
Recurring Verification of Interaction Authenticity Within
Bluetooth Networks

Travis Peters
Gianforte School of Computing,
Montana State University, USA

Timothy J. Pierson
Department of Computer Science,

Dartmouth College, USA

Sougata Sen
Department of Computer Science and

Information Systems,
BITS Pilani, Goa Campus, India

José Camacho
Department of Signal Theory,

Networking and Communications,
University of Granada, Spain

David Kotz
Department of Computer Science,

Dartmouth College, USA

ABSTRACT
Although user authentication has been well explored, device-to-
device authentication – specifically in Bluetooth networks – has
not seen the same attention. We propose Verification of Interaction
Authenticity (VIA) – a recurring authentication scheme based on
evaluating characteristics of the communications (interactions) be-
tween devices. We adapt techniques from wireless traffic analysis
and intrusion-detection systems to develop behavioral models that
capture typical, authentic device interactions (behavior); these mod-
els enable recurring verification of device behavior. To evaluate
our approach we produced a new dataset consisting of more than
300 Bluetooth network traces collected from 20 Bluetooth-enabled
smart-health and smart-home devices. In our evaluation, we found
that devices can be correctly verified at a variety of granularities,
achieving an F1-score of 0.86 or better in most cases.

CCS CONCEPTS
• Security and privacy→Mobile andwireless security; Intru-
sion detection systems; Multi-factor authentication.

KEYWORDS
Traffic Analysis, Behavioral Analysis, Bluetooth, Verification
ACM Reference Format:
Travis Peters, Timothy J. Pierson, Sougata Sen, José Camacho, and David
Kotz. 2021. Recurring Verification of Interaction Authenticity Within Blue-
tooth Networks. In Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec ’21), June 28–July 2, 2021, Abu Dhabi, United Arab Emirates.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3448300.3468287

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8349-3/21/06. . . $15.00
https://doi.org/10.1145/3448300.3468287

1 INTRODUCTION
Authentication is a critical security mechanism in many applica-
tions today. The most common forms of authentication are pass-
words, potentially used in combination with a second factor such
as a hardware token or mobile app (i.e., two-factor authentication).
These approaches, however, emphasize a one-time, initial authenti-
cation. After initial authentication, authenticated entities typically
remain authenticated until an explicit deauthentication action is
taken, or the authenticated session expires. Unfortunately, explicit
deauthentication happens rarely, if ever.

Recent work [38, 51] has explored how to provide passive, con-
tinuous authentication and/or automatic deauthentication by cor-
relating user movements and inputs with actions observed in an
application (e.g., a web browser). This issue, however, goes beyond
user authentication. Consider devices that pair via Bluetooth, for
example, which commonly follow the pattern of pair once, trust
indefinitely. After two devices connect, those devices are “bonded"
together until a user explicitly removes the bond. Thus, this bond
is likely to remain intact as long as the devices exist, or until they
transfer ownership (e.g., are sold or lost).

Indefinitely trusting devices has become increasingly problem-
atic in light of the increased adoption of IoT devices coupled with
incessant reports of the inadequacy of their security [19, 43]. The
reality of ubiquitous connectivity and frequent mobility gives rise
to a myriad of opportunities for devices to be compromised. Thus,
we argue that one-time, single-factor, device-to-device authenti-
cation (i.e., an initial pairing) is not enough, and that there must
exist some mechanism to frequently (re-)verify the authenticity of
devices and their connections.

In this paper we propose a device-to-device recurring authenti-
cation scheme – Verification of Interaction Authenticity (VIA) – that
is based on evaluating characteristics of the communications (in-
teractions) between devices. In the context of IoT and WPANs, VIA
interposes on the communication channels between devices and
their corresponding companion application. VIA extracts features
from these interactions and compares them to an appropriate verifi-
cation model to verify whether ongoing interactions are consistent
with this known model. The devices are permitted to interact so
long as the interactions remain consistent with previously-learned
models that represent typical, authentic interactions.

192

https://doi.org/10.1145/3448300.3468287
https://doi.org/10.1145/3448300.3468287
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Peters et al.

To demonstrate the efficacy of VIA, our work primarily aims to
address the following research question: Can we reliably verify
whether a device’s behavior is consistent with a previously-learned,
authentic behavioral model? Here, we postulate that a device’s in-
teractions serve as a useful measure of the device’s behavior. VIA
relies on this notion of behavior and verifies that a device’s behavior
is consistent with known, authentic behavior over time.

Unlike traditional verification, it may be acceptable to consider
a less rigid, but still meaningful definition. For example, a user that
has a blood-pressure device may really only care if a blood-pressure
monitor device is "hooked up" to the measurement app, and is
operating in a way that is consistent with how a blood-pressure
monitor should operate. Presumably, so long as as these properties
hold, there is no immediate or obvious threat. If, however, a device
connects as a blood-pressure monitor and then goes on to interact
in a way that is inconsistent with typical interactions for this type
of device, then there may be cause for concern. To this end, we
examine various interpretations of verification with the end goal
of realizing a more active form of security that can detect whether
a device is no longer operating in a way that is consistent with
expected behavior.

We see VIA’s recurring verification of interaction patterns as a
sort of second factor for authenticating the device. (The first factor
being the presentation of typical identifiers and credentials, such as
a BD_ADDR and session key derived from a long-term key; the second
factor being an ongoing profile of its interactions validated against
a previously learned model suitable for conducting verification.)
As a result of this scheme, we introduce the notion of recurring
behavioral authentication for Bluetooth connections, which can be
integrated into a Bluetooth gateway device, such as a smartphone.
Contributions: We make the following contributions:
• A New Bluetooth Smart-Home and Smart-Health Dataset:
We collected and present a new, first-of-its-kind dataset, which
captures Bluetooth traces for app-device interactions between
more than 20 smart-health and smart-home devices. (According
to a recent survey [1] there are no such Bluetooth datasets; we
found none despite an extensive search.) We share the dataset
open-source [44].

• Extensions to Open-Source Bluetooth Software: We enhance
open-source Bluetooth analysis software [46, 47] to improve the
available tools for practical exploration of the Bluetooth protocol
and Bluetooth-based apps.

• Adaptations of Traffic Modeling Techniques: We present a
novel modeling technique (hierarchical segmentation) for charac-
terizing and verifying authentic BLE app-device interactions.

• Implementation & Evaluation: We implemented the VIA de-
sign and technique and evaluate our approach against a test
corpus of 20 smart-home and smart-health devices. Our results
show that VIA can be used for verification using off-the-shelf
machine-learning classifiers with an F1-score of 0.86 or better in
most test cases.

2 BACKGROUND & RELATED WORK
Commodity smart-home and smart-health devices are generally
closed systems; they generally cannot be extended with apps or ser-
vices from third-party developers. As a result, typical solutions for

Controller

Apps

Host Software

App1

Profiles

L2CAP (Link Control Protocol)

HCI (Host Controller Interface)

Bluetooth Baseband & Radio

App2 AppN…

Figure 1: A simplified view of the Bluetooth stack.

protecting systems, such as installing third-party security software
(e.g., antivirus software, security agents), are not applicable. In fact,
in some cases – such as in FDA-approved medical devices – altering
the software might invalidate the certification! This limitation –
the inability to modify peripheral devices – has generated a lot
of interest and work in non-invasive approaches to measuring the
state of devices, and using the measurement results to determine
whether devices are authentic. The detection of non-authentic de-
vices through some form of measurements may be an indication of
the presence of threats to apps, nearby devices, or the network itself.
By detecting such threats, there is an opportunity to take action to
secure these devices and networks. In the remainder of this section
we review necessary background information and related work that
helps to further motivate our methodology and contributions.

2.1 Bluetooth
A typical deployment of Bluetooth consists of a Host and one or
more Controllers (Figure 1). The Host Controller Interface (HCI) is
an interface between the Host and Controllers. A Host is a logical
entity made up of all the layers between Bluetooth’s core profiles
(i.e., Bluetooth apps and services) and the HCI. A Controller is
a logical entity made up of all of the layers below the HCI, and
enables the client to communicate with other Bluetooth devices.

Within the context of a shared, physical radio channel in Blue-
tooth, there is a complex layering of links and channels and as-
sociated control protocols that enables coordination amongst the
devices as well as data to be transferred between devices [13, Vol-
ume 1, Part A]. Worthy of note are L2CAP channels, which provide
a channel abstraction to apps and services, and are the primary
means by which data is transported in Bluetooth Classic and BLE.

The hierarchy of links and channels within Bluetooth’s architec-
ture are arranged similarly in Bluetooth Classic and BLE. Therefore,
we make references throughout this text to Bluetooth, with the
understanding that it applies to both Bluetooth Classic and BLE.

2.2 Authentication
The overarching objective of our work (the verification of authentic
interactions within WPANs) is largely motivated by past work in
authentication [8, 12, 18, 22, 27, 31, 36–38, 40–42]. Authentication
is a process to verify (i.e., establish the truth of) an attribute value
claimed by or for a system entity [50]. In computer systems and
networks, authentication is used to verify that a person (or an-
other system) is in fact who or what it claims to be. This relates
to our work in that VIA attempts to verify that apps and devices

193

Recurring Verification of Interaction Authenticity Within Bluetooth Networks WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

interact in a way that is consistent with what they claim to be.
Generally speaking, authentication can be achieved in one of two
ways: identification or verification. Here, we focus on verification.

