
Final Report

Eric Trautmann
COSC 134

June 2, 2009

1 Introduction

Typical obstacle-recognition systems on mobile robots use stereo-vision or
laser ranging to perform classification. The Yeti Robot, a robot designed to
perform medium range autonomous traverses in Antarctica and Greenland,
is not currently equipped with vision or LIDAR, but has a proprioceptive
sensor suite including 6-axis IMU, wheel encoders, wheel motor current, and
GPS. The purpose of this project is to increase the mobility of the Yeti robot
by enabling it to recognize obstacles in real time, so it can appropriately
recover in the event that it becomes immobilized. Different discrete types of
obstacles, like a step obstruction, steep slope, or deep snow, require differ-
ent control strategies for optimal recovery. By identifying how the robot is
immobilized, the robot can then apply an appropriate recovery strategy.

2 Obstacle Classification

There are several possible approaches one could take towards recognizing
discrete obstacle classes using proprioceptive sensor data. The Yeti robot
current samples its sensors at 20 Hz, providing relatively fine resolution over
a time-history during an immobilization event. This project aims to prove
the viability of obstacle recognition using time-series sensor data. There
are several candidate methods to choose from, including Hidden Markov
Models (HMMs), Linear Dynamic Systems (LDS), or a more classic system-
identification or dynamic modeling approach that is more classic to robotics
and engineering research.

1



The simplest approach is to use Hidden Markov Models, which model a
sequence of observed data as being produced by a first-order hidden Markov
process. HMMs are frequently used for different sequence classification tasks,
including handwriting recognition, speech recognition, or gesture recognition
[1, 2, 3]. The graph structure describing this model is shown in figure 1. This
structure represents a state space model, familiar to roboticists and systems
engineers.

Z(T-1) Z(T) Z(T+1)

X(T-1) X(T) X(T+1)

Latent 
Variable

Observation

Figure 1: Hidden Markov Model graph structure An HMM models a
sequence of observations X as being produced by hidden state variables Z.

The Hidden Markov Model can be used to model either discrete data or
continuous data. Since we’re attempting to perform sequence classification
using our sensor readings, it makes sense to use a multivariate gaussian dis-
tribution or gaussian mixture model to represent the output data. HMMs
assume that the hidden states are discrete, which is a gross simplification of
the physical system we’re trying to model. This is not a problem, however,
since our main task is to perform sequence classification, and not recover pa-
rameters defining the dynamics of the robot and how it responds to inputs.
If we wanted to model the latent variables as continuous, we could use Linear
Dynamic Systems (LDS), though I’ve found that this is not necessary for the
sequence classification task here.

A different approach is to apply system ID to recover the system inputs
that create a given dynamic output. There are a number of algorithms
appropriate for recovering model parameters from sets of input/output data,
but this approach overcomplicates the task of classification and is unlikely
to yield better results.

An HMM λ is represented by several parameters π,A, φ. π represents
the initial state probability distribution, A represents the state transition
probabilities, and φ represents the output distribution for each state. This

2



structure is shown graphically in figure 2

A1n

A11

k = 1 k = 2 k = n

An1

A21

A12
A2n

An2

State 
(hidden)

Observation
(multivariate 
gaussian)

A22
Ann

ϕ1
ϕ2

ϕ3

Figure 2: Hidden Markov Model States k1, k2, . . . , kn have transition
probabilities to successive states, and an output distribution φ that describes
the expected distribution of output data for each state.

2.1 HMM Sequence Classification

There are three canonical problems associated with HMM’s described in de-
tail in Rabiner [2] and Dugad [4].

• Problem 1 - Given a sequence of observations O1, O2, . . . , Ot and a
trained HMM λ, find the probability the model produced the observa-
tion sequence. This problem can be solved using the forward-backward
algorithm.

• Problem 2 - Given an observation sequence, find the optimal state
sequence that produced these observations. This problem is solved
using the Viterbi algorithm.

• Problem 3 - Given a series of observations, optimize model parame-
ters {π, λ, φ} to maximize p(O, λ). A solution to this problem can be
calculated using the Baum-Welch algorithm.

3



Our task of classification reduces to finding solutions to problems 1 and 3
using an approach similar to that proposed by Rabiner [2] for speech recog-
nition. Luckily, there are established algorithms that efficiently calculate
the solutions to the three canonical HMM problems. These algorithms ex-
ploit the Markov properties of the model to efficiently calculate optimal solu-
tions rather than exhaustively enumerating all possible solutions and select-
ing the best. The forward-backward algorithm, the Viterbi algorithm, and
the Baum-Welch algorithm are discussed in [2] and interested readers should
refer to this source for detailed description and implementation details.

