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Abstract

Metric learning has been shown to significantly improve tteusacy ofk-nearest
neighbor (kNN) classification. In problems involving thansls of features, dis-
tance learning algorithms cannot be used due to overfittiyhFagh computa-
tional complexity. In such cases, previous work has relied two-step solution:
first apply dimensionality reduction methods to the datal ten learn a met-
ric in the resulting low-dimensional subspace. In this pape show that better
classification performance can be achieved by unifying thjeatives of dimen-
sionality reduction and metric learning. We propose a netthat solves for
the low-dimensional projection of the inputs, which minkes a metric objective
aimed at separating points in different classes by a larggimaThis projection
is defined by a significantly smaller number of parametera thatrics learned
in input space, and thus our optimization reduces the riskserfitting. Theory
and results are presented for both a linear as well as a kazdelersion of the
algorithm. Overall, we achieve classification rates simidand in several cases
superior, to those of support vector machines.

1 Introduction

The technique ok-nearest neighbor (KNN) is one of the most popular classificaalgorithms.
Several reasons account for the widespread use of this theithe straightforward to implement,

it generally leads to good recognition performance thaokke non-linearity of its decision bound-
aries, and its complexity is independent of the number afsgla. In addition, unlike most alterna-
tives, KNN can be applied even in scenarios where not aljoaites are given at the time of training,
such as, for example, in face verification applications wtbe subjects to be recognized are not
known in advance.

The distance metric defining the neighbors of a query poaytgph fundamental role in the accuracy
of KNN classification. In most cases Euclidean distanceesl @s a similarity measure. This choice
is logical when it is not possible to study the statisticshef dlata prior to classification or when it is

fair to assume that all features are equally scaled and lgqestvant. However, in most cases the
data is distributed in a way so that distance analysis alongesspecific directions of the features
space can be more informative than along others. In sucls easbwhen training data is available
in advance, distance metric learning [5, 10, 4, 1, 9] has Bhewn to yield significant improvement

in KNN classification. The key idea of these methods is toyafsphsformations to the data in order
to emphasize the most discriminative directions. Eucliddiatance computation in the transformed
space is then equivalent to a non-uniform metric analystikeroriginal input space.

In this paper we are interested in cases where the data todoefoisclassification is very high-
dimensional. An example is classification of imagery dathictv often involves input spaces of
thousands of dimensions, corresponding to the humber @lixMetric learning in such high-
dimensional spaces cannot be carried out due to overfithdghayh computational complexity. In
these scenarios, even kNN classification is prohibitivedgemsive in terms of storage and com-
putational costs. The traditional solution is to apply disienality reduction methods to the data



and then learn a suitable metric in the resulting low-dinre subspace. For example, Princi-
pal Component Analysis (PCA) can be used to compute a linag@ping that reduces the data to
tractable dimensions. However, dimensionality reduati@thods generally optimize objectives un-
related to classification and, as a consequence, mighta@fenepresentations that are significantly
less discriminative than the original data. Thus, metraznéng within the subspace might lead to
suboptimal similarity measures. In this paper we show tle#teb performance can be achieved by
directly solving for a low-dimensional embedding that ogiies a measure of KNN classification
performance.

Our approach is inspired by the solution proposed by Wegdregt al. [9]. Their technique learns
a metric that attempts to shrink distances of neighboringlaily-labeled points and to separate
points in different classes by a large margin. Our contidsubver previous work is twofold:

1. We describe the Large Margin Component Analysis (LMCAjoathm, a technique that
solves directly for a low-dimensional embedding of the dateh that Euclidean distance
in this space minimizes the large margin metric objectivecdbed in [9]. Our approach
solves for onlyD - d unknowns, where) is the dimensionality of the inputs arldis the
dimensionality of the target space. By contrast, the allgoriof Weinberger et al. [9]
learns a Mahalanobis distance of the inputs, which reqsiobsng for aD x D matrix,
using iterative semidefinite programming methods. Thigwigation is unfeasible for large
values ofD.

2. We propose a technique that learns Mahalanobis distamtgcemin nonlinear feature
spaces. Our approach combines the goal of dimensionatityction with a novel "ker-
nelized” version of the metric learning objective of Weirdper et al. [9]. We describe an
algorithm that optimizes this combined objective direcife demonstrate that, even when
data is low-dimensional and dimensionality reduction ismeeded, this technique can be
used to learn nonlinear metrics leading to significant inmenoent in KNN classification
accuracy over [9].