A system that performs verification either accepts or rejects an
entity after examining some information about the entity’s claimed
identity. In this way, the task of verification is a one-to-onematching
problem; i.e., the output of verification is binary: accept or reject.
To perform verification: First, the system collects or obtains an
identity and model for a particular entity, and stores it. Later, when
an entity presents itself to the system and asserts its identity, it is
the system’s responsibility to verify that the presented information
matches the model for that identity.

2.3 Intrusion Detection Systems (IDS)
Wireless traffic analysis systems and Intrusion Detection Systems
have a long and rich history [2, 4, 6, 11, 12, 16, 23, 25, 26, 29, 33,
35, 39, 48, 55, 58]. Generally speaking, wireless traffic analysis sys-
tems and Intrusion Detection Systems (IDS) continually monitor
computers or networks, collecting data (e.g., system calls, network
communication), extracting quantifiable features from this data,
and applying a variety of techniques to analyze the data in search
of signs of anomalies or compromise.

With respect to IDSs, there are traditionally two broad categories
of IDSwith respect towhere they are located: Host-based IDS (HIDS)
and Network-based IDS (NIDS) [23]. HIDS are generally software
located on the system being monitored, and typically monitor only
that system. NIDS are often physically separate devices located
somewhere “upstream” in the network of the system(s) being mon-
itored. Furthermore, there are also two broad categories of IDS
with respect to how intrusions are detected [53]: “systems relying
on misuse-detection monitor activity with precise descriptions of
known malicious behavior, while anomaly-detection systems have
a notion of normal activity and flag deviations from that profile.”

We opt for the NIDS approach and explore techniques commonly
used to realize anomaly-based detectors. NIDS are advantageous
in the context of our work because their presence is generally
transparent to the systems being monitored, which means we could
deploy a NIDS within a smartphone or other hub device to monitor
interactions between apps and peripheral devices without needing
to modify the apps or peripheral devices in any way. (This assumes
that peripheral network traffic is routed through a network device –
such as a smartphone or other hub device – where the NIDS is
deployed, or that the NIDS has access to all network traffic, e.g., by
sniffing an area of interest. This is reasonable in Bluetooth-based
networks.) An anomaly-detection approach is advantageous in the
context of our work because of the simplicity of peripheral devices,
which generally serve a well-defined purpose and perform well-
defined and often repetitive tasks (i.e., low variability).

2.3.1 Bluetooth & IDS. Few works have explored deploying an
IDS within Bluetooth networks. The most closely-related work pro-
posed a Mutli-Level Bluetooth IDS (ML-BIDS) [49] that envisions
deploying a “whitelist” security mechanism coupled with an anom-
aly detection-based NIDS within a device such as a smartphone.
Our work differs fromML-BIDS in a few significant ways: ML-BIDS
is based on protocol state transition diagrams measured through
the HCI protocol; VIA extracts features from packet headers and

payloads, isolating anomalous observations in the application layer
data and commands. There are also a number of differences in
terms of system design: ML-BIDS is based on a “whitelisting” mech-
anism that relies on information specified by untrusted devices,
and requires an administrator to actively manage security-critical
information (e.g., a categorization of device criticality and data im-
portance), and is dependent on a Master Whitelist Server (MWS).
The design of VIA is more flexible and does not require active man-
agement by administrators, making it suitable for ad hoc networks
common in smart-health and smart-home settings. Last, the evalu-
ation of ML-BIDS is based on three devices (a single piconet made
up of two devices plus an emulated attacker) and two old attacks
(Bluesnarfing and power draining attacks), at least one of which
(Bluesnarfing) was patched years ago. We evaluated VIA using
a testbed of 20 modern smart-health and smart-home Bluetooth
devices.

2.4 Malware Detection
We obtained invaluable insights from past work about side-channel
analysis as an approach to detect malware [9, 10, 14, 17, 21, 30,
52, 54, 57]. Namely, in an IoT context where devices perform well-
defined, repetitive tasks that should exhibit little variation from
one run to another, measurements of network communications
between apps and nearby devices may serve as a good proxy for
computing activity (i.e., behavior). Using widely-accepted methods
from machine learning, it may be possible to accurately model the
well-defined (and often repetitive) network communications that
occur in WPANs, such as Bluetooth networks. Assuming useful
features can be extracted from the communications, it may be pos-
sible for a classifier to accurately detect a divergence from models
for authentic communication, which may be indicative of a device
whose firmware has changed, or of the presence of an inauthen-
tic device masquerading as a legitimate device. Indeed, evidence
suggests that a device infected with common types of malware will
produce abnormal network activity (downloading files, creating
new channels, opening ports, probing the mobile device, etc.) [17].

3 SYSTEM, NETWORK, & SECURITY MODEL
In this section we describe the context and scope of our work (Fig-
ure 2). For clarity, we highlight where VIA interposes on network
communications, and we depict potentially untrusted components
(red) within the hub and peripheral devices.

3.1 System & Network Model
Our work explores the viability of deploying anomaly-detection and
intrusion-detection techniques within a hub device at the center of
a WPAN. In this paper we consider WPANs that consist of multiple
peripheral devices that connect with a central hub device. Hub
devices in WPANs are often mobile devices (e.g., smartphones) but
need not be mobile; rather, the role of this device is a system that
runs end-user apps and serves as a gateway for other devices to
access the Internet. In fact, this central gateway device might be
a popular home “hub” device, such as Amazon Echo [3], Apple
HomePod [5], or Google Home [24]; or a dedicated health hub
device, such as the HealthGo Mini [20].

194

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Peters et al.

KERNEL

CPU

Host App Host App Host App

Memory Radio

O
S

A
p
p
s

H
W
/
F
W

Embedded OS

MIDDLEWARE

MCU

Embedded App(s)

MEMORYRADIO

MIDDLEWARE

Hub Peripheral

Middleware

App App App

Embedded OS

Middleware

MCU

Embedded App(s)

MemoryRadioKernel
Verification of Interaction Authenticity

Figure 2: Overview of theVIA threatmodel and our solution.

IoT devices rely on the hub device to access the Internet (to
upload data to services, or to interact with other IoT devices, for
example) and to interact with the user (by presenting data to the
owner/operator of the hub device). The hub devices rely on IoT
devices as a means to collect data (health data from a worn device,
for example) and to act on the environment (administer medication
via an implanted insulin pump, for example).

3.2 Assumptions & Trust Model
We assume that any personal hub and IoT devices – when initially
deployed – are deployed in a secure environment without any
malware. Many IoT devices are deployed in, and generally exist
in, an isolated, non-public environment (such as a home), which
offers reasonable protection from physical threats; network-based
threats may still be an issue, however (see below). Similar to past
work (e.g., [32]), we assume VIA will be deployed within a trusted
execution environment (TEE) such as SGX [28] or TrustZone [7],
which ensures that VIA can reliably operate even if other system
components (even the OS) are compromised.

We assume that IoT devices do not support the addition of third-
party security mechanisms, such as antivirus, anti-malware, or any
other security-related software agents. Furthermore, IoT devices
have limited resources, such as energy, processing power, and mem-
ory. Hub devices are generally less constrained in terms of these
resources, but any software deployed on a hub device should still be
conscious of its impact on energy consumption, memory footprint,
network usage, and so forth.

3.3 Threats & Adversary Model
The ultimate goal of the adversary is to compromise IoT and hub de-
vices to steal sensitive data (e.g., personally identifiable information
(PII), medical information, credentials), commandeer resources (e.g.,
device’s computing resources), tamper with data (e.g., inject false
data into apps), and to propagate itself (i.e., to leverage the compro-
mised devices to carry out attacks against other devices). To clarify
our threat model further, we describe two types of threats that our
work specifically aims to address: inbound threats (peripheral-to-
hub) and outbound threats (hub-to-peripheral).

3.3.1 Inbound Threats. Consider a malicious device that comes
into close proximity (i.e., within Bluetooth’s wireless radio range) of
a target hub device. Here, a malicious device may be a cloned device,
which is an attacker-controlled device that has cloned the identifiers
of another device (e.g., MAC address, UUID(s), device name) with

the objective of establishing a connection with the target hub device
in an attempt to attack it. Or it may be a compromised device, which
is a legitimate user-owned device that has been compromised by
the attacker, and is now under the attacker’s control. The objective
of the attacker here may be to use this device to attack the target
hub device or apps that run on the hub device.

3.3.2 Outbound Threats. Consider a malicious app present on the
victim’s hub device, which has the ability to access the Bluetooth in-
terface. For example, on Android, this is as simple as an app having
the Bluetooth and Bluetooth_ADMIN permission — two permis-
sions that are claimed by almost all Bluetooth-capable apps [42].
Such a malicious app may, for example, use its access to the Blue-
tooth interface to attack nearby devices.

3.3.3 Scope & Limitations. As others have done (e.g., [17]), we
focus our attention on garden-variety threats (e.g., generic malware
that targets a vulnerability present in a large class of devices),
which are a clear and present danger to hub and IoT devices. We
acknowledge that an adversary with detailed knowledge of any
defense mechanisms could in theory design an attack to specifically
thwart or evade that defense mechanism.

