Network Awareness and
Mobile Agent Systems

Wilmer Caripe, George Cybenko, Katsuhiro Moizumi, and Robert Gray
Dartmouth College

A Most current computer applications are insensitive to changing
BSTRACT network conditions. With the growing demand for wireless,
satellite, and other highly volatile computer communications networks, however, applica-
tions that are robust in the presence of network volatility must be designed and built. Net-
work-robust applications are of great interest in military situations today, and we expect
that interest to grow in industrial and eventually consumer environments as well. Mobile
agents are one way to realize such applications, especially when used in a wireless envi-
ronment. This article discusses issues and results related to the problem of making com-
puter applications network-aware and reactive to changing network conditions. It contains
a short overview of our work on mobile agents as well as a tutorial on network sensing
from the agent perspective. Some prototypes of network-sensing systems and network-

respond to such challenges, the under-
lying mobile-agent system should pro-
vide a network-awareness
infrastructure. Only then can the agents
make decisions about how to continue
their operation most effectively.

This article discusses the need for
network-awareness in mobile-agent sys-

aware mobile-agent applications are presented.

lassical” networking has effectively separated net-

work and communications issues from end-user
applications through the abstractions of the open systems
interconnection (OSI) framework and other reference models.
These models have successfully defined protocols by which
developers could focus their work at a level appropriate to
their development needs — physical, data link, medium access,
network, transport, and applications layers, for example. This
architectural concept has been enormously successful and
implemented almost universally. However, several capabilities
have fallen through the cracks of these layers. Once an appli-
cation establishes a session with a remote host application, the
practice in transport-layer protocols like TCP has been to “do
one’s best” to keep that connection viable with essentially no
fallback options for applications at either end. In.cases like
this, if a link fails, the applications that had active sessions run-
ning over that link enter some sort of error-handling mode and
effectively terminate. This point of view makes sense when
such failures are truly exceptions. However, if such failures
occur relatively frequently, and if distributed applications must
operate in networking infrastructures that do not offer ade-
quate quality-of-service mechanisms, new ideas are needed.

Network awareness, the property of having knowledge about
the current status of underlying network resources, represents a
new approach to this issue [1-5]. Distributed network-aware
applications, executing in volatile network environments, have
the ability to react in response to changes in the status of the
network, with the ultimate goal of minimizing the impact of
these changes on the application’s performance.

Mobile agents are software systems designed precisely to
handle volatile network environments, moving from machine
to machine while preserving their state information. Network
communication with other applications is temporarily sus-
pended and resumed once a stable host has been reached.
This allows critical applications to survive network link fail-
ures and degradations. Mobility also allows for more effective
use of bandwidth in situations where processing should be
done remotely at the data location instead of locally after
downloading a large dataset. In order to make mobile agents

Supported by Air Force Office of Scientific Research grant F49620-97-1-0382.

tems and proposes mechanisms for pro-

viding the necessary infrastructure to

accomplish that goal. In doing so, we
explore the potential for using the mobile agents themselves
and other communicated objects as carriers of network status
information within such an infrastructure.

The reader should be aware that these are relatively new
areas of investigation with much work remaining to be done.
Few robust mobile-agent systems presently. exist. Fewer still
are publicly available. Ideas and results for network-aware
mobile-agent systems are only now beginning to surface, and
this article describes our current work in this area.

The second section presents a motivation for network
awareness in mobile agent systems. The third section discusses
issues surrounding network sensing for and by mobile agents,
examining the tradeoffs inherent in various approaches. The
fourth section describes our initial implementations and
experiments with network-aware mobile agents. The fifth sec-
tion presents related work. The last section is the conclusion.

