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Abstract

Metric learning has been shown to significantly improve the accuracy ofk-nearest
neighbor (kNN) classification. In problems involving thousands of features, dis-
tance learning algorithms cannot be used due to overfitting and high computa-
tional complexity. In such cases, previous work has relied on a two-step solution:
first apply dimensionality reduction methods to the data, and then learn a met-
ric in the resulting low-dimensional subspace. In this paper we show that better
classification performance can be achieved by unifying the objectives of dimen-
sionality reduction and metric learning. We propose a method that solves for
the low-dimensional projection of the inputs, which minimizes a metric objective
aimed at separating points in different classes by a large margin. This projection
is defined by a significantly smaller number of parameters than metrics learned
in input space, and thus our optimization reduces the risks of overfitting. Theory
and results are presented for both a linear as well as a kernelized version of the
algorithm. Overall, we achieve classification rates similar, and in several cases
superior, to those of support vector machines.

1 Introduction

The technique ofk-nearest neighbor (kNN) is one of the most popular classification algorithms.
Several reasons account for the widespread use of this method: it is straightforward to implement,
it generally leads to good recognition performance thanks to the non-linearity of its decision bound-
aries, and its complexity is independent of the number of classes. In addition, unlike most alterna-
tives, kNN can be applied even in scenarios where not all categories are given at the time of training,
such as, for example, in face verification applications where the subjects to be recognized are not
known in advance.

The distance metric defining the neighbors of a query point plays a fundamental role in the accuracy
of kNN classification. In most cases Euclidean distance is used as a similarity measure. This choice
is logical when it is not possible to study the statistics of the data prior to classification or when it is
fair to assume that all features are equally scaled and equally relevant. However, in most cases the
data is distributed in a way so that distance analysis along some specific directions of the features
space can be more informative than along others. In such cases and when training data is available
in advance, distance metric learning [5, 10, 4, 1, 9] has beenshown to yield significant improvement
in kNN classification. The key idea of these methods is to apply transformations to the data in order
to emphasize the most discriminative directions. Euclidean distance computation in the transformed
space is then equivalent to a non-uniform metric analysis inthe original input space.

In this paper we are interested in cases where the data to be used for classification is very high-
dimensional. An example is classification of imagery data, which often involves input spaces of
thousands of dimensions, corresponding to the number of pixels. Metric learning in such high-
dimensional spaces cannot be carried out due to overfitting and high computational complexity. In
these scenarios, even kNN classification is prohibitively expensive in terms of storage and com-
putational costs. The traditional solution is to apply dimensionality reduction methods to the data



and then learn a suitable metric in the resulting low-dimensional subspace. For example, Princi-
pal Component Analysis (PCA) can be used to compute a linear mapping that reduces the data to
tractable dimensions. However, dimensionality reductionmethods generally optimize objectives un-
related to classification and, as a consequence, might generate representations that are significantly
less discriminative than the original data. Thus, metric learning within the subspace might lead to
suboptimal similarity measures. In this paper we show that better performance can be achieved by
directly solving for a low-dimensional embedding that optimizes a measure of kNN classification
performance.

Our approach is inspired by the solution proposed by Weinberger et al. [9]. Their technique learns
a metric that attempts to shrink distances of neighboring similarly-labeled points and to separate
points in different classes by a large margin. Our contribution over previous work is twofold:

1. We describe the Large Margin Component Analysis (LMCA) algorithm, a technique that
solves directly for a low-dimensional embedding of the datasuch that Euclidean distance
in this space minimizes the large margin metric objective described in [9]. Our approach
solves for onlyD · d unknowns, whereD is the dimensionality of the inputs andd is the
dimensionality of the target space. By contrast, the algorithm of Weinberger et al. [9]
learns a Mahalanobis distance of the inputs, which requiressolving for aD × D matrix,
using iterative semidefinite programming methods. This optimization is unfeasible for large
values ofD.