It is important to note that VIA seeks to identify abnormal be-
havior by monitoring network communications. Because our work
concentrates on behavioral features, our system will likely have a
hard time detecting any difference between two devices that behave
in similar ways, but run on physically different devices/hardware.
For example, consider a model that accurately characterizes a heart-
rate monitor used in remote patient care. Now consider an imposter
heart-rate monitor device under the control of an attacker that “be-
haves correctly” (e.g., reports heart-rate values in a reasonable
range) but is intentionally sending high heart-rate values (perhaps
to convey a high resting heart rate to a medical record system,
which may result in higher insurance costs due to high-risk health
indicators). This imposter is in scope for our work, but we admit
that we may not detect this sort of “attack” since the device is be-
having within its normal profile. Thus, regardless of the underlying
device/hardware – which may need to be verified by other means,
such as platform attestation (e.g., [8]) – we only propose to identify
authentic behavior vs. non-authentic behavior based on features
related to communication between the devices. We are, however,
currently unaware of realistic threats that operate in this way, and
we suspect that attacks like the one described above are rare (or
even nonexistent). We leave this issue to future work.

4 VERIFYING THE AUTHENTICITY OF
INTERACTIONS IN WPANS

In this section we present Verification of Interaction Authenticity
(VIA), our approach to verifying trustworthy interactions (network
communications) between devices within WPANs (Figure 3). We
focus on the task of verification (Section 4.1) to introduce a new
recurring authentication mechanism for ensuring that apps and
devices continue to interact in a way that is consistent with prior
observations (and is, with reasonable confidence, authentic and
therefore trustworthy). To extract features from the network com-
munications, we use a combination of n-grams (Section 4.2) and

195

Recurring Verification of Interaction Authenticity Within Bluetooth Networks WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Extract
Features

Fetch
Verification
Model(s)

VerifyParsing &
Segmentation Authentic?

Learn
Verification
Model(s)

Raw
BT/BLE
Packets1

3

4
52

VIA Pipeline

Figure 3: Overview of the VIA pipeline: (1) Establish connec-
tion between devices. (2) Observe peer device identity claim
(e.g., BD_ADDR and LTK) at the time the connection is estab-
lished. (3) Load the appropriate verificationmodel. (4) Moni-
tor/verify app-device interactions. (5) Depending on the ver-
ification result: if the interaction is deemed ‘authentic’, al-
low interaction to continue and repeat verification; other-
wise, take action, such as alert user or disconnect.

our new methodology for model separation, hierarchical segmenta-
tion (Section 4.3). Deviation from authentic interactions will result
in failed verification, enabling devices to take action and mitigate
future threats and damage.

4.1 Verification
Authentication by way of verification (recall Section 2.2) requires
two important steps: registration and the actual verification.

4.1.1 Registration. To accomplish verification, VIA first obtains
many samples from a population of devices and learns a specific
classifier for each device. With regards to Bluetooth, each device
has an identity in the form of a BD_ADDR (though other forms of
identity are possible, such as LTK), as well as a set of typical net-
work interactions, which makes it possible to train a classifier that
recognizes that device. While other strategies are possible, and
other features may provide useful information (e.g., protocol state
transitions [49]), in our work network interactions are currently
represented with n-grams constructed from the contents of packet
headers and payloads. Without loss of generality, we refer to some
representation of typical network interactions as a device profile.

4.1.2 Verification Procedure. VIA monitors all network commu-
nications. When devices connect, VIA obtains a claimed-identity
for the app-device interactions, and uses the identity to load the
corresponding classifier obtained from registration (the verification
profile). VIA then formulates a profile based on all newly-observed
traffic (the test profile), and uses the classifier to conduct the verifi-
cation that determines whether the test profile is sufficiently similar
to the verification profile. In the end, VIA’s verification procedure
relies on the classifier to classify new observations into one of
two classes: the target class or the other class. If the interactions
are actually from a device that matches the identity of the target
identity, the interactions should be classified to the target class,
and VIA accepts the observations as being authentic. If, however,
the observations are classified to the other class, VIA rejects the
observations and and deems them to be inauthentic.

4.2 Network Traffic Modeling & Analysis
Our network traffic models are based on the contents of Blue-
tooth packet headers and/or payloads (Figure 7). This approach

assumes that relevant packet contents are accessible to VIA – i.e.,
non-encrypted. Past work in Bluetooth (e.g., [45]) suggests that this
is commonplace, and our results confirm this. Attacks commonly
try to exploit vulnerabilities in services or apps by delivering mali-
ciously crafted payloads; or, in the case of packet headers, attacks
may try to exploit vulnerabilities in how the headers are parsed and
interpreted. By modeling aspects of normal packets, it is possible
to detect deviations in packet content that may indicate an attack.

Tomodel network traffic in IP-based networks, past systems have
successfully used n-grams (e.g., PAYL [55], PCkAD [4]). To describe
data in terms of n-grams, we adopt the definition presented by
Wressnegger et al. [56] and summarize it below. Each data object x
first needs to be represented as a string of symbols from an alphabet,
A, where A is often defined as bytes or tokens. For example, in
modeling network packets, we simply consider a packet (or part
of a packet, such as the packet headers or the packet payload)
as a string of bytes. By moving a window of n symbols over the
string of bytes in each packet x , we can then extract all substrings
of length n. These substrings (n-grams) give rise to a map to a
high-dimensional vector space, where each dimension is associated
with the occurrences of one n-gram. Formally, this map ϕ can be
constructed using the set S of all possible n-grams as,

ϕ : x → (ϕs (x))s ∈S with ϕs (x) = occ(s, x)

where the function occ(s , x) simply returns the frequencies, the
probability, or a binary flag for the occurrences of the n-gram s in
the data object x .

Past work has shown that even for small n (e.g., n = 1), n-grams
can be an extremely effective in modeling traffic patterns in a man-
ner that is efficient, accurate, and resilient to mimicry attacks [55].
(In a mimicry attack, the attacker (1) takes control of a network
device, and (2) successfully delivers a payload while mimicking
normal behavior. Thus, if an exploit sequence is contained in the
normal profile, the attack will go undetected.) Attempts to improve
upon simple 1-gram models have shown only slight improvements.
For instance, past work has shown that slightly higher detection
rates, and slightly lower false-positive rates can be achieved [4],
but these improvements come at the expense of increased com-
putational complexity, or the use of additional preprocessing that
imposes domain knowledge. Furthermore, Angiulli et al. suggest
that there is an inherent trade-off: greater values of n lead to higher
false-positive rates, whereas 1-gram models have been shown to
have lower detection rates (but not by much).

4.3 Hierarchical Segmentation
A single model trying to characterize all packets has been shown
to lead to an ineffective, monolithic model [55]. Therefore, it is
necessary to learn a variety of models that separate traffic into
different groups, where similar types of traffic can be associated
and compared. Past work analyzing IP traffic (e.g., [55]) learns
separate models using a combination of destination port, packet
payload length, and packet direction (inbound or outbound).1 Thus,
if there were 5 ports and 10 different payload lengths for each port,

1PAYL and related systems also describe solutions to common edge cases that can
be problematic; e.g., they describe approaches to merge models when training data is
sparse.

196

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Peters et al.

L2CAP

EVT

CMD

SCO
HCI

LEN

OGF

LEN

SCH
ACL LEN

DIR

ATT
LEN

DIR

SMP
LEN

DIR

Figure 4: Hierarchical segmentation of the Bluetooth proto-
col stack for VIA models.

their approach would learn 50 separate models for inbound traffic
and 50 separate models for outbound traffic.

This approach is problematic for Bluetooth-based WPANs. For
instance, some of the conventional notions (e.g., ports) are not di-
rectly applicable. We observe, however, that model separation based
on ports is effectively meant to separate models based on the un-
derlying protocol and semantics of interactions within the context
of a specific protocol. Therefore, to capture specific semantics of
underlying protocols in Bluetooth, we introduce our approach to
model separation based on hierarchical segmentation of the various
Bluetooth protocol layers (Figure 4). Note that, as we traverse the
hierarchy illustrated in Figure 4 from left to right, we move “up the
stack” in Bluetooth. The root of the hierarchy corresponds to the
HCI layer – the lowest layer of the Bluetooth protocol in which we
can reliably capture Bluetooth network traffic.

The HCI protocol is made up of four different types of packets:
command packets (CMD), which contain directives or requests from
Host software; event packets (EVT), which contain responses to
CMD requests or notifications of network events (e.g., connection
requests); asynchronous data packets (ACL), which are used for
higher layers in the Bluetooth protocol to exchange data; and syn-
chronous data packets (SCO), which are primarily used for stream-
ing data, such as audio. In our testbed of more than 20 smart-health
and smart-home devices, not one of those devices ever exchanged
SCO packets. Thus, VIA models currently only make use of CMD,
EVT, and ACL packets.2

2Our approach to modeling should be applicable to SCO packets as well, but
we have not had an opportunity to study SCO traffic to date. Although devices with
microphones or speakers may use SCO, neither were included in any of our devices.
Each of the HCI packet types have substantially different characteristics in terms

of directionality and packet length, as depicted in Figure 6. Generally speaking, HCI
packets can flow in one of two directions. Packets that flow along the entry path into
the hub are referred to as ingress packets (i.e., device-to-host or d2h), and packets that
flow along the exit path from the hub are referred to as egress packets (i.e., host-to-
device or h2d). CMD packets are unidirectional and flow exclusively from the Host
to the Controller (h2d); the lengths of these packets are generally quite small, likely
because the HCI protocol defines a a limited set of valid commands, most with few
parameters. EVT packets flow exclusively from the Controller to the Host (d2h); the
lengths of these packets are highly variable. ACL packets are bi-directional and can
flow in either direction (h2d or d2h); these packets primarily transport application-
layer data. There tends to be more variability in ingress ACL packets. These differences
between CMD, EVT, and ACL packets are meaningful features for separation among
VIA models.