MOTIVATION FOR NETWORK AWARENESS IN
MOBILE AGENT SYSTEMS

To establish the need for network awareness in a mobile-
agent system, we focus our attention on active hybrid net-
works (a combination of reliable terrestrial links, wireless
links and both fixed and volatile mobile nodes). Mobile agents
have great potential and important applications in this kind of
environment. Such networks present a major challenge for
any distributed application: network topology can change con-
stantly, bandwidth can be limited, latency can be high and
communication links can be down because of natural causes,
detection concerns or power conservation. Hence, mobile
agents executing in hybrid networks need to be aware of rele-
vant changes in the availability of network resources (aware-
ness), and need to react accordingly to guarantee successful
performance of their tasks (agility) [1]. The following sample
problems illustrate situations in which these two properties
are appropriate for mobile-agent systems.

A Mission-Critical Agent — A mobile agent providing a
high-availability service on a computer connected to a wireless
network should be able to detect events such as congested or
noisy communication links and high processing loads. The mis-

44 0163-6804/98/$10.00 © 1998 IEEE

IEEE Communications Magazine * July 1998

sion-critical agent should then move to another computer with
a safer profile to guarantee uninterrupted service availability.
Directories or proxy servers are used to ensure location trans-
parency for the service provided by the mobile agent. Related
work has shown that network-aware placement of distributed
applications across the network can provide performance gains
compared to network-oblivious placement [4].

The Traveling Agent Problem — While performing a task
that requires visiting a sequence of remote servers, a mobile
agent should be able to determine the most efficient and
safest route based on current network conditions. For exam-
ple, the agent can get stranded at a node with a poor wireless
link. In this case, network awareness is instrumental for the
mobile agent to plan its visit in a way that avoids noisy or con-
gested links and that favors hosts with the lowest processing
load. Although this planning process is formulated as a
dynamic resource allocation problem that cannot be efficiently
solved using traditional optimization methods due to space
and processing-time limitations, some short-term decisions
can be made based on available network information [6].

In order to realize the benefits of network-aware mobile
agents in such sample problems, an appropriate infrastructure
is needed to provide estimates about the status of the comput-
er network. Mechanisms for providing network awareness to
traditional distributed applications are a reasonable starting
point for developing such an infrastructure in a mobile-agent
system, as will be shown in the next section.

At the same time, it is important to note that previous
work on network-adaptive services such as available bit rate
(ABR) essentially focuses on point-to-point network status (or
multipoint-to-point status, as in the case of multicast ABR)
[7]. The above two mobile-agent scenarios demonstrate the
need for more comprehensive network information that can-
not be inferred from local point-to-point link performance
information. For instance, a mission-critical agent must be
able to migrate to a new location that has adequate communi-
cation and computation performance. This requires knowl-
edge of the current environment as well as the candidate
remote environments. Similarly, a traveling agent must plan a
route based on remote point-to-point statistics.

Another important issue is whether agent policies for allo-
cating distributed network resources are stable and effective.
Work on such cooperative strategies is only now beginning in
a new DARPA-funded project, “Resource control in large-
scale mobile-agent systems.”!

Type of monitoring

W Table 1. Taxonomy of network monitoring.

DIFFERENT APPROACHES TO NETWORK
AWARENESS FOR DISTRIBUTED APPLICATIONS

Network sensing or monitoring is the process of collecting
information about network performance. An important pro-
cess that relies on this information is prediction of future net-
work performance. While prediction is an important topic, it
presents innumerable open issues that are beyond the scope
of this article. The rest of this section provides a survey of the
different approaches to network sensing.

Existing network-aware systems monitor such parameters
as latency, available bandwidth, packet loss rate, and CPU
load for different computers in the network [1, 3, 8]. Here we
will use the term network monitor to refer to an entity in
charge of the network-sensing tasks in a computer or network.
A network monitor is usually a software entity.

The network-sensing process can be classified according to the
criteria in Table 1. One classification is based on the amount of
traffic generated during the monitoring process: in passive
monitoring, network monitors piggyback status information on
existing messages, whereas in active monitoring, network mea-
surements are done by sending additional control messages [4].

