears some resemblance to the trusted path work by Zhou et al. [13].
They propose to build a trusted path between a program endpoint
(trusted app) and a device endpoint (I/O hardware); they rely on
a non-standard hypervisor to offer trusted path isolation from un-
trusted software. In our work, we eliminate any need to rely on
trusted drivers, OSes, hypervisors, and so forth, for security; all
data is secured within the Bluetooth Controller and the trusted
app, and is therefore opaque while in transit through untrusted
software. In another related work, researchers present SGXIO [12].
In SGXIO, the trusted path must be built from a user app (enclave)
to a Trusted I/O driver, and from the driver to the respective I/O
device. Again, this work relies on a hypervisor to realize a secure
binding between the Trusted I/O driver and the actual I/O hardware.
In our architecture, a specific I/O Controller (Bluetooth) is modified,
enabling an SGX app to create a secure binding with the Controller
directly.

In this paper, we provide an in-depth analysis of Bluetooth and
various challenges in realizing Trusted I/O for Bluetooth. As a result,
we present BASTION-SGX: a Trusted I/O architecture for Bluetooth
on SGX. We also discuss our proof-of-concept implementation of

BASTION-SGX, which adds new, lightweight features to the Blue-
tooth Controller and demonstrates its utility in securing user data
input from keyboard devices. In future work we plan to explore ex-
tensions of this work to address other I/O paths (e.g., Wi-Fi, NFC),
and evaluate the performance cost of our Trusted I/O solution.
While we did not present performance measurements in this paper,
we anticipate that the performance cost of our solution for securing
Bluetooth I/O will be acceptable. The maximum bandwidth sup-
ported by Bluetooth is no more than a few megabytes, thus we
believe that the Trusted I/O-related cryptographic operations will
not introduce any perceptible latency and will certainly not have
any impact on the throughput. In our PoC we implemented the
cryptographic operations in firmware; to reduce performance costs,
we recommend implementing some (or all) of these operations in
hardware.

ACKNOWLEDGEMENTS
We thank Magnus Eriksson from Intel Corporation who provided
expert consultation on the Bluetooth stack and supported our efforts
in developing a proof of concept that involved changes to Intel’s
Bluetooth Controller firmware and the Host-side software. We
also thank Sougata Sen for feedback on early drafts of this paper.
This research results from a research program at the Institute for
Security, Technology, and Society at Dartmouth College, supported
by the NSF under award numbers CNS-1329686. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the sponsors.

REFERENCES
[1] Bluetooth Specifications. Online at https://www.bluetooth.com/specifications.
[2] Intel Software Guard Extensions. Online at https://software.intel.com/sgx/.
[3] mbed TLS. Online at https://tls.mbed.org/.
[4] PCIe* Device Security Enhancements (Draft) Specification. On-

line at https://www.intel.com/content/www/us/en/io/pci-express/
pcie-device-security-enhancements-spec.

[5] USB Specification. Online at http://www.usb.org/developers/docs/.
[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L.
Stillwell, Christof Fetzer, David Goltzsche, David Eyers, Rüdiger Kapitza, and
Peter Pietzuch. SCONE: Secure Linux Containers with Intel SGX. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[7] Helena Brekalo, Raoul Strackx, and Frank Piessens. Mitigating PasswordDatabase
Breaches with Intel SGX. In Proceedings of the Workshop on System Software for
Trusted Execution (SysTEX). ACM Press, 2016. DOI 10.1145/3007788.3007789.

[8] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using Innovative Instructions to Create Trustworthy Software
Solutions. In Proceedings of the Workshop on Hardware and Architectural Support
for Security and Privacy (HASP), 2013.

[9] Steven B. McGowan. Secure Input/Output Device Management. On-
line at http://www.sumobrain.com/patents/wipo/Secure-device-management/
WO2017023434A1.html.

[10] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the Workshop on
Hardware and Architectural Support for Security and Privacy (HASP), 2013.

[11] Jesse Walker and Jiangtao Li. Key Exchange with Anonymous Authentica-
tion Using DAA-SIGMA Protocol. In Proceedings of the International Con-
ference on Trusted Systems (INTRUST). Springer-Verlag, 2010. DOI 10.1007/
978-3-642-25283-9_8.

[12] Samuel Weiser and Mario Werner. SGXIO: Generic Trusted I/O Path for Intel
SGX. arXiv preprint arXiv:1701.01061, 2017.

[13] Zongwei Zhou, Virgil D. Gligor, James Newsome, and JonathanM.McCune. Build-
ing Verifiable Trusted Path on Commodity x86 Computers. In IEEE Symposium
on Security and Privacy (S&P), 2012. DOI 10.1109/SP.2012.42.

https://www.bluetooth.com/specifications
https://software.intel.com/sgx/
https://tls.mbed.org/
https://www.intel.com/content/www/us/en/io/pci-express/pcie-device-security-enhancements-spec
https://www.intel.com/content/www/us/en/io/pci-express/pcie-device-security-enhancements-spec
http://www.usb.org/developers/docs/
http://dx.doi.org/10.1145/3007788.3007789
http://www.sumobrain.com/patents/wipo/Secure-device-management/WO2017023434A1.html
http://www.sumobrain.com/patents/wipo/Secure-device-management/WO2017023434A1.html
http://dx.doi.org/10.1007/978-3-642-25283-9_8
http://dx.doi.org/10.1007/978-3-642-25283-9_8
http://dx.doi.org/10.1109/SP.2012.42

	Abstract
	1 Introduction
	2 Background
	2.1 Bluetooth
	2.2 Intel SGX

	3 Security Model & Challenges
	3.1 Security Model
	3.2 Bluetooth Trusted I/O Security Policies
	3.3 Challenges

	4 Proposed Architecture: BASTION-SGX
	4.1 Bluetooth Trusted I/O Controller
	4.2 Trusted I/O Host Software

	5 Proof of Concept
	6 Summary & Related work
	References