ACL packets transport L2CAP packets, which provides the reli-
able transport layer for Bluetooth apps and their data (recall Sec-
tion 2.1). Above the L2CAP layer, we identify three critical protocols
that can be used for further model separation: the Attribute Protocol
(ATT), the Signaling Protocol (SCH), and the Security Management
Protocol (SMP). It is through these protocols that devices can per-
form authentication, establish connections and logical channels,
and exchange user data.

To summarize, VIA uses several features to learn models: a com-
bination of n-grams, packet type, packet length, and packet direc-
tionality. These features enable VIA to realize models that are highly
effective in verifying whether network traffic is consistent with
previously-learned models.

5 DATA COLLECTION
To evaluate our approach, we assembled a testbed (Figure 5) consist-
ing of 9 different device types, and 20 devices in total (see Table 1
and Table 2). From this testbed, we produced a new dataset of more
than 300 Bluetooth network traces. In this section we discuss the
details of the testbed and how we produced our dataset.

5.1 A New Smart-Device Testbed
Our testbed (Figure 5) is currently concentrated around two broad
categories of smart devices that are common in consumer WPANs:
smart-health devices and smart-home devices. We carefully se-
lected devices to ensure that our testbed was composed of a diverse
range of devices in terms of their functions; yet, we also wanted
to evaluate potential limitations of our approach in modeling, and
differentiating among, similar devices.

Throughout the remainder of the paper, we describe devices by
their type, which refers to a device’s functionality and purpose;
make, which refers to the manufacturer of the device; and model,
which refers to an identifier, such as a name or number, that is used
to distinguish among devices made by the same manufacturer. A
summary of the devices in our testbed is presented in Table 1 along
with a summary of the relevant apps in Table 2.

Table 1: A Bluetooth-enabled smart-device testbed.

Identifier Device Model

Smart Health
BP Monitor iHealth [wrist] (1) iHealth View Bluetooth Wrist Blood Pressure Monitor
BP Monitor iHealth [upperarm] (1) iHealth Feel Bluetooth Upper Arm Blood Pressure Monitor
BP Monitor Omron [wrist] (1) OMRON 10 Series Wireless Wrist Blood Pressure Monitor
BP Monitor Omron [upperarm] (1) OMRON Evolv Wireless Upper Arm Blood Pressure Monitor
BP Monitor Choice [upperarm] (1) Choice Wireless Blood Pressure Monitor, Upper Arm
Glucosemonitor iHealth [na] (1) iHealth Wireless Smart Blood Sugar Test Kit
Glucosemonitor Choice [na] (1) Choice Wireless Blood Glucose Monitor
HR Monitor PolarH7 [chest] (1) Polar H7 Wearable Heart Rate Monitor (Chest)
HR Monitor PolarH7 [chest] (2) Polar H7 Wearable Heart Rate Monitor (Chest)
HR Monitor Zephyr [chest] (1) Zephyr Wearable Heart Rate Monitor (Chest)
Pulse Oximeter iHealth [finger] (1) iHealth Air Wireless Fingertip Pulse Oximeter
Scale Gurus [floor] (1) Bluetooth Smart Body Fat Scale by Weight Gurus
Scale Renpho [floor] (1) RENPHO Smart Bluetooth Body Fat Scale
TENS Unit Omron [na] (1) OMRON Avail Dual Channel TENS unit
Thermometer Kinsa [ear] (1) KINSA Smart Ear (in-ear smart thermometer)
Thermometer Kinsa [oral] (1) KINSA QuickCare (oral smart thermometer)

Smart Home
Env Sensor Inkbird [na] (1) Inkbird combo mini Bluetooth (temp/hum) sensor
Env Sensor Inkbird [na] (2) Inkbird combo mini Bluetooth (temp/hum) sensor
Smart Lock August [door] (1) August Smart Lock Pro + Connect (3rd Gen.)
Smart Lock Schlage [door] (1) Schlage Sense Smart Deadbolt

Format: Device & Manufacturer [Location] (Device ID)

197

Recurring Verification of Interaction Authenticity Within Bluetooth Networks WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Table 2: List of smart-device companion apps.

App Corresponding Device(s)

Smart Health
RENPHO RENPHO scale
Weight Gurus Weight Gurus scale
iHealth MyVitals iHealth blood-pressure monitors, pulse oximeter
OMRON Connect OMRON blood-pressure monitors
Choice Blood Pressure Choice blood-pressure monitor
Polar Beat Polar and Zephyr heart-rate monitors
OMRON TENS OMRON TENS unit
iHealth Gluco-Smart iHealth blood-glucose meter
AgaMatrix Diabetes Manager Choice blood-glucose meter
Kinsa Kinsa oral and ear thermometers

Smart Home
Schlage Home Schlage smart deadbolt
August Home August smart lock
Engbird Environment sensors

5.2 Capturing HCI Traces
Our dataset consists of a collection of Bluetooth HCI network traces
that capture interactions between 20 distinct devices with 13 dif-
ferent smartphone apps. Here, a trace refers to a packet capture
consisting of all packets that are observed between the time that a
hub and peripheral device establish and terminate a connection.

The above-mentioned smartphone apps were installed on a
Nexus 5 smartphone running Android 6.0.1 (“Marshmallow”), API
level 23, kernel version 3.4.0. Along with executing the apps, the
smartphone also served as our primary device for data collection.
To capture HCI traces, we enabled the Bluetooth HCI snoop log
developer option. (This feature is a common developer option in-
troduced in Android 4.4. It is interesting to note that using this
feature does not even require rooting the phone.) The HCI snoop
log captures all Bluetooth HCI packets to a binary-encoded file,
which it writes to an SD card; the log format resembles the Snoop
Version 2 Packet Capture File Format described in RFC 1761 [15].

Each trace captured interactions between one app-device pair.
Specifically, each trace captured all communications observed at
the HCI layer (and therefore all protocol layers above the HCI layer).
For each app-device pair we collected at least 10 traces, each of
which included 3-10 minutes of network activity.

5.3 Emulating Normal App-Device Interactions
We gathered HCI traces by manually using the apps and devices
in our testbed to emulate a wide variety of normal app-device in-
teractions. The actions we performed consisted of: navigating the
“official” smartphone app3 and exercising features that trigger net-
work communication with a corresponding device, as well as acting
upon the devices in such a way that triggers communication with
its corresponding smartphone app. This usage generated traffic that
was observable at the HCI layer, including traffic related to connec-
tion/disconnection events and application-layer data exchanges via
the L2CAP and ATT protocols. In general, by concentrating primar-
ily on the HCI→ACL branch of hierarchical segmentation (Figure 4),

3With the exception of the heart-rate monitors, each device had a single “official”
smartphone app to which it would connect. Thus, we assume each device has a
single official application and intends to communicate with that application only. An
application, however, may communicatewith one ormore devices. For example, iHealth
Labs developed a single application for its users (iHealth MyVitals) that interacts with
all iHealth devices; in this case there is a 1:many app-device relational mapping.

and specifically the L2CAP layer and above, our solution primarily
captures typical device behavior mixed with user-dependent data.

It was not our intention to discover and exercise every func-
tional feature (and thus every BLE service or characteristic) of a
particular app/device. Rather, it was our intention to observe typical
features and interactions between devices and their official app,
which could be used to construct normality models suitable for
performing verification in future interactions. Our current stance
is that any network activity (authentic or inauthentic, benign or
harmful) that deviates significantly from our normality models
should fail verification, which provides an opportunity for further
investigation or some other response. Enhancing the dataset with
data from more apps/devices, and more exhaustive usage, is an area
of future work.

5.4 Data Pre-processing
Prior to analysis we applied pre-processing to each raw trace file.
Data pre-processing is necessary to generate an intermediate file
with per-packet features and labels. More specifically, after col-
lecting each HCI trace (an HCI snoop file), we moved the raw file
from the smartphone to a local VM (running Linux, kernel version
4.14.) using the Android Debugger command line tool (adb). During
data collection, we reset the HCI snoop file on the smartphone
between each trace so that each HCI snoop file contained only
packets belonging to interactions between a particular app-device
combination; we refer to this as an app-device session.

To parse HCI traces, we extended two open-source projects:
bluepy [46] and btsnoop [47]. Our extensions extend the parsing
of the HCI protocol and other protocols that the HCI protocol
encapsulates; namely, we extract features for each packet within
the HCI traces, such as packet types, lengths, endpoint identifiers,
protocol semantics, and segmented headers and payloads belonging
to higher-level Bluetooth protocols (e.g., ATT, SCH, SMP); and,
because each trace captured a single app-device session, we labeled
each packet according to the device it was sent to/from. These
features and device labels were written to CSV-formatted files for
subsequent analysis.