2 Linear Dimensionality Reduction for Large Margin kNN Classification

In this section we briefly review the algorithm presented9hfpr metric learning in the context
of kNN classification. We then describe how this approach lmameneralized to compute low
dimensional projections of the inputs via a novel direciroation.

A fundamental characteristic of kNN is that its performadoes not depend on linear separability
of classes in input space: in order to achieve accurate kidikification it is sufficient that the
majority of thek-nearest points of each test example have correct label.wbhle of Weinberger
et al. [9] exploits this property by learning a linear trarsfiation of the input space that aims at
creating consistently labelddnearest neighborhoods, i.e. clusters where each tragmiagple
and itsk-nearest points have same label and where points diffgréatibled are distanced by an
additional safety margin. Specifically, giveninput examples;, ..., x,, in R and corresponding
class labelgy, ..., y,, the technique in [9] learns the x D transformation matrid that optimizes
the following objective function:
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wheren,; € {0, 1} is a binary variable indicating whether exampleis one thek-closest points
of x; that share the same labgl, c is a positive constanty;; € {0,1} is 1 iff (y; = ¥;), and
h(s) = max(s,0) is the hinge function. The objectivéL) consists of two contrasting terms. The
first aims at pulling closer together points sharing the séabel and that were neighbors in the
original space. The second term encourages distancingeeachplex; from differently labeled
points by an amount equal to 1 plus the distance fsgnio any of itsk similarly-labeled closest
points. This term corresponds to a margin condition sinlahat of SVMs and it is used to improve
generalization. The constantontrols the relative importance of these two competingseand it
can be chosen via cross validation.

Upon optimization ofe(L), test examplex, is classified according to the kNN rule applied to its
projectionx; = Lx,, using Euclidean distance as metric. Equivalently, suahsification can be



interpreted as KNN classification in the original input spaader the Mahalanobis distance metric
induced by matrixM = LTL. Although Equation 1 is non-convex i, it can be rewritten as
a semidefinite prograra(M) in terms of the metridM [9]. Thus, optimizing the objective iV
guarantees convergence to the global minimum, regardfessialization.

When data is very high-dimensional, minimizationc@M) using semidefinite programming meth-
ods is impractical because of slow convergence and ovegfiftioblems. In such cases [9] propose
applying dimensionality reduction methods, such as PClo@d by metric learning within the
resulting low-dimensional subspace. As outlined abovie,glocedure leads to suboptimal metric
learning. In this paper we propose an alternative approaghsolves jointly for dimensionality
reduction and metric learning. The key idea is to choosertiresformatiorL in Equation 1 to be a
nonsquare matrix of sizéx D, with d << D. ThusL defines a mapping from the high-dimensional
input space to a low-dimensional embedding. Euclidearanég in this low-dimensional embed-
ding is equivalent to Mahalanobis distance in the originplit space under the rank-deficient metric
M = LTL (M has now rank at most).

Unfortunately, optimization of(M) subject to rank-constraints & leads to a minimization prob-
lem that is no longer convex [8] and that is awkward to solvereHwe propose an approach for
minimizing the objective that differs from the one used ih [Bhe idea is to optimize Equation 1
directly with respect to the nonsquare matixWe argue that minimizing the objective with respect
to L rather than with respect to the rank-deficiéhk D matrix M, offers several advantages. First,
our optimization involves only- D rather tharD? unknowns, which considerably reduces the risk of
overfitting. Second, the optimal rectangular maltigkomputed with our method automatically sat-
isfies the rank constraints & without requiring the solution of difficult constrained ririmization
problems. Although the objective optimized by our methodl& not convex, we experimentally
demonstrate that our solution converges consistently ttetmetrics than those computed via the
application of PCA followed by subspace distance learnsmg (Section 4).

We minimizee(L) using gradient-based optimizers, such as conjugate graaiethods. Differen-
tiating ¢(L) with respect to the transformation matilixgives the following gradient for the update
rule:
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We handle the non-differentiability d@f(s) ats = 0, by adopting a smooth hinge function as in [8].

3 Nonlinear Feature Extraction for Large Margin KNN Classification

In the previous section we have described an algorithm thiatly solves for linear dimensionality
reduction and metric learning. We now describe how to "kkzaéthis method in order to compute
non-linear features of the inputs that optimize our distdearning objective. Our approach learns
a low-rank Mahalanobis distance metric in a high dimenditesture spacé’, related to the inputs
by a nonlinear map : R” — F. We restrict our analysis to nonlinear magpor which there exist
kernel functionsk that can be used to compute the feature inner products wittastying out the
map, i.e. such thdt(x;,x;) = ¢ ¢;, where for brevity we denoteg; = ¢(x;).