Network monitoring can also be classified according to
whether it is performed on demand or continuously. On-demand
monitoring occurs when applications ask the monitor to collect
status information about a certain resource in an online fashion.
In continuous monitoring, on the other hand, the monitor
informs the application when the status of a previously request-
ed resource changes in a certain way (e.g., falls below a prede-
fined threshold). The latter scheme requires mechanisms for
applications to register their resource interests with the moni-
tor, either synchronously or asynchronously, as discussed in [3].

Finally, depending on how status information is replicated,
network monitoring can be centralized or distributed. In the
centralized case, status information from the whole network is
consolidated at a central host and shared by all other hosts
(most commonly, this information is mirrored at several central
hosts). In the distributed case, monitors collect only local net-
work status information and obtain non-local status information
on demand from network monitors on other computers. The
first scheme is not scalable, since the network monitors would
maintain virtually the same status information, leading to a
large amount of wasted storage. In the second scheme, collab-
oration between monitors is necessary if applications need sta-
tus information about resources in computers outside the
vicinity of the local network monitor. An example of the latter
is presented in [1], where UDP
messages atre used by collaborative
resource-monitoring daecmons in
different computers.

NETWORK-AWARE
MOBILE AGENT SYSTEMS

Based on the review given in the
previous section, we present two
approaches that can be used for
providing network awareness to
mobile-agent systems. Network-
aware mobile agents have the capa-
bility to request resource status
information from a network moni-
tor.

I In response to DARPA RFP BAA 98-
01.

IEEE Communications Magazine ¢ July 1998

45

:NféfV\{dfk
- monitor
-~ iserver Lok

APkl; extensions

B Figure 1. Mechanisms for network monitoring in mobile agent systems.

All the ideas presented here are devised for a mobile-agent
system with similar capabilities to those found in D’Agents, a
mobile agent system developed at Dartmouth Coliege. An
overview of this system will be given in the next section.
D’Agents and the two approaches presented in this subsection
represent the framework for our ongoing and future work in
network-aware mobile-agent systems.

Figure 1a shows an-autonomous network monitor, which is
a separate entity providing resource-monitoring services to all
the applications in a host, not just to mobile agents. Under this
scheme, mobile agents trying to obtain information from the
network monitor do so through APIs, modified operating sys-
tem calls [3], or inter-process communication mechanisms [1].
The network monitor is an independent entity, which can be
implemented under any of the categories described in Table 1.
Sumatra, presented in [1, 13], is a network-aware system that
supports migration and uses a similar network-sensing model.

Figure 1b shows an approach where a mobile-agent system
includes its own private monitoring agent. As in the previous
case, the monitor interacts with the operating system to obtain
local network information. If the monitor requires data about
non-local resources, however, it requests the data on demand
from another monitor by leveraging those sessions that are
established between mobile-agent servers when an agent
migrates from one machine to another. Note that the effec-
tiveness of this passive collaborating strategy will depend on
the assumption of locality — that agents will most likely want to
learn resource status for those computers with which the local
agent server maintains regular interaction. If this assumption
does not hold, a mechanism that combines the piggybacking
scheme with explicit requests can be devised. For example, if
the local monitor is asked about resource status of another
computer, the monitor waits until the local agent server estab-
lishes a migration session with the agent server at the targeted
computer. If this does not occur within a given period of time,
the monitor instead sends a dedicated agent to the remote
machine to collect the information from the remote monitor.

Since the monitor in Fig. 1b is implemented as an agent
itself, other agents trying to submit resource status requests to
the monitor can do so by using available inter-agent commu-
nication. If the system were implemented using D’Agents, for
example, agents would use a remote procedure call (RPC)-
like mechanism that allows communication between agents on
the same machine or on different machines [9].

There might be cases where aggregation methods are
applied to performance measurement, and thus there is only
one monitor collecting information that will be representative
for all the computers in a certain zone (e.g., a switched LAN
or a high-availability computer cluster). For these situations,
those computers not designated as the zone monitor will have
a proxy monitor instead of a full-featured network monitor.
The proxy monitor at each computer will be in charge of
rerouting the requests to the main network monitor in the
zone, which will then perform the required status collection

tasks and return the information back to the
proxy. This will in turn redirect the query results
to the appropriate application.