6 EVALUATION & RESULTS
This section describes our experiments that use the traces collected
from our smart-device testbed. The primary thrust of our experi-
ments is to show that our approach can produce models capable
of differentiating between sufficiently dissimilar devices, which is
necessary to conduct verification. To this end, we evaluated VIA in
terms of its ability to perform verification tasks at different gran-
ularities of a device’s identify. Specifically, we considered three
granularities: device type, device type and make, and specific de-
vice instance.4 We also conducted experiments to examine various
special cases where verification is less successful. For example,
VIA’s verification performs worse in cases where nearly identical
devices (i.e., devices of the same type, make, and model) exist in
both the target and other classes.

4We do not evaluate the granularity of device type, make, and model (device-type-
make-model) here. While it may seem a natural next step, our testbed did not contain
enough examples to provide a meaningful evaluation at this class granularity.

198

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Peters et al.

6.1 Experimental Procedure
To conduct our experiments we loaded the pre-processed files from
our dataset intom × n matrices, where the rows are the observa-
tions (packets) in the trace, and the columns are the features (e.g.,
packet types, lengths, raw packet bytes) parsed from the raw trace
files. We then segmented each packet according to the hierarchical
segmentation methodology described in Section 4.3, and computed
n-grams over the packet bytes in the respective segments.

One practical issue here is that packets exchanged in Bluetooth
are usually quite small. For example, in Bluetooth version 4.0 and
4.1, the maximum ATT payload is 20 bytes. Thus, we have found
that learning models and conducting verification works best using a
sequence of packets. In our work we chose to use all of the available
bytes/packets in a network trace5 to learn and evaluate our models,
which equates to a few minutes of network activity per trace.

Since there are more than two classes for each granularity we
considered, we followed a one-vs-all strategy to decompose the
problem into a binary classification problem. Namely, we repeat-
edly fixed a single class to be the target class and combine all other
classes into a single other class.6 We then evaluated the verifica-
tion results produced by VIA using the following definitions. A
successful verification is defined as a classification of observations
belonging to the target class into the target class (true positive), or
a classification of observations belonging to the other class into the
other class (true negative). An unsuccessful verification is defined
as a classification of observations belonging to the target class into
the other class (false negative), or a classification of observations
belonging to the other class into the target class (false positive).

To learn and evaluate models, we experimented with various
machine learning classifiers and different “branches” within hierar-
chical segmentation, to classify a sequence of packets into one of
two classes. For brevity we report results using only the Random
Forest classifier, which we found to be a suitable classifier after
comparing its performance to a collection of other classifiers. In
the remainder of this section, we present our experimental results,
which were trained and validated with n-grams computed from the
HCI→ACL→L2CAP→ · · · branch of hierarchical segmentation.

To evaluate the performance of the various classifiers examined
in this work, we conducted a stratified 10-fold cross validation that
repeatedly split our dataset into training and testing subsets. The
classifier was trained with n-grams and class labels from a training
set. We then used the trained models to output a class label for each
sample in a corresponding test set (i.e., the n-grams computed from
a new trace) and compared the output label to the actual label.

5The decision to use all of the bytes in a network trace is appropriate here because
of how we constructed the traces (recall Section 5.2). In short, each trace contains
bytes from a short period of time (3-10 minutes) in which an app-device pair connect,
exchange data, and disconnect. In future work, we will perform an in-depth analysis
to determine an optimal duration that should be used for building a model.

6To date, we have not yet evaluated how VIA performs when presented with an
unknown device (i.e., a device not seen in training). In VIA’s current design, any obser-
vation from an unknown device will be classified to the class it most closely resembles;
ideally this class would be the other class, but since the unknown observation is repre-
sented in neither the target class nor the other class, VIA’s behavior in this scenario is
unknown. One solution to this issue is to implement a confidence threshold before
allowing an observation to be classified into the target class. If the new observation
does not exceed the confidence threshold, VIA would classify the observation into
the other class, meaning that the observation does not look sufficiently similar to the
target class for verification. We plan to add and evaluate this enhancement to VIA’s
verification capabilities in future work.

6.2 Verification Experiments & Results
First, we present specific experimental details and results for con-
ducting verification at varying granularities.

6.2.1 Verification Task #1: Classification by Device Type. In this
experiment we investigated whether VIA can verify that a new
sample belongs to a specific device type (device-type). To evaluate
verification by device type, we re-labeled each trace according to a
one-vs-all strategy (Section 6.1) and conducted a stratified 10-fold
cross-validation using models learned from the re-labeled data. We
repeated this process 9 times to produce results where each device
type was fixed as the target class. The results for each of the 9
device-type classes are summarized in Table 3. In the device-type
verification tasks, VIA achieved an F1-score of 0.90 or better in all
device-type classes.

Table 3: The precision, recall, and F1-score for one-vs-all ver-
ification by device type (device-type).

Device Type Precision Recall F1-Score

BP Monitor 1.0 0.96 0.98
Env Sensor 1.0 0.81 0.90
Glucosemonitor 1.0 0.96 0.98
HR Monitor 1.0 0.91 0.95
Pulse Oximeter 1.0 1.00 1.00
Scale 1.0 0.90 0.95
Smart Lock 1.0 1.00 1.00
TENS Unit 1.0 0.92 0.96
Thermometer 1.0 0.97 0.98

6.2.2 Verification Task #2: Classification by Device Type and Make.
In this experiment we investigated whether VIA can verify that
a new sample belongs to a specific device type and make (device-
type-make). To evaluate verification by device type and make, we
re-labeled each trace according to a one-vs-all strategy (Section 6.1)
and conducted a stratified 10-fold cross-validation using models
learned from the re-labeled data. We repeated this process 15 times
to produce results where each device type andmake was fixed as the
target class. The results for each of the 15 device-type-make classes
are summarized in Table 4. In the device-type-make verification
tasks, VIA achieved an F1-score of 0.92 or better in nearly all device-
type-make classes. Indeed, the only cases where VIA performed
worse were tasks where VIA had to perform verification when
similar devices (e.g., heart-rate monitors) were in both the target
class and the other class. We discuss this observation in Section 6.2.4.

6.2.3 Verification Task #3: Classification by Device Instance. In this
experiment we investigated whether VIA can verify that a new
sample belongs to a specific device (device-instance). To evaluate
verification by device instance, we re-labeled each trace according
to a one-vs-all strategy (Section 6.1) and conducted a stratified 10-
fold cross-validation using models learned from the re-labeled data.
We repeated this process 20 times to produce results where each
device instance is fixed as the target class. The results for each of the
20 device-instance classes are summarized in Table 5. In the device-
instance verification tasks, VIA achieved an F1-score of 0.86 or better
in nearly all device-instance classes. Again, the only cases where VIA

199

Recurring Verification of Interaction Authenticity Within Bluetooth Networks WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

Table 4: The precision, recall, and F1-score for one-vs-all ver-
ification by device type and make (device-type-make).

Device Group (Type & Make) Precision Recall F1-Score

BP Monitor Choice 1.0 1.00 1.00
BP Monitor iHealth 1.0 0.90 0.95
BP Monitor Omron 1.0 1.00 1.00
Env Sensor Inkbird 1.0 0.94 0.97
Glucosemonitor Choice 1.0 1.00 1.00
Glucosemonitor iHealth 1.0 0.91 0.95
HR Monitor PolarH7 0.9 0.86 0.88
HR Monitor Zephyr 1.0 0.75 0.86
Pulse Oximeter iHealth 1.0 1.00 1.00
Scale Gurus 1.0 0.90 0.95
Scale Renpho 1.0 0.90 0.95
Smart Lock August 0.9 0.95 0.93
Smart Lock Schlage 1.0 0.86 0.92
TENS Unit Omron 1.0 0.92 0.96
Thermometer Kinsa 1.0 0.97 0.98

performed worse were tasks where VIA had to perform verification
when nearly identical devices (e.g., environment sensors) were in
both the target class and the other class.

Table 5: The precision, recall, and F1-score for one-vs-all ver-
ification by device instance (device-instance).

Device Instance Precision Recall F1-Score

BP Monitor Choice [upperarm] (1) 1.00 1.00 1.00
BP Monitor iHealth [upperarm] (1) 1.00 0.92 0.96
BP Monitor iHealth [wrist] (1) 1.00 0.94 0.97
BP Monitor Omron [upperarm] (1) 1.00 1.00 1.00
BP Monitor Omron [wrist] (1) 1.00 1.00 1.00
Env Sensor Inkbird [na] (1) 0.50 0.43 0.46
Env Sensor Inkbird [na] (2) 0.50 0.22 0.31
Glucosemonitor Choice [na] (1) 1.00 1.00 1.00
Glucosemonitor iHealth [na] (1) 1.00 0.91 0.95
HR Monitor PolarH7 [chest] (1) 1.00 0.45 0.62
HR Monitor PolarH7 [chest] (2) 1.00 0.18 0.31
HR Monitor Zephyr [chest] (1) 1.00 0.75 0.86
Pulse Oximeter iHealth [finger] (1) 1.00 1.00 1.00
Scale Gurus [floor] (1) 1.00 0.90 0.95
Scale Renpho [floor] (1) 1.00 0.80 0.89
Smart Lock August [door] (1) 0.91 1.00 0.95
Smart Lock Schlage [door] (1) 1.00 0.86 0.92
TENS Unit Omron [na] (1) 1.00 0.92 0.96
Thermometer Kinsa [ear] (1) 1.00 1.00 1.00
Thermometer Kinsa [oral] (1) 1.00 0.94 0.97

6.2.4 Discussion: Verification at Various Granularities. In our evalu-
ation of VIA’s ability to perform verification tasks, it is important to
understand that the F1-score is lower in the device-type-make evalu-
ation and the device-instance evaluation because similar (sometimes
nearly identical) devices are in both the target and other classes. For
instance, when attempting to verify a Zephyr heart-rate monitor
in the device-type-make evaluation, there are heart-rate monitors
in both the target class (the Zephyr heart-rate monitor) and other

class (the Polar7 heart-rate monitors). As another example, when
attempting to verify an Inkbird environment sensor in the device-
instance evaluation, there is one instance of an environment sensor
in both the target class and other class. These particular observa-
tions are not surprising. The similar devices – and indeed the nearly
identical devices – operate in similar ways, and in some cases even
run the same software, on independent (but otherwise identical)
hardware. It is therefore unsurprising to observe that VIA confused
these devices when performing certain verification tasks.