We modify our objective (L) by substituting inputs; with featuress(x;) into Equation 1L is now
a transformation from the spadeinto a low-dimensional spad?. We seek the transformatidn
minimizing the modified objective functio{L).

The gradient in feature space can now be written as:

36
= ZZUU (¢ gf)])

202 772] yil S'L]l)L [(sz - ¢])(¢ d)]) (d)l - ¢l)(¢l - ¢Z)T] (3)

ijl
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Letd = [¢y, ..., gb,L}T. We consider parameterizationsloff the formL = Q®, where(2 is some
matrix allowing us to writd, as a linear combination of the feature points. This form aflmear
map is analogous to that used in kernel-PCA and it allows patameterize the transformatituin
terms of onlyd - n parameters, the entries of the matixWe now introduce the following Lemma
which we will later use to derive an iterative update ruleXor

Be(L)

Lemma 3.1 The gradient in feature space can be computed as
features ¢; solely in terms of dot products (¢7 ¢;).

= I'®, where I" depends on

Proof Definingk; = ®¢; = [k(x1,%;), ..., k(Xn, xi)]T, non-linear feature projections can be com-
puted adL¢; = Q®¢; = Qk;. From this we derive:
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This result allows us to implicitly solve for the transfortioen without ever computing the features
in the high-dimensional spade: the key idea is to iteratively updaterather tharl.. For example,
using gradient descent as optimization we derive updage rul

Oe(L)
oL L=Leq
where\ is the learning rate. We carry out this optimization by itevgthe updaté€ — (Q — AI')

until convergence. For classification, we project point®dhe learned low-dimensional space by
exploiting the kernel trickL¢, = Qk,.

Lnew = Lold - A

= [Qold - )\Fold] d = Qnewq) (5)

4 Experimental results

We compared our methods to the metric learning algorithm efndérger et al. [9], which we
will refer to as LMNN (Large Margin Nearest Neighbor). We UseEMCA (kernel-LMCA) to
denote the nonlinear version of our algorithm. In all of tkpeximents reported here, LMCA was
initialized using PCA, while KLMCA used the transformatioomputed by kernel-PCA as initial
guess. The objectives of LMCA and KLMCA were optimized usihg steepest descent algorithm.
We experimented with more sophisticated minimizationtéghes, including the conjugate gradient
method and the Broyden-Fletcher-Goldfarb-Shanno quasitbh algorithm [6], but no substantial
improvement in performance or speed of convergence was\athi The KLMCA algorithm was
implemented using a Gaussian RBF kernel. The number of steasighbors, the weight in
Equation 1, and the variance of the RBF kernel, were all aatmally tuned using cross-validation.

The first part of our experimental evaluation focuses onsdigation results on datasets with high-
dimensionality, Isolet, AT&T Faces, and StarPlus fMRI:
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Figure 1: Classification error rates on the high-dimensional datasets Isolet, AB&&sand StarPlus fMRI
for different projection dimensions. (a) Training error. (b) Testinge

e Isolet is a dataset of speech features from the UC Irvine repositanysisting of 6238
training examples and 1559 testing examples with 617 ateg There are 26 classes
corresponding to the spoken letters to be recognized.

e The AT&T Face$ database contains 10 grayscale face images of each of 4@ctimib-
jects. The images were taken at different times, with vayyilumination, facial expres-
sions and poses. As in [9], we downsampled the originalx 92 images to siz&8 x 31,
corresponding to 1178 input dimensions.

¢ The StarPlus fMR dataset contains fMRI sequences acquired in the contextagaitive
experiment. In these trials the subject is shown for a fewsés either a picture or a sen-
tence describing a picture. The goal is to recognize theinpactivity of the subject from
the fMRI images. We reduce the size of the data by considemhgvoxels corresponding
to relevant areas of the brain cortex and by averaging theitgdn each voxel over the
period of the stimulus. This yields data of size 1715 for eubj04847,” on which our
analysis was restricted. A total number of 80 trials arelalsé for this subject.

Except for Isolet, for which a separate testing set is spkifive computed all of the experimental
results by averaging over 100 runs of random splitting ofetkemples into training and testing sets.
For the fMRI experiment we used at each iteration 70% of tha fita training and 30% for testing.
For AT&T Faces, training sets were selected by sampling géaaat random for each person. The
remaining 3 images of each individual were used for testing.