Our curfent work, which is explained in detail
later, is mainly based on the scheme of Figure 1a.
Our ultimate goal is to implement a completely
integrated system following the architecture of
Figure 1b. To the best of our knowledge, no
implementation of this model has been done.
Many issues remain open regarding the latter
scheme, some of which are discussed later.

MOBILE AGENTS FOR NETWORK MONITORING

Ideally, distributed network monitors should be capable of
sharing status information without generating significant addi-
tional traffic overhead, especially when the underlying net-
work suffers bandwidth limitations (as is the case for wireless
networks in general).

Based on the concept of passive monitoring mentioned
before, and the idea of active networks presented in [10], we
believe that mobile agents are an appropriate way to enable
collaboration among monitors.

Each agent can carry network status information along
with its own logic and data. At each node they visit, agents
interact with the local network monitor through the agent
server: visiting agents obtain from the local monitor network
information that is more recent than their own or comple-
mentary to it. At the same time, the local monitor updates its
databases with whatever new status information visiting agents
bring from the rest of the network. Hence, no extra messages
are generated by the monitors’ collaborating activities.

Moreover, by understanding the network information they
carry, agents can locally optimize the distribution of network sta-
tus information in situations involving limited bandwidth or high

.network congestion by, for example, bifurcating themselves to

carry network information or data at different levels of granular-
ity. Agents carry out this self-replication process in response to
communication delays estimated along their path; allowing more
important information to be given higher priority.

Of course, there are many open issues regarding the pro-
cess described in the previous paragraphs, and research in this
area is only beginning. A consistent way to represent network
information has to be devised in order to allow agents to ana-
lyze it and exchange it for prioritization purposes. Also, robust
self-replication mechanisms have to be defined, taking into
account the security and consistency issues involved in assem-
bling and disassembling agent network-status contents. More-
over, hierarchical and clustering approaches might be
necessary to logically organize large networks, therefore
allowing for scalability and complying with the low-overhead
premise previously stated. More information about managing
large networks at different levels of granularity can be found
at the Proactive Problem Avoidance Project’s Web site at
http://www.cs.rpi.edu/~kaploww/finalproposal.html.

OUR CURRENT WORK ON NETWORK
MONITORING AND AGENTS
AN OVERVIEW OF D’AGENTS

-D’Agents? is a mobile-agent system whose agents can be writ-

ten in Tcl, Java, Scheme, and Python. D’Agents is in active use
at numerous academic and industrial research laboratories,
including those at Lockheed Martin, Siemens, and the University

2 D’Agents was once called Agent Tcl.

46

IEEE Communications Magazine ¢ July 1998

of Bordeaux. It is starting to find its way into
production-quality applications. The current
public release supports Tcl agents only. It
provides migration, low-level communica-
tion, and significant security mechanisms.
New versions, with support for all four lan-
guages, will be publicly released in spring
and summer 1998.3

Like all mobile-agent systems, the main

(@) . (b)

component of D’Agents is a server that runs
on each machine. When an agent wants to
migrate to a new machine, it calls a single
function, agent_jump, which automatically
captures the complete state of the agent and
sends this state information to the server on the destination
machine. The destination server starts up an appropriate execu-
tion environment (e.g., a Tcl interpreter for an agent written in
Tcl), loads the state information into this execution environ-
ment, and restarts the agent from the exact point at which it left
off. Now the agent is on the destination machine and can inter-
act with that machine’s resources without any further network
communication. In addition to reducing migration to a single
instruction, D’Agents has a simple layered architecture that
supports multiple languages and transport mechanisms. Adding
a new language or transport mechanism is straightforward: the
interpreter for the new language must support two state-cap-
ture routines, and the “driver”” for the new transport mecha-
nism must support asynchronous I/O and a specific interface.
As indicated above, the primary language is Tcl, with support
for Java and Python nearly complete, and support for Scheme
in progress. The primary transport mechanism is TCP/IP.