Classification is performed by training an HMM on multiple sequences
from a given obstacle class, and test sequences are evaluated by selecting the
model with the highest probability of producing the given output sequence.
The training and evaluation steps are:

1. Train HMM λ using multiple sequences of training data for each discrete
obstacle class. This corresponds to finding a solution to problem 3
described above.

2. Evaluate the probability that each model produced the test observation
sequence in question. This corresponds to solving problem 1 above.

3. Select the class corresponding to the model with the highest probability
of producing the given observation sequence.

In reality, the number of datasets available for classification is extremely
limited. Ideally, we would like to compare data from three main classes of
obstacles that the robot faces in a polar environment: step obstructions (sas-
trugi features), steep slopes, and deep snow. Unfortunately, not enough data
was available for deep snow to be able to perform meaningful classification,
so the validity of this method must be tested using step obstructions and
slopes only.

Collecting data is extremely expensive, as each run can take up to an hour
to collect and process. Nine runs worth of data are available for each feature.
Data collection is discussed in more detail in section 3. Due to the small
amount of training data, classification is performed by holding out one run
from a set of features. An HMM for this obstacle is trained using the other
eight runs, and the model representing the other obstacle is trained using
all nine available data runs. The probability that each model produced the
held-out sequence is computed, and the sequence classified based on which

4



model is more probable. This process is repeated for all eighteen data runs
to produce a final classification score.

It is important to note the differences between this procedure and a more
classical model selection problem. In this case, the models used for classifi-
cation are not re-used between sequences. This is not the same procedure as
leave-one-out cross validation, in which cross validation is used to select the
best model. In this case, we’re not trying to optimize model performance as
a function of parameters, but instead want to gauge classification accuracy
using a limited set of data.

2.2 Tools

This project has been implemented using data collected with the Yeti robot.
Data were collected during runs in which the robot was driven manually while
sensor data was logged using a CR3000 Datalogger. The collection of runs
was imported into matlab, and processed into datasets using the procedure
outlined in section 3.

The two major components of this project are: 1) data acquisition and
data set preparation and 2) data processing and classification. Matlab is used
to import, filter, scale data, and process data into cell arrays that represent
a complete set of data for all runs. The Baum-Welch algorithm, forward-
backward algorithm, and Viterbi Algorithm are implemented using an open-
source HMM toolbox available under the GPL[5].

3 Data

Data were collected for nine runs in which the robot became immobilized on
different step obstructions, and nine runs in which the robot was immobilized
after it failed to climb a slope. Data were collected on two different days and
on different steps and slopes. Six of the slope obstacle runs and three of
the step obstruction runs were collected on 2/25/09 on man-made obstacles
at the rugby fields north of campus, and the remainder of the runs were
collected on 3/25/09 at a different field further north.

Conditions on 2/25/09 were below freezing with densely packed snow
that was several days old. On 3/25/09, the temperature was above freezing,
and the snow was heavy, wet, and slushy. This made it difficult for the
robot to gain traction, which is perfectly acceptable for these tests. Due to

5



the difference in surface conditions, we would expect the signature from the
IMU, the distribution of motor currents, and other features included in the
feature vector to vary significantly between these two days.

Data were imported into Matlab and inspected to ensure that each of the
sensors was working properly during each run. Runs in which sensors were
not working or outputting spurious data were culled before adding data to the
data set. Each of the nine runs collected for each type of obstacle represents
a ‘clean’ data run with no spurious observations. It is an interesting matter
for further study to consider the impact of false sensor data on classification,
but has not yet been considered in this work.

Each sequence from a data run is intended to capture the class of the
obstacle using data from immediately before immobilization. For simplicity,
we consider each data run to be approximately two seconds worth of data
preceding immobilization. This corresponds to a sequence length of 41 data
points in each run. The exact indices of which data to use were selected
by hand using a simple threshold scheme to define full immobilization. The
end of a data sequence was tagged at five samples past the point where each
wheel exhibited wheel-slip above 90%. Wheels slip for each wheel is defined
as:

S =
(Rω − V )

Rω
(1)

where R is the wheel radius, V is the longitudinal velocity of the wheel
center, approximated by the optical velocity sensor, and ω is the angular
speed of the wheels as calculated using differential measurements from the
wheel encoders.

The data sets were constructed using all possible data that might be used
for HMM-based classification. The classification results presented here use
only the first six features, including optical velocity, IMU X-axis acceleration,
and four-wheel motor currents. The remaining features are included in the
data set for completeness and potential future work.