Unlike LMCA and KLMCA, which directly solve for low-dimensnal embeddings of the input
data, LMNN cannot be run on datasets of dimensionalitiek sgdhose considered here and must
be trained on lower-dimensional representations of thatsipAs in [9], we applied the LMNN
algorithm on linear projections of the data computed usi@@ Prigure 1 summarizes the training
and testing performances of KNN classification using theinsfearned by the three algorithms for
different subspace dimensions. LMCA and KLMCA give consididy better classification accu-
racy than LMNN on all datasets, with the kernelized versibow algorithm always outperforming
the linear version. The difference in accuracy between tgordhms and LMNN is particularly
dramatic when a small number of projection dimensions isluse such cases, LMNN is unable
to find good metrics in the low-dimensional subspace contphyePCA. By contrast, LMCA and
KLMCA solve for the low-dimensional subspace that optirsitiee classification-related objective

Available at http://www.ics.uci.eds/mlearn/MLRepository.html
2pvailable at http://iwww.cl.cam.ac.uk/Research/DTG/attarchive/facbdagahtml
3Available at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8 Liwww



Figure 2: Image reconstruction from PCA and LMCA features.I(put images. (b) Reconstruc-
tions using PCA (left) and LMCA (right). (c) Absolute diffemce between original images and
reconstructions from features for PCA (left) and LMCA (rigiRed denotes large differences, blue
indicates similar grayvalues. LMCA learns invariance feets that are irrelevant for classification:
non-uniform illumination, facial expressions, and glas@eaining data contains images with and
without glasses for same individuals).

of Equation 1, and therefore achieve good performance evam\projecting to very low dimen-
sions. In our experiments we found that all three classifioatlgorithms (LMNN, LMCA+kNN,
and KLMCA+kNN) performed considerably better than kNN wsihe Euclidean metric in the PCA
and KPCA subspaces. For example, using 10 in the AT&T dataset, KNN gives a 10.9% testing
error rate when used on the PCA features, and a 9.7% testmyate when applied to the nonlinear
features computed by KPCA.

While LMNN is applied to features in a low-dimensional spadélCA and KLMCA learn a low-
rank metric directly from the high-dimensional inputs. Gequently the computational complexity
of our algorithms is higher than that of LMNN. However, we bdgund that LMCA and KLMCA
converge to a minimum quite rapidly, typically within 20riéions, and thus the complexity of these
algorithms has not been a limiting factor even when appbegety high-dimensional datasets. As a
reference, using = 10 andK = 3 on the AT&T dataset, LMNN learns a metric in about 5 seconds,
while LMCA and KLMCA converge to a minimum in 21 and 24 secondspectively.

Itis instructive to look at the preimages of LMCA data embiedd. Figure 2 shows comparative re-
constructions of images obtained from PCA and LMCA featimesverting their linear mappings.
The PCA and LMCA subspaces in this experiment were compubead ¢ropped face images of size
50 x 50 pixels, taken from a set of consumer photographs. The datas&ins 2459 face images
corresponding to 152 distinct individuals. A totaldt 125 components were used. The subjects
shown in Figure 2 were not included in the training set. Foivargtarget dimensionality, PCA has
the property of computing the linear transformation mirzimg the reconstruction error under the
L2 norm. Unsurprisingly, the PCA face reconstructions atteeenely faithful reproductions of the
original images. However, PCA accurately reconstructs wisual effects, such as lighting varia-
tions and changes in facial expressions, that are unimpddathe task of face verification and that
might potentially hamper recognition. By contrast, LMC/Aeke a subspace where neighboring ex-
amples belong to the same class and points differentlydalsale separated by a large margin. As a
result, LMCA does not encode effects that are found to begificant for classification or that vary
largely among examples of the same class. For the case ofdaifieation, LMCA de-emphasizes
changes in illumination, presence or absence of glassesmaitidg expressions (Figure 2).