Figure 2 shows the architecture of D’Agents. The core sys-
tem, which appears on the left, has four levels. The lowest
level is an interface to each available transport mechanism.
The next level is the server that runs on each machine. This
server has several tasks. It keeps track of the agents running
on its machine, provides the low-level inter-agent communica-
tion facilities (message passing and binary streams), receives
and authenticates agents arriving from another host, and
restarts an authenticated agent in an appropriate execution
environment. The third level of the architecture consists of
the execution environments, one for each supported agent
language. All current I)’Agents languages are interpreted, so
our “execution environments” are just interpreters, namely a
Tcl interpreter, a Scheme interpreter, a Python interpreter,
and the Java virtual machine.

The last level of the architecture are the agents themselves,
which execute in the interpreters and use the facilities provid-
ed by the server to migrate from machine to machine and to
communicate with other agents. Agents include both moving
agents, which visit different machines to access needed
resources, as well as stationary agents, which stay on a

machine.

® Figure 2. a) Architecture of the D’Agents system; b) support agents at each

%

puter using D’Agents is associated with a dock computer.
Using this scheme, when a mobile agent is unable to migrate
to a target laptop (TL), it is automatically queued at the TL’s
dock machine until the TL reconnects to the network. The TL
uses the network tool ping to poll its dock computer at regular
intervals. Since a dock computer is by definition a machine
permanently connected to the network, a successful poll to this
computer implies available connectivity to the network. At this
point, the TL notifies its dock of its new network address. The
dock computer then forwards all waiting agents to the TL and
receives all the agents queued at the TL waiting to migrate to
some other computer [9]. The current docking system is rather
simple; ongoing work aims to make it more efficient and
robust (e.g., what if the dock machine is down?).

THE AGENT MIGRATION PLANNING PROCESS

Suppose you are shopping for a specific item known to be
sold in n + 1 stores. The probability, p;, that store i has the
item is known and independent for different stores. Moreover,
it takes a known time, #;, to navigate through store i to the
section where the item is stocked, thereby determining
whether the item is available or not. Going from store i to
store j requires travel time /;;. Given that information, and
starting and ending at store 0’, what is the minimal expected
time to find the item or conclude that it is not available?

The shopping analogy describes the essence of the agent
migration-planning problem. In a mobile-agent context, the
stores are information servers such as databases or Web
servers. The probabilities of success can be estimated from
relevance scores given by search engines. Compute times and
latencies might be obtained from network status monitors and
directory services [6].

We have implemented a simple prototype to illustrate this
planning process. It follows the scheme depicted in Fig. 3. In
this approach, a GUI interface — the Mobile Agent Con-
struction Environment (MACE) for D’Agents [11] — allows
the user to graphically specify the information retrieval tasks

single machine and provide a specific service to either the
user or other agents. The agent servers provide low-level
functionality. Dedicated service agents provide all other
services at the agent level, as Fig. 2b shows. Such services
include navigation, high-level communication protocols,
and resource management.

D’Agents includes an important network-aware fea-
ture: a docking system that lets agents transparently jump
off an intermittently connected computer (such as a
mobile laptop) and return later, even if the computer is
connected only briefly to the network. Each mobile com-

3 See http:/lwww.cs.dartmouth.edu/~agent for software, documen-

Network
information |

Different
locations

tation, and related papers.

® Figure 3. The agent planning process.

IEEE Communications Magazine * July 1998

47

Biock: Computation Annotations

TaskBlocktiame fiaskz
me JCollect list of hosts
v inférmation Retrieval
+ Computationsl
Tione Limit - 115
ResuRt Veriable . fresult
Cote
set hoats [?sb host_ 13 [variadies aveilsdie a3 inpst:
ut ‘hosts [filter hoa*: hst shost.s} taskl: reswittaskl i
4
; i
: ok Quit
{ -‘_—jiﬂﬁ“ — _———Jc, .