One could conclude that VIA’s verification is best done at the
granularity of device-type; however, we urge the reader to consider
the consequences of this conclusion. For example, the consequence
of verification at the granularity of device-type is that VIA may
not take into account important distinctive features that arise from
devices with different make, model, or instance. Furthermore, we
would be remiss to not point out that VIA’s perceived success in
performing verification may be exaggerated by the fact that our
testbed contained few devices that shared the same type, make and
model – the cases where VIA is most likely to be confounded.

In light of these observations, we conclude that further analysis
is needed to better understand the strengths and limitations of our
approach, specifically with respect to highly-similar devices.

6.3 Similarity Experiments & Results
In the experiments we discuss next, we examine cases where devices
were highly similar (e.g., same device type, make, model).

6.3.1 Same Type, Different Manufacturer. In this experiment we
examine VIA’s ability to distinguish between devices that are func-
tionally similar (same type), but made by different manufacturers.
We focused on five different blood-pressure monitors from three dif-
ferent manufacturers (Omron, iHealth, and Choice) and conducted
a comparative analysis among these devices only. We trained and
evaluated models for each of the five instances (classes). The results
are summarized in Table 6.

The results show that our approach yields coherent differentia-
tion between the models learned for devices from different man-
ufacturers. It is also evident, however, that there was confusion
between similar devices made by the same manufacturer. For in-
stance, in this experiment, we used two blood-pressure monitors
from iHealth; one takes measurements from the wrist while the
other takes measurements from the upper arm. From the observed
network traffic between the iHealth app and the iHealth blood-
pressure monitors, these devices appeared to be nearly identical.
A similar discussion applies for the Omron wrist and upper arm
devices. This result suggests that VIA will likely have difficulty
distinguishing between devices of the same type, made by the same
manufacturer. This outcome is not unexpected, however. It makes
sense that device makers would use similar hardware and software
(perhaps even the same underlying hardware and software) to build
their various devices. Thus, our takeaway is that VIA is in fact
capable of verifying that traces belonging to similar devices from
the same manufacturer are consistent with a previously learned
model.

We conclude that, even though the devices themselves are sim-
ilar in terms of the function they provide to the end-user (e.g.,

200

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Peters et al.

blood-pressure measurements), VIA can reliably distinguish be-
tween functionally-similar devices that are made by different man-
ufacturers. This strongly suggests that it would be difficult for
adversaries to successfully masquerade themselves as authentic
devices at the same time that they carry out any other nefarious
actions (since even highly similar devices are rarely misclassified).

Table 6: The precision, recall, and F1-score for classification
of blood-pressure monitors.

Blood-Pressure Monitor Instance Precision Recall F1-Score

BP Monitor Choice [upperarm] (1) 1.00 1.00 1.00
BP Monitor iHealth [upperarm] (1) 1.00 0.92 0.96
BP Monitor iHealth [wrist] (1) 0.94 1.00 0.97
BP Monitor Omron [upperarm] (1) 1.00 1.00 1.00
BP Monitor Omron [wrist] (1) 1.00 1.00 1.00

6.3.2 Same Type, Same Manufacturer. In this experiment, we used
two Inkbird environment sensors to investigate VIA’s ability to
distinguish among distinct instances of the same device (i.e., devices
that are identical in their hardware, firmware, and software). We
trained and evaluated models based on each of the two instances
(classes). The results are summarized in Table 7.

The results here reveal that VIA struggled to distinguish between
these highly similar devices. This insight, however, is not surprising,
and in fact, it highlights a benefit of our approach; namely, that a
trusted manufacturer could provide a device profile that can be used
reliably for their devices (i.e., it may not be necessary to produce
different device profiles for different instances of the same device.)
These devices are identical in terms of their software and hardware;
it therefore makes sense that these devices would exhibit similar
communication patterns and packet contents. While this does point
to a potential limitation of VIA’s ability to distinguish between
distinct devices, we argue that this result does not undermine the
value of VIA. Because our objective is to verify the authenticity of
interactions between apps and devices, confusion between profiles
for an app and two devices that appear to function and communicate
in nearly identical ways does not pose an immediately obvious
threat to a WPAN.

Table 7: The precision, recall, and F1-score for classification
of environment sensors.

Environment Sensor Instance Precision Recall F1-Score

Env Sensor Inkbird [na] (1) 0.60 0.43 0.50
Env Sensor Inkbird [na] (2) 0.64 0.78 0.70

7 DISCUSSION
In this section we discuss some of the challenges and opportunities
surrounding real-world deployments of VIA.

7.1 Bootstrapping Initial Verification Models
In practice, a deployment of VIA must address how initial verifica-
tion models are obtained. We envision a combination of two likely

approaches (recall Figure 3). One approach is to learn verification
models on-the-fly. For example, when a new, previously-unseen
peripheral device connects with a hub running VIA, some number
of initial interactions can be used to learn the models for authentic
interactions. After this initial phase, the learned models can be used
for performing verification of subsequent interactions.

Another approach is to obtain verification models from a trusted
source, such as a device manufacturer or software/firmware vendor.
These models could be fetched based on device identifiers that are
exchanged when two devices initiate a connection establishment
procedure. Similar to on-the-fly learning, after the appropriate
model(s) have been retrieved, they can be used for performing
verification of subsequent interactions. We note that this approach
is gaining traction today: for example, MUD [34] is a proposed IETF
standard for formally specifying the expected network behavior of
an IoT device. MUD exploits a similar observation that we do: IoT
devices (generally) perform a limited set of functions, and therefore
have a recognizable communication pattern that can be represented
by a model (referred to as a MUD profile in the context of MUD).

7.2 Response Strategies
Our work thus far focuses on techniques to verify authentic inter-
actions, but an open challenge is how to best respond when verifi-
cation fails. Likely strategies are: “flag” the device and increase the
verification requirements to make them more strict going forward;
discard data that is not from a verified source; alert the user (e.g.,
mobile notification, SMS, email, auto-generated report to technical
auditor); disconnect the app/device connection; and/or temporarily
disable the network interface altogether. To mitigate usability is-
sues that may arise from false positives (i.e., failed verification that
is not due to malicious activity), VIA’s responsive actions could
initially be more lenient and become more aggressive if there is
continued deviation from a verification model over time.

8 CONCLUSION
In this paper we present Verification of Interaction Authenticity
(VIA), a new device-to-device recurring authentication scheme based
on evaluating characteristics of the communications (interactions)
between devices within wireless networks. We specifically evaluate
our approach in the context of Bluetooth networks. We present
a new Bluetooth dataset consisting of more than 300 Bluetooth
network traces, along with an experimental implementation and
evaluation of VIA. We found that devices can be correctly verified
at a variety of granularities, achieving an F1-score of 0.90, 0.92, 0.86
or better in most cases. We also evaluate potential limitations of
our approach, but conclude that many edge cases that we evaluated
do not actually impact the utility of VIA.

ACKNOWLEDGEMENTS
This research results from a research program at the Institute for
Security, Technology, and Society at Dartmouth College, supported
by the National Science Foundation under award number CNS-
1329686 and CNS-1955805. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or
implied, of the sponsors.

201

Recurring Verification of Interaction Authenticity Within Bluetooth Networks WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

REFERENCES
[1] M. Ahmed, A. NaserMahmood, and J. Hu. A survey of network anomaly detection

techniques. Journal of Network and Computer Applications, v.60 pages 19–31,
2016. DOI 10.1016/j.jnca.2015.11.016.

[2] S. Al-Riyami, F. Coenen, and A. Lisitsa. A Re-evaluation of Intrusion Detection
Accuracy: Alternative Evaluation Strategy. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 2195–2197.
ACM Press, 2018. DOI 10.1145/3243734.3278490.

[3] Amazon. Amazon Echo, 2018. Online at https://www.amazon.com/echo/.
[4] F. Angiulli, L. Argento, and A. Furfaro. Exploiting N-gram location for intrusion

detection. Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), v.2016-Janua pages 1093–1098, 2015. DOI 10.1109/ICTAI.
2015.155.

[5] Apple. Apple HomePod, 2018. Online at https://www.apple.com/homepod/.
[6] H. Arai, K. Emura, and T. Hayashi. A Framework of Privacy Preserving Anomaly

Detection. In Proceedings of the Workshop on Privacy in the Electronic Society
(WPES), pages 111–122. ACM Press, 2017. DOI 10.1145/3139550.3139551.