2. We propose a technique that learns Mahalanobis distance metrics in nonlinear feature
spaces. Our approach combines the goal of dimensionality reduction with a novel ”ker-
nelized” version of the metric learning objective of Weinberger et al. [9]. We describe an
algorithm that optimizes this combined objective directly. We demonstrate that, even when
data is low-dimensional and dimensionality reduction is not needed, this technique can be
used to learn nonlinear metrics leading to significant improvement in kNN classification
accuracy over [9].

2 Linear Dimensionality Reduction for Large Margin kNN Classification

In this section we briefly review the algorithm presented in [9] for metric learning in the context
of kNN classification. We then describe how this approach canbe generalized to compute low
dimensional projections of the inputs via a novel direct optimization.

A fundamental characteristic of kNN is that its performancedoes not depend on linear separability
of classes in input space: in order to achieve accurate kNN classification it is sufficient that the
majority of thek-nearest points of each test example have correct label. Thework of Weinberger
et al. [9] exploits this property by learning a linear transformation of the input space that aims at
creating consistently labeledk-nearest neighborhoods, i.e. clusters where each trainingexample
and itsk-nearest points have same label and where points differently labeled are distanced by an
additional safety margin. Specifically, givenn input examplesx1, ...,xn in ℜD and corresponding
class labelsy1, ..., yn, the technique in [9] learns theD×D transformation matrixL that optimizes
the following objective function:

ǫ(L) =
∑

ij

ηij ||L(xi − xj)||
2 + c

∑

ijl

ηij(1− yil)h(||L(xi − xj)||
2 − ||L(xi − xl)||

2 + 1),

(1)
whereηij ∈ {0, 1} is a binary variable indicating whether examplexj is one thek-closest points
of xi that share the same labelyi, c is a positive constant,yil ∈ {0, 1} is 1 iff (yi = yl), and
h(s) = max(s, 0) is the hinge function. The objectiveǫ(L) consists of two contrasting terms. The
first aims at pulling closer together points sharing the samelabel and that were neighbors in the
original space. The second term encourages distancing eachexamplexi from differently labeled
points by an amount equal to 1 plus the distance fromxi to any of itsk similarly-labeled closest
points. This term corresponds to a margin condition similarto that of SVMs and it is used to improve
generalization. The constantc controls the relative importance of these two competing terms and it
can be chosen via cross validation.

Upon optimization ofǫ(L), test examplexq is classified according to the kNN rule applied to its
projectionx

′

q = Lxq, using Euclidean distance as metric. Equivalently, such classification can be



interpreted as kNN classification in the original input space under the Mahalanobis distance metric
induced by matrixM = L

T
L. Although Equation 1 is non-convex inL, it can be rewritten as

a semidefinite programǫ(M) in terms of the metricM [9]. Thus, optimizing the objective inM
guarantees convergence to the global minimum, regardless of initialization.

When data is very high-dimensional, minimization ofǫ(M) using semidefinite programming meth-
ods is impractical because of slow convergence and overfitting problems. In such cases [9] propose
applying dimensionality reduction methods, such as PCA, followed by metric learning within the
resulting low-dimensional subspace. As outlined above, this procedure leads to suboptimal metric
learning. In this paper we propose an alternative approach that solves jointly for dimensionality
reduction and metric learning. The key idea is to choose the transformationL in Equation 1 to be a
nonsquare matrix of sized×D, with d << D. ThusL defines a mapping from the high-dimensional
input space to a low-dimensional embedding. Euclidean distance in this low-dimensional embed-
ding is equivalent to Mahalanobis distance in the original input space under the rank-deficient metric
M = L

T
L (M has now rank at mostd).

Unfortunately, optimization ofǫ(M) subject to rank-constraints onM leads to a minimization prob-
lem that is no longer convex [8] and that is awkward to solve. Here we propose an approach for
minimizing the objective that differs from the one used in [9]. The idea is to optimize Equation 1
directly with respect to the nonsquare matrixL. We argue that minimizing the objective with respect
to L rather than with respect to the rank-deficientD×D matrixM, offers several advantages. First,
our optimization involves onlyd·D rather thanD2 unknowns, which considerably reduces the risk of
overfitting. Second, the optimal rectangular matrixL computed with our method automatically sat-
isfies the rank constraints onM without requiring the solution of difficult constrained minimization
problems. Although the objective optimized by our method isalso not convex, we experimentally
demonstrate that our solution converges consistently to better metrics than those computed via the
application of PCA followed by subspace distance learning (see Section 4).