W Figure 4. An example ()ftl;e MACE interface.

as a workflow. The user also specifies the keywords that will
drive the information retrieval process. An example of the
MACE interface is given in Fig. 4. In Fig. 4a the main screen
shows four user-defined tasks. In Fig. 4b the snapshot shows
how the user specifies the computation to be performed by
task2. in this casc using the Tcl programming language. Once
the user has constructed the agent with MACE, she launches
the agent into the network.

The agent’s decision-making module then consults the Ycl-
low Pages module, which is implemented as a scparatc mobile
agent, to identify host locations where information related to
the specified keywords might be found and the probability of
finding relevant information at each of those locations.

The decision-making module executes a two-step look-ahead
exhaustive search to determine which computer should be visit-
ed and scarched next. As part of this process, an agent is sent to
cach computer in the location list provided by the Yellow Pages.
Each agent consults the local network information at the corre-
sponding target node with respect to the other nodes in the list.
Based on that data, cach agent determines which location would
be the best choice to visit next from the target node if the user-
specified task were being executed there. This information,
along with the corresponding ncetwork statistics, is sent back to
the original node so that the decision-making module can finish
its calculation. Once all the agents have come back with relevant
information, a decision is made concerning to which computer
the scarch should go next. The decision process is repeated at
cvery node that the working agent visits while performing its
task. While the agent is pertorming its information retrieval sub-
task at cach node it visits, its decision-making module in parallel
sends out the network-sensing agents.

In special cases, we have discovered efficient optimal algo-
rithms for ordering the sites to be visited. A sample result
from [6] is as follows.

THEOREM — If the latencics are all constant so that l,,- =1,
then the optimal (minimal expected time) ordering is obtained
by visiting the sites in decreasing order of p;/t;. Moreover, if
sites arc organized into N subnetworks so that latencies within
subnetworks are constant and latencies across subnetworks are
also constant but different from intra-subnet latencics, then
the optimal route can be found in no more than C(n, + 1)(n,

+ 1)...(ny + 1) steps where the kth subnetwork has ny sites.
Note that this reduces to exponential complexity in the
case where each subnetwork has one site.

Network Sensing Module — This module is implemented
as a standalone service that collects network information on a
periodic basis on each node. The module keeps up-to-date
information stored in a local database, which can be accessed
by mobile agents through an API implemented as extended
Tcl commands. Currently, the module collects only latency
and bandwidth information on each node with respect to all
the other computers specified in a master file? (host set).
These network statistics arc collected using a mechanism simi-
lar to the onc usced by the ping program. Instead of using
Internct Control Messaging Protocol (ICMP) messages, a cus-
tomized server is set up on each computer to accept ECHO-
like UDP messages and retransmit them to the original
sender, which in turn calculates the round-trip time and
henceforth the estimated latency between the two nodes.
Available bandwidth is calculated by measuring difference in
round-trip time for probe packets of different sizes.

The monitor stores data about the network status between
two computers in a UNIX dbm file. This database is indexed
by a combination of the addresses of the two computers.
Thus, using the API mentioned above, Tel agents can open a
session to access the databasc, retrieve latency and bandwidth
information for any two given nodes. and close the session. If
an agent attempts to retrieve information through the AP,
but the data i1s not found in the local database, an indication
is returned by the retrieving function so that the agent can
proceed as described in the previous paragraphs to obtain
remote network information.

All the collected network-sensing information can be con-
sidered a distributed database where cach node maintains
information about latency and bandwidth from that node to
the rest of the hosts in the agent system. Practically, the over-

* This file should be a superset of every set of locations provided by the
Yellow Pages.