[7] Arm. Arm TrustZone, 2018. Online at https://www.arm.com/products/silicon-
ip-security.

[8] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter, G. Tsudik, and
C. Wachsmann. SEDA: Scalable Embedded Device Attestation. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS),
pages 964–975. ACM Press, 2015. DOI 10.1145/2810103.2813670.

[9] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith. Practicality of Accelerometer
Side Channels on Smartphones. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pages 41–50. ACM, 2012. DOI 10.1145/2420950.
2420957.

[10] D. Balzarotti, M. Cova, and G. Vigna. ClearShot: Eavesdropping on Keyboard
Input from Video. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), pages 170–183, May 2008. DOI 10.1109/SP.2008.28.

[11] D. Bekerman, B. Shapira, L. Rokach, and A. Bar. Unknown Malware Detection
Using Network Traffic Classification. In Proceedings of the IEEE Conference on
Communications and Network Security (CNS), pages 134–142, 2015. Online at
https://cyber.bgu.ac.il/wp-content/uploads/2017/10/07346821.pdf.

[12] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray. Behavioral
Fingerprinting of IoT Devices. In Proceedings of the Workshop on Attacks and
Solutions in Hardware Security (ASHES), pages 41–50. ACM Press, 2018. DOI
10.1145/3266444.3266452.

[13] Bluetooth. Bluetooth Specifications. Online at https://www.bluetooth.com/
specifications.

[14] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and
Embedded Systems (CHES), volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer Berlin Heidelberg, 2004. DOI 10.1007/978-3-540-28632-5_2.

[15] B. Callaghan and R. Gilligan. Snoop Version 2 Packet Capture File Format, 1995.
Online at https://tools.ietf.org/html/rfc1761.

[16] J. Camacho, P. García-Teodoro, and G. Maciá-Fernández. Traffic Monitoring and
Diagnosis with Multivariate Statistical Network Monitoring: A Case Study. In
IEEE Security and Privacy Workshops (SPW), pages 241–246. IEEE, May 2017. DOI
10.1109/SPW.2017.11.

[17] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu, K. Fu, A. Rah-
mati, M. Salajegheh, and D. Holcomb. WattsUpDoc: Power Side Channels to
Nonintrusively Discover Untargeted Malware on Embedded Medical Devices. In
USENIX Workshop on Health Information Technologies, pages 221–236, 2013.

[18] C. Cornelius. Usable Security for Wireless Body-Area Networks. PhD thesis,
Dartmouth College, 2013.

[19] C. Crane. 20 Surprising IoT Statistics You Don’t Already Know, 2019. Online
at https://securityboulevard.com/2019/09/20-surprising-iot-statistics-you-dont-
already-know/.

[20] EDevice. HealthGo Mini, 2018. Online at https://www.edevice.com/products/
healthgo-mini.

[21] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and E. Tromer. Physical Key
Extraction Attacks on PCs. Communications of the ACM, 59(6) pages 70–79, May
2016. DOI 10.1145/2851486.

[22] S. Gisdakis, T. Giannetsos, and P. Papadimitratos. SHIELD: A Data Verification
Framework for Participatory Sensing Systems. In Proceedings of the Conference
on Wireless Security (WiSec), 2015. DOI 10.1145/2766498.2766503.

[23] T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, Qian, Chen, and R. A.
Bridges. A Survey of Intrusion Detection Systems Leveraging Host Data. Com-
puting Research Repository (CoRR), v.abs/1805.0 pages 1–40, 2018. Online at
https://arxiv.org/abs/1805.06070v2.

[24] Google. Google Home, 2018. Online at https://madeby.google.com/home/.
[25] G. Gu, R. Perdisci, J. Zhang, andW. Lee. BotMiner: Clustering Analysis of Network

Traffic for Protocol-and Structure-Independent Botnet Detection. In USENIX
Security, 2008. Online at http://faculty.cs.tamu.edu/guofei/paper/Gu_Security08_
BotMiner.pdf.

[26] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson, and
X. Bellekens. A Taxonomy and Survey of Intrusion Detection System Design
Techniques, Network Threats and Datasets. Computing Research Repository
(CoRR), pages 1–35, 2018. Online at http://arxiv.org/abs/1806.03517.

[27] A. Ibrahim. Securing Embedded Networks through Secure Collective Attestation.
In MobiSys PhD Forum, pages 1–2, 2018.

[28] Intel. Intel Software Guard Extensions (SGX), 2018. Online at https://software.
intel.com/sgx/.

[29] R. A. Kemmerer and G. Vigna. Intrusion Detection: A Brief History and Overview.
Computer: Security & Privacy, 35(4) pages 27–30, 2002. DOI 10.1109/MC.2002.
1012428.

[30] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology — CRYPTO, volume 1109 of Lecture
Notes in Computer Science, chapter 9, pages 104–113. Springer Berlin Heidelberg,
Jul. 1996. DOI 10.1007/3-540-68697-5_9.

[31] K. Kostiainen, E. Reshetova, J.-E. Ekberg, and N. Asokan. Old, New, Borrowed,
Blue – A Perspective on the Evolution of Mobile Platform Security Architectures.
In Proceedings of the ACM Conference on Data and Application Security and Privacy
(CODASPY), pages 13–24. ACM Press, 2011. DOI 10.1145/1943513.1943517.

[32] D. Kuvaiskii, S. Chakrabarti, and M. Vij. Snort Intrusion Detection System with
Intel Software Guard Extension (Intel SGX). In arXiv preprint arXiv:1802.00508,
2018. Online at http://arxiv.org/abs/1802.00508.

[33] A. Lakhina, M. Crovella, and C. Diot. Diagnosing Network-Wide Traffic Anom-
alies. In Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), pages 219–230, 2004.
DOI 10.1145/1030194.1015492.

[34] E. Lear, R. Droms, and D. Romascanu. Manufacturer Usage Description Specifi-
cation, 2019. Online at https://tools.ietf.org/html/rfc8520.

[35] M. V. Mahoney. Network Traffic Anomaly Detection Based on Packet Bytes. In
Proceedings of the ACM Symposium on Applied Computing (SAC), pages 1–5, 2003.
DOI 10.1145/952589.952601.

[36] A. L. Maia Neto, A. L. F. Souza, I. Cunha, M. Nogueira, I. O. Nunes, L. Cotta,
N. Gentille, A. A. F. Loureiro, D. F. Aranha, H. K. Patil, and L. B. Oliveira. AoT:
Authentication and Access Control for the Entire IoT Device Life-Cycle. In
Proceedings of the ACM Conference on Embedded Network Sensor Systems (SenSys),
pages 1–15. ACM, 2016. DOI 10.1145/2994551.2994555.

[37] S. Mare. Seamless Authentication For Ubiquitous Devices. PhD thesis, Dartmouth
College, 2016. Online at http://www.cs.dartmouth.edu/reports/abstracts/TR2016-
793/.

[38] S. Mare, R. Rawassizadeh, R. Peterson, and D. Kotz. Continuous Smartphone
Authentication using Wristbands. In Proceedings of the Workshop on Usable
Security and Privacy (USEC), 2019. DOI 10.14722/usec.2019.23013.

[39] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippen-
hauer, and Y. Elovici. ProfilIoT: A Machine Learning Approach for IoT Device
Identification Based on Network Traffic Analysis. In Proceedings of the Sym-
posium on Applied Computing (SAC), pages 506–509. ACM Press, 2017. DOI
10.1145/3019612.3019878.

[40] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A. R. Sadeghi, and
S. Tarkoma. IoT Sentinel: Automated Device-Type Identification for Security
Enforcement in IoT. In Proceedings of the International Conference on Distributed
Computing Systems (DCS), pages 2511–2514. IEEE, 2017. DOI 10.1109/ICDCS.
2017.284.

[41] A. Mudgerikar, P. Sharma, and E. Bertino. E-Spion: A System-Level Intrusion
Detection System for IoT Devices. In Proceedings of the ACM Asia Conference on
Computer and Communications Security (Asia CCS), pages 493–500. ACM Press,
2019. DOI 10.1145/3321705.3329857.

[42] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter. Inside Job:
Understanding and Mitigating the Threat of External Device Mis-Bonding on
Android. In Proceedings of the Network and Distributed System Security Symposium
(NDSS). Internet Society, Feb. 2014. DOI 10.14722/ndss.2014.23097.

[43] NETSCOUT. DAWN OF THE TERRORBIT ERA. Technical report, Threat Intelli-
gence Report, 2019.

[44] T. Peters. CRAWDAD dataset dartmouth/bluetooth-hci (v. 2021-03-29), Mar. 2021.
Online at https://doi.org/10.15783/tjt0-b278.

[45] T. Peters, R. Lal, S. Varadarajan, P. Pappachan, and D. Kotz. BASTION-SGX:
Bluetooth and Architectural Support for Trusted I/O on SGX. In Proceedings
of the Workshop on Hardware and Architectural Support for Security and Privacy
(HASP), pages 1–9, Jun. 2018. DOI 10.1145/3214292.3214295.