When the input data does not require dimensionality rednctiMNN and LMCA solve the same
optimization problem, but LMNN should be preferred over LK@ light of its guarantees of
convergence to the global minimum of the objective. Howeseen in such cases, KLMCA can be
used in lieu of LMNN in order to extract nonlinear featuresirthe inputs. We have evaluated this
use of KLMCA on the following low-dimensional datasets frtime UCI repository: Bal, Wine, Iris,
and lonosphere. All of these datasets, except lonosphave,lfeen previously used in [9] to assess
the performance of LMNN. The dimensionality of the data iest sets ranges from 4 to 34. In order
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Figure 3: kNN classification accuracy on low-dimensiondadats: Bal, Wine, Iris, and lonosphere.
(a) Training error. (b) Testing error. Algorithms are kNNngsEuclidean distance, LMNN [9], KNN
in the nonlinear feature space computed by our KLMCA alfamitand multiclass SVM.

to compare LMNN with KLMCA under identical conditions, KLMECwas restricted to compute a
number of features equal to the input dimensionality, altftoin our experience using additional
nonlinear features often results in better classificatieniggmance. Figure 3 summarizes the results
of this comparison. Again, we averaged the errors over 106 with different 70/30 splits of the
data for training and testing. On all datasets except on Warewhich the mapping to the high-
dimensional space seems to hurt performance (note alsaghetor rate of SVM), KLMCA gives
better classification accuracy than LMNN. Note also thattter rates of KLMCA are consistently
lower than those reported in [9] for SVM under identicalniag and testing conditions.

5 Relationship to other methods

Our method is most similar to the work of Weinberger et al. @lr approach is different in focus
as it specifically addresses the problem of kNN classificatibvery high-dimensional data. The
novelty of our method lies in an optimization that solves diata reduction and metric learning
simultaneously. Additionally, while [9] is limited to leming a global linear transformation of the
inputs, we describe a kernelized version of our method ttteiets non-linear features of the inputs.
We demonstrate that this representation leads to significganovements in KNN classification both
on high-dimensional as well as on low-dimensional data. &pproach bears similarities with Lin-
ear Discriminant Analysis (LDA) [2], as both techniquesvedior a low-rank Mahalanobis distance
metric. However, LDA relies on the assumption that the ctiisgibutions are Gaussian and have
identical covariance. These conditions are almost alwaylated in practice. Like our method,
the Neighborhood Component Analysis (NCA) algorithm by dbalrger et al. [4] learns a low-
dimensional embedding of the data for kNN classificatiomgs direct gradient-based approach.
NCA and our method differ in the definition of the objectiveftion. Moreover, unlike our method,
NCA provides purely linear embeddings of the data. A cotiradoss function analogous to the
one used in this paper is adopted in [1] for training a sirtitanetric. A siamese architecture con-
sisting of identical convolutional networks is used to paeterize and train the metric. In our work
the metric is parameterized by arbitrary nonlinear mapsmoich kernel functions exist. Recent
work by Globerson and Roweis [3] also proposes a techniquieéoning low-rank Mahalanobis
metrics. Their method includes an extension for computimgdimensional non-linear features us-
ing the kernel trick. However, this approach computes diirality reductions through a two-step
solution which involves first solving for a possibly fullfra metric and then estimating the low-rank
approximation via spectral decomposition. Besides beifggtimal, this approach is impractical
for classification problems with high-dimensional datajtagquires solving for a number of un-
knowns that is quadratic in the number of input dimensionstiermore, the metric is trained with



the aim of collapsing all examples in the same class to aesjpgiht. This task is difficult to achieve
and not strictly necessary for good kNN classification pennce. The Support Vector Decompo-
sition Machine (SVDM) [7] is also similar in spirit to our apgach. SVDM optimizes an objective
that is a combination of dimensionality reduction and dfasgion. Specifically, a linear mapping
from input to feature space and a linear classifier applief@ature space, are trained simultane-
ously. As in our work, results in their paper demonstrate thg joint optimization yields better
accuracy than that achieved by learning a low-dimensi@mksentation and a classifier separately.
Unlike our method, which can be applied without any modifarato classification problems with
more than two classes, SVDM is formulated for binary classifon only.

6 Discussion

We have presented a novel algorithm that simultaneouslynggis the objectives of dimensionality
reduction and metric learning. Our algorithm seeks, amdhgassible low-dimensional projec-
tions, the one that best satisfies a large margin metric tlgecOur approach contrasts techniques
that are unable to learn metrics in high-dimensions andrthet rely on dimensionality reduction
methods to be first applied to the data. Although our optitidnais not convex, we have exper-
imentally demonstrated that the metrics learned by outtisollare consistently superior to those
computed by globally-optimal methods forced to search mwadimensional subspace.

The nonlinear version of our technique requires us to coah kernel distance of a query point to
all training examples. Future research will focus on remdgthis algorithm "sparse”. In addition,
we will investigate methods to further reduce overfittingemHearning dimensionality reduction
from very high dimensions.
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