3 In the current prototype this matrix is considered to be symmetric.

48

IEEE Communications Magazine * July 1998

all network information database can be considered a matrix
where a generic entry (i, j) contains latency and bandwidth
information from node i to node j.5 In this scheme, each node
maintains the corresponding row in the matrix. In the current
prototype, the only mechanism for remote consultation (i.e., if
node z wants to know the network information between nodes
i and j), is to send an agent from z to either node and retrieve
the data from there. Other collaboration schemes have been
discussed, such as using the Simple Network Management
Protocol (SNMP) for accessing the data distributed across the
network, but none have been implemented yet.

IFUTURE WORK

Our prototype shows the applicability of network-sensing
mechanisms to mobile-agent systems. Key enhancements to
this prototype are -under study, including modifications to the
scheme used to access remote network status information.
The current prototype explicitly sends messenger agents to
retrieve the data from other computers, generating extra traf-
fic overhead. We will focus new enhancements toward the
implementation of a network-sensing support agent that will
be included in a future release of D’Agents.

RELATED WORK

Some research has been done on adaptation of applications to
changes in the computing environment, with a special focus
on mobile computing. Cdyssey, an experimental resource man-
agement system [3], provides operating system support for
application-aware adaptation through extensions to the oper-
ating system APIs. The system monitors resource levels, noti-
fies applications of relevant changes, and enforces
resource-allocation decisions, while each application decides
how to best adapt when notified. A programming-level
abstraction is proposed in [2] to provide support for environ-
ment-aware applications. This guarantees portability of the
application across multiple platforms and resource-manage-
ment extensibility.

The Quality Assurance Language (QuAL) described in
[12] provides language-level abstractions and a runtime system
that allow applications to specify and negotiate communica-
tion and application-specific quality-of-service requirements.
QuAL also provides feedback mechanisms for applications to
adapt or re-negotiate quality-of-service demands when current
quality-of-service requirements are not being met.

A network resource monitor operating in user space is pre-
sented in [5]. It was devised to provide network awareness to
mobile applications so that they would exhibit more efficient
network utilization. SPAND, a system that collects wide area
network performance information by using passive measure-
ments from a collection of hosts is presented in [8], which
reviews benefits and challenges in using passive and coopera-
tive measurements in network monitoring.

Concerning network-awareness in mobile-agent systems,
only Sumatra, an extension of the Java programming language
that supports mobile programs, and Komodo, a distributed
network monitor — both presented in [1, 4] — provide sup-
port for mobile programs to adapt to changing network condi-
tions. As a proof of concept, adaptalk, an Internet chat
application, was developed. The adaptalk server takes advan-
tage of adaptation and places itself appropriately in the net-
work so as to minimize overall application response time. The
results show that network-aware placement of distributed
components across the network can provide performance
gains compared to network-oblivious placement [4].

To the best of our knowledge, no work has been conducted
on network-aware adaptation of mobile programs in a wireless

network environment, although adaptation provides better
performance in this kind of resource-limited environment.

CONCLUSION

We have described several ideas, approaches and implementa-
tions of network sensing for mobile agents. This is a new area
of investigation and much work remains to be done both at
the conceptual and experimentation levels. Techniques for
effective, noninvasive network sensing have been proposed
with some initial implementation experience. A major chal-
lenge is handling very large hybrid networks; methods for
aggregating and abstracting total network status information
into feasible sizes and usable forms remain an open problem.

REFERENCES

[1] A. Acharya and M. Ranganathan, J. Saltz, “Sumatra: A Language for
Resource-Aware Mobile Programs,” Mobile Object Systems, J. Vitek and
C. Tschudin, Eds., Springer Verlag, Apr. 1997, pp. 111-30.

[2] B. R. Badrinath and G. Welling, “Event Delivery Abstractions for Mobile
Computing,” Tech. rep. LCSR-TR-242, Dept. Comp. Sci., Rutgers Univ.