[46] bluepy, 2021. Online at https://github.com/traviswpeters/bluepy.
[47] btsnoop, 2021. Online at https://github.com/traviswpeters/btsnoop.
[48] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Had-

dadi. Information Exposure From Consumer IoT Devices: A Multidimensional,
Network-Informed Measurement Approach. In Proceedings of the Internet
Measurement Conference (IMC), pages 267–279. ACM Press, Oct. 2019. DOI
10.1145/3355369.3355577.

[49] S. Satam, P. Satam, and S. Hariri. Multi-level Bluetooth Intrusion Detection
System. In Proceedings of IEEE/ACS International Conference on Computer Systems
and Applications, AICCSA, volume 2020-November. IEEE Computer Society, Nov.

202

http://dx.doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.1145/3243734.3278490
https://www.amazon.com/echo/
http://dx.doi.org/10.1109/ICTAI.2015.155
http://dx.doi.org/10.1109/ICTAI.2015.155
https://www.apple.com/homepod/
http://dx.doi.org/10.1145/3139550.3139551
https://www.arm.com/products/silicon-ip-security
https://www.arm.com/products/silicon-ip-security
http://dx.doi.org/10.1145/2810103.2813670
http://dx.doi.org/10.1145/2420950.2420957
http://dx.doi.org/10.1145/2420950.2420957
http://dx.doi.org/10.1109/SP.2008.28
https://cyber.bgu.ac.il/wp-content/uploads/2017/10/07346821.pdf
http://dx.doi.org/10.1145/3266444.3266452
https://www.bluetooth.com/specifications
https://www.bluetooth.com/specifications
http://dx.doi.org/10.1007/978-3-540-28632-5_2
https://tools.ietf.org/html/rfc1761
http://dx.doi.org/10.1109/SPW.2017.11
https://securityboulevard.com/2019/09/20-surprising-iot-statistics-you-dont-already-know/
https://securityboulevard.com/2019/09/20-surprising-iot-statistics-you-dont-already-know/
https://www.edevice.com/products/healthgo-mini
https://www.edevice.com/products/healthgo-mini
http://dx.doi.org/10.1145/2851486
http://dx.doi.org/10.1145/2766498.2766503
https://arxiv.org/abs/1805.06070v2
https://madeby.google.com/home/
http://faculty.cs.tamu.edu/guofei/paper/Gu_Security08_BotMiner.pdf
http://faculty.cs.tamu.edu/guofei/paper/Gu_Security08_BotMiner.pdf
http://arxiv.org/abs/1806.03517
https://software.intel.com/sgx/
https://software.intel.com/sgx/
http://dx.doi.org/10.1109/MC.2002.1012428
http://dx.doi.org/10.1109/MC.2002.1012428
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1145/1943513.1943517
http://arxiv.org/abs/1802.00508
http://dx.doi.org/10.1145/1030194.1015492
https://tools.ietf.org/html/rfc8520
http://dx.doi.org/10.1145/952589.952601
http://dx.doi.org/10.1145/2994551.2994555
http://www.cs.dartmouth.edu/reports/abstracts/TR2016-793/
http://www.cs.dartmouth.edu/reports/abstracts/TR2016-793/
http://dx.doi.org/10.14722/usec.2019.23013
http://dx.doi.org/10.1145/3019612.3019878
http://dx.doi.org/10.1109/ICDCS.2017.284
http://dx.doi.org/10.1109/ICDCS.2017.284
http://dx.doi.org/10.1145/3321705.3329857
http://dx.doi.org/10.14722/ndss.2014.23097
https://doi.org/10.15783/tjt0-b278
http://dx.doi.org/10.1145/3214292.3214295
https://github.com/traviswpeters/bluepy
https://github.com/traviswpeters/btsnoop
http://dx.doi.org/10.1145/3355369.3355577

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Peters et al.

2020. DOI 10.1109/AICCSA50499.2020.9316514.
[50] R. W. Shirey. Internet Security Glossary, Version 2. RFC 4949, Aug. 2013. DOI

10.17487/RFC4949.
[51] P. Shrestha and N. Saxena. Hacksaw: Biometric-Free Non-Stop Web Authentica-

tion in an Emerging World of Wearables. In Proceedings of the ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec), pages 13–24,
2020. DOI 10.1145/3395351.3399366.

[52] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha. Beware, Your Hands Reveal
Your Secrets! In Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), pages 904–917. ACM, 2014. DOI 10.1145/2660267.2660360.

[53] R. Sommer and V. Paxson. Outside the ClosedWorld: On Using Machine Learning
for Network Intrusion Detection. In Proceedings of the IEEE Symposium on Security
and Privacy (Oakland), pages 305–316, 2010. DOI 10.1109/SP.2010.25.

[54] J. Wampler, I. Martiny, and E. Wustrow. ExSpectre: Hiding Malware in Specula-
tive Execution. In Proceedings of the Network and Distributed Systems Security
Symposium (NDSS), 2019. DOI 10.14722/ndss.2019.23409.

[55] K. Wang and S. J. Stolfo. Anomalous Payload-Based Network Intrusion Detection.
Springer Berlin Heidelberg, 2004. DOI 10.1007/978-3-540-30143-1_11.

[56] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A Close Look on N-grams
in Intrusion Detection: Anomaly Detection vs. Classification. In Proceedings of
the ACM Workshop on Artificial Intelligence and Security, pages 67–76, 2013. DOI
10.1145/2517312.2517316.

[57] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 640–656, May 2015. DOI 10.1109/SP.2015.45.

[58] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, H. Zhu, and H.-J. Zhu. HoMonit:
Monitoring Smart Home Apps from Encrypted Traffic. In Proceedings of the
Conference on Computer and Communications Security (CCS), 2018. DOI 10.1145/
3243734.3243820.

A TESTBED & DATASET INSIGHTS
Here we present a few detailed insights into our smart device
testbed and the new dataset presented in this paper.

A.1 Testbed Overview
In Figure 5 we include a photo of many of the devices from our
testbed. Our testbed currently consists of 9 different device types,
and 20 devices in total. Recall Table 1 and Table 2, which provide
more details about the specific devices and apps used to collect
data. Using our tedbed we produced a new dataset of more than
300 Bluetooth network traces [44].

Figure 5: Our collection of smart Bluetooth devices.

A.2 HCI-Related Features
In Figure 6 we provide an example of the distribution of HCI packet
lengths based on attributes such as the direction of the packet
(ingress/egress) and the type of packet. As discussed in Section 4.3,
along with the contents of packets themselves, the differences ob-
served between HCI packets (i.e., type, direction, length) are mean-
ingful features for separation among VIA models.

Figure 6: HCI packet lengths by type/direction.

A.3 Case Study
In Figure 7 we include a visualization of relatives frequencies of
the n-grams computed from approximately 75 traces belonging to
blood-pressure monitors. (Recall Section 6.3.1 where we discussed
comparisons of these devices.)

The blood-pressure monitors present any interesting case study.
In total there are 5 blood-pressure monitors (same type) from three
different manufacturers, and some of these monitors take measure-
ments at different locations on the body (upper arm and wrist). As a
result, we can see roughly 5 distinct bands (1: 0-17, 2: 18-29, 3: 30-46,
4: 47-59, 5: 60-74). Each of these bands represent the n-grams com-
puted from a distinct device. Notice that the intraband traces yield
similar representations, which are distinct from traces belonging
to other bands (devices); one exception seen here is the similarity
within bands 2-3 and 4-5, which we posit is due to the fact that they
are different models of devices (wrist vs. upper arm) made by the
same manufacturer.

Figure 7: An example of n-grams computed from the traces
in our dataset. These traces are selected from 5 different
blood-pressure monitors made by 3 distinct manufacturers.

203

http://dx.doi.org/10.1109/AICCSA50499.2020.9316514
http://dx.doi.org/10.17487/RFC4949
http://dx.doi.org/10.1145/3395351.3399366
http://dx.doi.org/10.1145/2660267.2660360
http://dx.doi.org/10.1109/SP.2010.25
http://dx.doi.org/10.14722/ndss.2019.23409
http://dx.doi.org/10.1007/978-3-540-30143-1_11
http://dx.doi.org/10.1145/2517312.2517316
http://dx.doi.org/10.1109/SP.2015.45
http://dx.doi.org/10.1145/3243734.3243820
http://dx.doi.org/10.1145/3243734.3243820

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Bluetooth
	2.2 Authentication
	2.3 Intrusion Detection Systems (IDS)
	2.4 Malware Detection

	3 System, Network, & Security Model
	3.1 System & Network Model
	3.2 Assumptions & Trust Model
	3.3 Threats & Adversary Model

	4 Verifying the Authenticity of Interactions in WPANs
	4.1 Verification
	4.2 Network Traffic Modeling & Analysis
	4.3 Hierarchical Segmentation

	5 Data Collection
	5.1 A New Smart-Device Testbed
	5.2 Capturing HCI Traces
	5.3 Emulating Normal App-Device Interactions
	5.4 Data Pre-processing

	6 Evaluation & Results
	6.1 Experimental Procedure
	6.2 Verification Experiments & Results
	6.3 Similarity Experiments & Results

	7 Discussion
	7.1 Bootstrapping Initial Verification Models
	7.2 Response Strategies

	8 Conclusion
	References
	A Testbed & Dataset Insights
	A.1 Testbed Overview
	A.2 HCI-Related Features
	A.3 Case Study