3.1 Data Preparation

Data are sampled at 20Hz using a CR3000 data-logger from Campbell Scien-
tific. The wheel motor currents and IMU signals are first fed through a signal
conditioning board that filters the signals using simple first-order RC filter
with a cutoff frequency of 32 Hz. Unfortunately this board was designed

6



without this application in mind, and the filter cutoff is above the Nyquist
frequency of 10 Hz. We can compensate for this by filtering the data in
software using Matlab’s discrete-time filtering function.

Each input feature is filtered using a basic moving-average filter with a
window of 5 samples. It is trivial to implement a more sophisticated digital
filter such as an FIR filter if different specifications are required for future
work. The original data set is filtered prior to selecting the 41-sample se-
quences used for model training and evaluation. This ensure that all data
in a given run are filtered identically, and the data at the beginning of the
sequence are calculated using data values from several points outside the
range. This approach is perfectly valid whether we choose to perform se-
quence classification on or off-line since filtering only uses past data points,
in contrast to ‘smoothing,’ which incorporates future data points.

After filtering the data, each sequence is standardized by subtracting the
mean value for each feature from each value. The data are then normalized by
feature-wise variance such that the resulting feature sequences have similar
dynamic ranges. Experimental results suggest that this normalization is
required to avoid numerical problems during training.

The un-normalized data sets are presented in figures 5-8. These figures
are produced as images in Matlab, which makes it possible to visualize each
sequence and the relationship between features in the data. Figure 3 pro-
vides a key for interpreting each image. The images use pixel values scaled
relative to the data within each image, so the same color does not necessarily
represent the same data value in two different images.

7



Figure 3: Example Data image - The purpose of imaging data this way is
to observe the relationships between features for each type of obstacle. Colors
are relative to each individual image and not representative of absolute data
values.

8



From these data visualizations, we can see that clear patterns in the step
and slope obstacles, suggesting at a qualitative level that sequence classifica-
tion is possible. Figure 4 presents an interpretation of these patterns based
on an intuitive understanding of the robot dynamics through the two types
of immobilization events.

IMU Deceleration
Spike

Slow Current 
Increase

Slope Obstacle 
Data Sequence

Optical Velocity
X-Axis Acceleration (IMU)

Motor Currents (x4)

Encoder Velocity (x4)

Wheel Slip (x4)

X-Axis Acceleration (Optical)
Z-Axis Acceleration (IMU)

Data Point 

Two Seconds

Slow Deceleration

Fast Current 
Increase

Step Obstacle 
Data Sequence

Optical Velocity
X-Axis Acceleration (IMU)

Motor Currents (x4)

Encoder Velocity (x4)

Wheel Slip (x4)

X-Axis Acceleration (Optical)
Z-Axis Acceleration (IMU)

Data Point 

Two Seconds

Front Wheels
Slip First

Figure 4: Intuitive visual pattern interpretation.

9



Figure 5: Immobilization events recorded on slope obstacles from 2/25/09.

10



Figure 6: Immobilization events recorded on slope obstacles from 3/25/09.

11



Figure 7: Immobilization events recorded on step obstacles from 3/25/09.

12



Figure 8: Immobilization events recorded on slope obstacles from 2/25/09.

13



4 HMM Sequence Classification

Several test were conducted using different combinations of data runs, feature
vectors (subsets of the data presented above), and model parameters.

4.1 Classification Results

The main test was performed using a data set consisting of all nine slope
obstacle trials and all nine step obstacles collected on 2/25 and 3/25/09.
Each run sequence was classified by constructing an HMM using all other
trials for that obstacle, while a second model was created using all of the
available data for the opposite class. HMM’s were constructed using six
hidden states, though we have little intuition to guide our interpretation of
what these hidden states physically represent.

Each held-out data sequence was classified according to the model that
yielded the highest probability p(O|λ). This process was then repeated for
each of the 18 trials in the test. Only six features were used, including optical
velocity, IMU X-axis acceleration, and four-wheel motor currents.

These six features likely contain the most informative signal and infor-
mation useful for classifying obstacles. For example, the robot experiences
different levels of deceleration as it contacts a step vs. a slope, and once
immobilized, the robot’s weight distribution and contact angle leads to dif-
ferences in the distribution of motor currents among the four wheels for a
given obstacle. The wheel slip measurements are slightly different for the two
cases, but yield a smaller signal. The results here suggest that it is not nec-
essary to include these features, though future work with a larger multi-class
obstacle recognition problem may benefit by including these features.