[3] B. Noble et al., “Agile Application-Aware Adaptation for Mobility,” Proc.
16th ACM Symp. Op. Sys. Principles, St. Malo, France, Oct. 1997,

[4] M. Ranganathan et al., Network-Aware Mobile Programs, Proc. USENIX
Annual Tech. Conf., Anaheim, CA, Jan. 1997.

[51 G. Welling and B. R. Badrinath, “Exporting Environment Awareness to Mobile
Applications,” Tech. rep. LCSR-TR-270, Dept. Comp. Sdi., Rutgers Univ.

[6] K. Moizumi and G. Cybenko, “The Travelling Agent Problem,” Mathe-
matics of Control, Signals and Systems, Jan. 1998, available at ftp://witness.
dartmouth.edu/pub/tap.ps.

[7] F. Bonomi and N. Giroux, “The Available Bit Rate Service,” in “53 Bytes,”
ATM Forum Newsletter, vol. 3, issue 4, Oct. 1995.

[81 S. Seshan, M. Stemm, and R.H. Katz, "SPAND: Shared Passive Network
Performance Discovery,” USENIX Symp. Internet Tech., and Sys,, Dec.
1997, pp. 135-46.

[9] D. Kotz et al., “Agent Tcl: Targeting the Needs of Mobile Computers,”
IEEE Internet Comp., vol. 1, no. 4, July-Aug. 1997, pp. 58-67.

[10] D. L. Tennenhouse, and D. J. Wetherall, "Towards an Active Network
Architecture,” Comp. Commun. Rev., vol. 26, no. 2, Apr. 1996.

[11] R. Sharma, “Mobile Agent Construction Environment,” M.S. thesis,
Thayer Sch. Eng., Dartmouth, 1997.

[12] P. Florissi and Y. Yemini, “Management of Application Quality of Ser-
vice,” Tech. rep. CUCS-022-94, Comp. Sci. Dept., Columbia Univ., 1994.

BIOGRAPHIES

WILMER CARIPE (wilmer.caripe@dartmouth.edu) finished his M.S. in comput-

er engineering at Thayer School of Engineering, Dartmouth College, New
Hampshire, in June 1998. He received his B.Sc. in computer science from
Universidad Simon Bolivar, Venezuela in 1995. He is mainly interested in
networking protocols, distributed network management, wireless networks,
and network awareness in mobile agent systems. The focus of his M.S. the-
sis is on developing extensions for the Mobile IP protocol to improve per-
formance of computers operating on multihop wireless networks.

GEORGE CYBENKO (george.cybenko@dartmouth.edu) is the Dorothy and Wal-
ter Gramm Professor of Engineering at Dartmouth College. Prior to joining
Dartmouth, Cybenko was professor of electrical and computer engineering
and professor of computer science at the University of lllinois at Urbana. At
lllinois, he was also a director of the Center for Supercomputing Research
and Development, which designed and built the CEDAR shared memory
multiprocessor. He received his B.Sc. (1974) in mathematics from the Uni-
versity of Toronto and his Ph.D. (1978) in electrical engineering and com-
puter science from Princeton. He has made significant contributions to
theory and algorithms of signal processing, parallel computing, computer
performance evaluation and neurocomputing. His current interests are in
distributed information management, retrieval, and data mining problems.

KaTsuHirRo Moizumi (katsuhiro.moizumi@dartmouth.edu) is a Ph.D. student
in computer engineering at Dartmouth College. He received his B.E. and
M.S. in electrical engineering from Waseda University, Tokyo, Japan, and
received an M.S. in computer engineering from Clarkson University. His the-
sis work is on mobile agent planning problems.

ROBERT GRAY (rgray@dartmouth.edu) is an assistant research professor at
the Thayer School of Engineering. He is the lead researcher and program-
mer for the core D'Agents system, the mobile-agent system discussed here-
in. He is primarily interested in the performance, security, and fault
tolerance issues that arise in mobile-agent systems. He received his Ph.D. in
computer science from Dartmouth College in 1997.

IEEE Communications Magazine * July 1998

49