We minimizeǫ(L) using gradient-based optimizers, such as conjugate gradient methods. Differen-
tiating ǫ(L) with respect to the transformation matrixL gives the following gradient for the update
rule:

∂ǫ(L)

∂L
= 2L

∑

ij

ηij(xi − xj)(xi − xj)
T +

2cL
∑

ijl

ηij(1− yil)
[

(xi − xj)(xi − xj)
T − (xi − xl)(xi − xl)

T
]

h′(||L(xi − xj)||
2 − ||L(xi − xl)||

2 + 1) (2)

We handle the non-differentiability ofh(s) ats = 0, by adopting a smooth hinge function as in [8].

3 Nonlinear Feature Extraction for Large Margin kNN Classificat ion

In the previous section we have described an algorithm that jointly solves for linear dimensionality
reduction and metric learning. We now describe how to ”kernelize” this method in order to compute
non-linear features of the inputs that optimize our distance learning objective. Our approach learns
a low-rank Mahalanobis distance metric in a high dimensional feature spaceF , related to the inputs
by a nonlinear mapφ : ℜD → F . We restrict our analysis to nonlinear mapsφ for which there exist
kernel functionsk that can be used to compute the feature inner products without carrying out the
map, i.e. such thatk(xi,xj) = φT

i φj , where for brevity we denotedφi = φ(xi).

We modify our objectiveǫ(L) by substituting inputsxi with featuresφ(xi) into Equation 1.L is now
a transformation from the spaceF into a low-dimensional spaceℜd. We seek the transformationL
minimizing the modified objective functionǫ(L).

The gradient in feature space can now be written as:
∂ǫ(L)

∂L
= 2

∑

ij

ηijL(φi − φj)(φi − φj)
T +

2c
∑

ijl

ηij(1− yil)h
′(sijl)L

[

(φi − φj)(φi − φj)
T − (φi − φl)(φi − φl)

T
]

(3)



wheresijl = (||L(φi − φj)||
2 − ||L(φi − φl)||

2 + 1).

Let Φ = [φ1, ..., φn]
T . We consider parameterizations ofL of the formL = ΩΦ, whereΩ is some

matrix allowing us to writeL as a linear combination of the feature points. This form of nonlinear
map is analogous to that used in kernel-PCA and it allows us toparameterize the transformationL in
terms of onlyd · n parameters, the entries of the matrixΩ. We now introduce the following Lemma
which we will later use to derive an iterative update rule forL.

Lemma 3.1 The gradient in feature space can be computed as ∂ǫ(L)
∂L

= ΓΦ, where Γ depends on
features φi solely in terms of dot products (φT

i φj).

Proof Definingki = Φφi = [k(x1,xi), ...,k(xn,xi)]
T , non-linear feature projections can be com-

puted asLφi = ΩΦφi = Ωki. From this we derive:

∂ǫ(L)

∂L
= 2Ω

∑

ij

ηij(ki − kj)(φi − φj)
T +

2cΩ
∑

ijl

ηij(1− yil)h
′(sijl)

[

(ki − kj)(φi − φj)
T − (ki − kl)(φi − φl)

T
]

= 2Ω
∑

ij

ηij

[

E
(ki−kj)
i −E

(ki−kj)
j

]

Φ +

2cΩ
∑

ijl

ηij(1− yil)h
′(sijl)

[

E
(ki−kj)
i −E

(ki−kj)
j −E

(ki−kl)
i + E

(ki−kl)
l

]

Φ

whereEv

i = [0, ...,v, 0, ..0] is then × n matrix having vectorv in thei-th column and all0 in the
other columns. Setting

Γ = 2Ω
∑

ij

ηij

[

E
(ki−kj)
i −E

(ki−kj)
j

]

+

2cΩ
∑

ijl

ηij(1− yil)h
′(sijl)

[

E
(ki−kj)
i −E

(ki−kj)
j −E

(ki−kl)
i + E

(ki−kl)
l

]

(4)

proves the Lemma.