This limited feature set yielded excellent classification results, shown in
Table 1. All 18 sequences were correctly classified using the HMMs and
overall classification accuracy was 100%.

Table 1: Test 1 - Confusion Matrix

Predictions\Targets Step Slope

Step 9 0
Slope 0 9

14



The same experiment was performed while varying different parameters,
including the number of hidden states and the features used to determine
the simplest model that accurately represents the data. Unfortunately, due
to the limited number of training sequences, the granularity in the accuracy
makes it difficult to evaluate different parameters.

I found that classification performance began to decrease as fewer than six
features were used. I tried training models using just the two left wheels of the
robot, ignoring the right wheels, and including velocity and IMU acceleration
features. In this case, one of the 18 sequences was misclassified. Dropping
more features from the set further decreased performance as expected. I also
found that with fewer than six states, the classification accuracy decreased as
one or two of the sequences were misclassified. More than six states does not
hurt performance, but increase model complexity and is thus undesirable.

5 State Sequence Prediction

It is not necessary for sequence classification to calculate the predicted hidden
state sequence for a given model and series of observations, but it is an
interesting question to gain greater insight into the problem. Calculating
an optimal state sequence requires us to define what we mean by optimal.
In this case, it makes most sense to find a state sequence I that maximizes
p(I|O, λ). We can do this using the Viterbi algorithm, which is described in
detail in [2].

Figure 9 shows the predicted state sequences for an HMM trained on
step-obstruction data. We would expect that this model better represents
the step-obstruction data, and that the predicted state sequences for step-
obstruction data will more closely resemble each other than those sequences
predicted for slope data. This is, in fact, what we see.

It’s obvious from these plots that we placed no constraints on the form of
the learned HMM. It would be possible to constrain the learned state tran-
sition matrix A such that the model learns a left-to-right structure in which
states must progress sequentially. Many other alternative graph structures
exist, but for this work, we start with the simplest possible model that meets
our desired classification performance.

Figure 9 shows that the model learned a roughly left-to-right structure
without an explicit constraint. While the hidden states don’t correspond to
anything that we can physically interpret, intuitively it makes sense that the

15



Figure 9: State sequence predictions for HMM trained on step obstruction
data.

16



model would learn this type of structure since our data is a time-series from
a physical system. We expect that the hidden state represents some aspect
of the robot’s position or internal state at a given point in time during the
sequence of immobilization. In the case of gene sequence identification using
HMM’s, we wouldn’t necessarily expect the same structure since the model
doesn’t represent a physical system as it evolves over time.

6 Discussion

These results, while based on relatively small data sets, strongly support the
idea that HMMs can be used to perform obstacle recognition on a robot using
proprioceptive sensor data. A system intended to be used online in a field-
deployed robot must be trained on a library of more than two obstacles, and
using more sequences than we had available for this work. These preliminary
results, however, strongly suggest that this method is effective and can be
generalized to other types of obstacles.

Unfortunately, the limited amount of training data means that classifica-
tion accuracy is quantized into coarse levels of 5.56%, making it difficult to
tune model parameters to improve classification accuracy. In this case, we
have perfect classification performance, so there is little information we can
use to improve our model or approach by constraining the state transition
matrix, choosing more states, or using different features. Once more data
becomes available, we can use standard cross-validation techniques to select
an optimal number of hidden states or select fewer features.

It may be possible to use similar methods for other questions of interest
to the robotics community, such as terrain classification. Current terrain
classification methods typically use visual classifiers or calculations of wheel
force vs. wheel slip to calculate terrain parameters. Using HMMs for terrain
classification would require sensitivity to higher-frequencies, and a higher
data sampling rate.

The next steps for future research are to collect a large set of examples
of immobilization data from other obstacle types, including deep snow, low-
cohesion ‘corn’ snow, wind-swept vertical ridges, and patches of ice. The
results here suggest that this method can easily generalize to a large number
of additional obstacles, but this needs to be verified in field testing. In
addition, the algorithms currently implemented using Matlab need to be
ported to Python or C for implementation in a real-time system.

17



References

[1] F Jelinek. Statistical methods for speech recognition. books.google.com,
Jan 1998.

[2] L Rabiner and B Juang. An introduction to hidden markov models. ieee
assp magazine, Jan 1986.

[3] J Bilmes. What hmms can do. IEICE TRANSACTIONS on Information
and Systems, Jan 2006.

[4] R Dugad and U Desai. A tutorial on hidden markov models. cite-
seerx.ist.psu.edu, Jan 1996.

[5] Kevin Murphy. Hidden markov model (hmm) toolbox for matlab, 1998.

18