This result allows us to implicitly solve for the transformation without ever computing the features
in the high-dimensional spaceF : the key idea is to iteratively updateΩ rather thanL. For example,
using gradient descent as optimization we derive update rule:

Lnew = Lold − λ
∂ǫ(L)

∂L

∣

∣

∣

∣

L=Lold

= [Ωold − λΓold] Φ = ΩnewΦ (5)

whereλ is the learning rate. We carry out this optimization by iterating the updateΩ ← (Ω − λΓ)
until convergence. For classification, we project points onto the learned low-dimensional space by
exploiting the kernel trick:Lφq = Ωkq.

4 Experimental results

We compared our methods to the metric learning algorithm of Weinberger et al. [9], which we
will refer to as LMNN (Large Margin Nearest Neighbor). We useKLMCA (kernel-LMCA) to
denote the nonlinear version of our algorithm. In all of the experiments reported here, LMCA was
initialized using PCA, while KLMCA used the transformationcomputed by kernel-PCA as initial
guess. The objectives of LMCA and KLMCA were optimized usingthe steepest descent algorithm.
We experimented with more sophisticated minimization techniques, including the conjugate gradient
method and the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm [6], but no substantial
improvement in performance or speed of convergence was achieved. The KLMCA algorithm was
implemented using a Gaussian RBF kernel. The number of nearest neighbors, the weightc in
Equation 1, and the variance of the RBF kernel, were all automatically tuned using cross-validation.

The first part of our experimental evaluation focuses on classification results on datasets with high-
dimensionality, Isolet, AT&T Faces, and StarPlus fMRI:
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Figure 1:Classification error rates on the high-dimensional datasets Isolet, AT&T Faces and StarPlus fMRI
for different projection dimensions. (a) Training error. (b) Testing error.

• Isolet1 is a dataset of speech features from the UC Irvine repository, consisting of 6238
training examples and 1559 testing examples with 617 attributes. There are 26 classes
corresponding to the spoken letters to be recognized.

• The AT&T Faces2 database contains 10 grayscale face images of each of 40 distinct sub-
jects. The images were taken at different times, with varying illumination, facial expres-
sions and poses. As in [9], we downsampled the original112× 92 images to size38× 31,
corresponding to 1178 input dimensions.

• The StarPlus fMRI3 dataset contains fMRI sequences acquired in the context of acognitive
experiment. In these trials the subject is shown for a few seconds either a picture or a sen-
tence describing a picture. The goal is to recognize the viewing activity of the subject from
the fMRI images. We reduce the size of the data by consideringonly voxels corresponding
to relevant areas of the brain cortex and by averaging the activity in each voxel over the
period of the stimulus. This yields data of size 1715 for subject ”04847,” on which our
analysis was restricted. A total number of 80 trials are available for this subject.

Except for Isolet, for which a separate testing set is specified, we computed all of the experimental
results by averaging over 100 runs of random splitting of theexamples into training and testing sets.
For the fMRI experiment we used at each iteration 70% of the data for training and 30% for testing.
For AT&T Faces, training sets were selected by sampling 7 images at random for each person. The
remaining 3 images of each individual were used for testing.

Unlike LMCA and KLMCA, which directly solve for low-dimensional embeddings of the input
data, LMNN cannot be run on datasets of dimensionalities such as those considered here and must
be trained on lower-dimensional representations of the inputs. As in [9], we applied the LMNN
algorithm on linear projections of the data computed using PCA. Figure 1 summarizes the training
and testing performances of kNN classification using the metrics learned by the three algorithms for
different subspace dimensions. LMCA and KLMCA give considerably better classification accu-
racy than LMNN on all datasets, with the kernelized version of our algorithm always outperforming
the linear version. The difference in accuracy between our algorithms and LMNN is particularly
dramatic when a small number of projection dimensions is used. In such cases, LMNN is unable
to find good metrics in the low-dimensional subspace computed by PCA. By contrast, LMCA and
KLMCA solve for the low-dimensional subspace that optimizes the classification-related objective

1Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
2Available at http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html
3Available at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/



(a) (b) (c)

Figure 2: Image reconstruction from PCA and LMCA features. (a) Input images. (b) Reconstruc-
tions using PCA (left) and LMCA (right). (c) Absolute difference between original images and
reconstructions from features for PCA (left) and LMCA (right). Red denotes large differences, blue
indicates similar grayvalues. LMCA learns invariance to effects that are irrelevant for classification:
non-uniform illumination, facial expressions, and glasses (training data contains images with and
without glasses for same individuals).

of Equation 1, and therefore achieve good performance even when projecting to very low dimen-
sions. In our experiments we found that all three classification algorithms (LMNN, LMCA+kNN,
and KLMCA+kNN) performed considerably better than kNN using the Euclidean metric in the PCA
and KPCA subspaces. For example, usingd = 10 in the AT&T dataset, kNN gives a 10.9% testing
error rate when used on the PCA features, and a 9.7% testing error rate when applied to the nonlinear
features computed by KPCA.

While LMNN is applied to features in a low-dimensional space,LMCA and KLMCA learn a low-
rank metric directly from the high-dimensional inputs. Consequently the computational complexity
of our algorithms is higher than that of LMNN. However, we have found that LMCA and KLMCA
converge to a minimum quite rapidly, typically within 20 iterations, and thus the complexity of these
algorithms has not been a limiting factor even when applied to very high-dimensional datasets. As a
reference, usingd = 10 andK = 3 on the AT&T dataset, LMNN learns a metric in about 5 seconds,
while LMCA and KLMCA converge to a minimum in 21 and 24 seconds, respectively.

It is instructive to look at the preimages of LMCA data embeddings. Figure 2 shows comparative re-
constructions of images obtained from PCA and LMCA featuresby inverting their linear mappings.
The PCA and LMCA subspaces in this experiment were computed from cropped face images of size
50 × 50 pixels, taken from a set of consumer photographs. The dataset contains 2459 face images
corresponding to 152 distinct individuals. A total ofd = 125 components were used. The subjects
shown in Figure 2 were not included in the training set. For a given target dimensionality, PCA has
the property of computing the linear transformation minimizing the reconstruction error under the
L2 norm. Unsurprisingly, the PCA face reconstructions are extremely faithful reproductions of the
original images. However, PCA accurately reconstructs also visual effects, such as lighting varia-
tions and changes in facial expressions, that are unimportant for the task of face verification and that
might potentially hamper recognition. By contrast, LMCA seeks a subspace where neighboring ex-
amples belong to the same class and points differently labeled are separated by a large margin. As a
result, LMCA does not encode effects that are found to be insignificant for classification or that vary
largely among examples of the same class. For the case of faceverification, LMCA de-emphasizes
changes in illumination, presence or absence of glasses andsmiling expressions (Figure 2).

When the input data does not require dimensionality reduction, LMNN and LMCA solve the same
optimization problem, but LMNN should be preferred over LMCA in light of its guarantees of
convergence to the global minimum of the objective. However, even in such cases, KLMCA can be
used in lieu of LMNN in order to extract nonlinear features from the inputs. We have evaluated this
use of KLMCA on the following low-dimensional datasets fromthe UCI repository: Bal, Wine, Iris,
and Ionosphere. All of these datasets, except Ionosphere, have been previously used in [9] to assess
the performance of LMNN. The dimensionality of the data in these sets ranges from 4 to 34. In order
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Figure 3: kNN classification accuracy on low-dimensional datasets: Bal, Wine, Iris, and Ionosphere.
(a) Training error. (b) Testing error. Algorithms are kNN using Euclidean distance, LMNN [9], kNN
in the nonlinear feature space computed by our KLMCA algorithm, and multiclass SVM.

to compare LMNN with KLMCA under identical conditions, KLMCA was restricted to compute a
number of features equal to the input dimensionality, although in our experience using additional
nonlinear features often results in better classification performance. Figure 3 summarizes the results
of this comparison. Again, we averaged the errors over 100 runs with different 70/30 splits of the
data for training and testing. On all datasets except on Wine, for which the mapping to the high-
dimensional space seems to hurt performance (note also the high error rate of SVM), KLMCA gives
better classification accuracy than LMNN. Note also that theerror rates of KLMCA are consistently
lower than those reported in [9] for SVM under identical training and testing conditions.

5 Relationship to other methods

Our method is most similar to the work of Weinberger et al. [9]. Our approach is different in focus
as it specifically addresses the problem of kNN classification of very high-dimensional data. The
novelty of our method lies in an optimization that solves fordata reduction and metric learning
simultaneously. Additionally, while [9] is limited to learning a global linear transformation of the
inputs, we describe a kernelized version of our method that extracts non-linear features of the inputs.
We demonstrate that this representation leads to significant improvements in kNN classification both
on high-dimensional as well as on low-dimensional data. Ourapproach bears similarities with Lin-
ear Discriminant Analysis (LDA) [2], as both techniques solve for a low-rank Mahalanobis distance
metric. However, LDA relies on the assumption that the classdistributions are Gaussian and have
identical covariance. These conditions are almost always violated in practice. Like our method,
the Neighborhood Component Analysis (NCA) algorithm by Goldberger et al. [4] learns a low-
dimensional embedding of the data for kNN classification using a direct gradient-based approach.
NCA and our method differ in the definition of the objective function. Moreover, unlike our method,
NCA provides purely linear embeddings of the data. A contrastive loss function analogous to the
one used in this paper is adopted in [1] for training a similarity metric. A siamese architecture con-
sisting of identical convolutional networks is used to parameterize and train the metric. In our work
the metric is parameterized by arbitrary nonlinear maps forwhich kernel functions exist. Recent
work by Globerson and Roweis [3] also proposes a technique for learning low-rank Mahalanobis
metrics. Their method includes an extension for computing low-dimensional non-linear features us-
ing the kernel trick. However, this approach computes dimensionality reductions through a two-step
solution which involves first solving for a possibly full-rank metric and then estimating the low-rank
approximation via spectral decomposition. Besides being suboptimal, this approach is impractical
for classification problems with high-dimensional data, asit requires solving for a number of un-
knowns that is quadratic in the number of input dimensions. Furthermore, the metric is trained with



the aim of collapsing all examples in the same class to a single point. This task is difficult to achieve
and not strictly necessary for good kNN classification performance. The Support Vector Decompo-
sition Machine (SVDM) [7] is also similar in spirit to our approach. SVDM optimizes an objective
that is a combination of dimensionality reduction and classification. Specifically, a linear mapping
from input to feature space and a linear classifier applied tofeature space, are trained simultane-
ously. As in our work, results in their paper demonstrate that this joint optimization yields better
accuracy than that achieved by learning a low-dimensional representation and a classifier separately.
Unlike our method, which can be applied without any modification to classification problems with
more than two classes, SVDM is formulated for binary classification only.

6 Discussion

We have presented a novel algorithm that simultaneously optimizes the objectives of dimensionality
reduction and metric learning. Our algorithm seeks, among all possible low-dimensional projec-
tions, the one that best satisfies a large margin metric objective. Our approach contrasts techniques
that are unable to learn metrics in high-dimensions and thatmust rely on dimensionality reduction
methods to be first applied to the data. Although our optimization is not convex, we have exper-
imentally demonstrated that the metrics learned by our solution are consistently superior to those
computed by globally-optimal methods forced to search in a low-dimensional subspace.

The nonlinear version of our technique requires us to compute the kernel distance of a query point to
all training examples. Future research will focus on rendering this algorithm ”sparse”. In addition,
we will investigate methods to further reduce overfitting when learning dimensionality reduction
from very high dimensions.
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