
Increasing the I.Q. of Your Smartphone:
Reducing Email Keystrokes

Using Personalized Word Prediction

Joseph A. Cooley
134 Final Project Milestone

jac@cs.dartmouth.edu

1 Introduction

In this work, we proposed to reduce the number of
keystrokes required to write email on mobile devices
such as smartphones. Existing devices can provide
a frustrating user experience because they include
small keyboards and context-insensitive typing cor-
rections, which lead to errors and a poor email ex-
perience. We proposed to use our personal email as
a source for both training and testing a model that
predicts accurately the next typed word.

Our initial research suggested that we use
a Markov model to compute P(wn|w1 · · · wn−1),
where wn is the nth word of an n-gram model and
that the Good-Turing method [2] may provide a suit-
able means for smoothing probability mass among
seen and unseen n-grams before predicting words.

In summary, we have completed the following
tasks and appear to be slightly ahead of schedule.

• Collect, parse, and split email bodies into n-
grams, and compute statistics for use in the pre-
diction model.

• Create the Markov-based, word prediction
model.

• Analyze model performance and productivity
increase in writing emails.

In the rest of this document, we will describe the
status of our research. In Section 2 we discuss the
dataset, its origin, characteristics, and preprocessing.
Then, in Section 3 we discuss the probability mass
estimator used to smooth n-gram distributions and
the technique used to predict words. In Section 4 we

begin to analyze the performance of our approach,
and in Section 5 we conclude by reviewing the sched-
ule.

2 Dataset

We built our dataset using the sent mailbox from our
gmail account. In total, the account contains nearly
1.4 GB of email total, approximately 500 MB of
which corresponds to sent mail. The volume includes
email headers, subject lines, message bodies, attach-
ments, and any message content typed by others such
as forwarded messages or reply-to text.

We fetched email from gmail using using a python
script and the secure IMAP protocol1. Python in-
cludes modules for IMAP, SSL (used to secure
IMAP), regular expression processing, and email
processing, which we used extensively to build our
dataset. Gmail transmitted each message in raw
RFC822 format, which our script received and stored
in a sqlite database. Then, we ran a separate python
script to strip away all but message bodies from each
message. A third script computed n-grams on each
of the bodies, where n ∈ {1, 2, 3}, and Table 1 shows
the vocabulary size and number of samples associ-
ated with each n-gram set.

Preprocessing

Preprocessing email was not straightforward. The
goal was to capture typed text, no more, and no less.
Unfortunately, many messages contained forwarded

1gmail supports secure IMAP access

1

n-gram Type Vocabulary Size # of Samples
unigram 59386 910812
bigram 268665 905937
trigram 422433 901314

Table 1: Dataset statistics for 4978 emails from
our gmail sent mailbox. The statistics are com-
puted after preprocessing that includes stripping
away message headers, attachments, and for-
warded or reply-to message components. Prepro-
cessing reduces signficantly the size of our dataset
from ≈ 500 MB to ≈ 6 MB.

or reply-to components in special formats. For ex-
ample, the character “>” at the beginning of a line
typically refers to a reply-to text that should be ig-
nored. In other special cases, constructions such as
“:)” refer to valid typed text (i.e., emoticons). For
these reasons, we preferred to forgo filtering punc-
tuation and stop and stemming words—we want to
account for frequently typed text and have not mea-
sured the impact of such filtering on the performance
of our system.

In addition, some email messages contain HTML
from web-based email systems, and others contain
base64 encoded objects such as pictures. Some mes-
sages contain signatures with long strings of “*”, “-”,
or “=” characters. We did not attempt to handle per-
fectly all these special cases (and more). Rather, to
address a majority of the issues, we used regular ex-
pressions such as the ones shown in Figures 1 and 2
to define which lines to skip and which characters to
strip before computing n-grams. In some cases, we
stripped away or ignored too much text and in others,
too little.

Finally, we track each message recipient set,
which includes names listed with the following ad-
dress fields: “Cc”, “Bcc”, and “To”. Each address
can contain an alias and an email address as in

“Joseph Cooley” <jac@cs.dartmouth.edu>.

In some cases, the alias is a duplicate address of the
one it precedes, as in the following:

“jac@cs.dartmouth.edu” <jac@cs.dartmouth.edu>.

We prevent cases like these from introducing dupli-
cate addresses within our data structures by main-

(ˆFrom:)|(ˆDate:)|(ˆSubject:)|
(ˆTo:)|(ˆ>)|(wrote:\s*$)|
(Original Message)|
(ˆ[0-9A-za-z+/]{30,}$)|
(ˆ[0-9A-Za-z+/]+[=]*\$)

Figure 1: Regular expression used to skip text.
Many messages include the string “Original Mes-
sage”, headers, and lines prefixed with “>” be-
cause the message is a reply to another message.
Others include base64 encoded text. These ex-
pressions allow the script to ignore such lines.

([<>,"]+)|(\w@\w)|([*]{2,})|
(\[mailto:.*\])|([-_]{2,})

Figure 2: Regular expression used to stip text. In
some cases, messages include symbols or text that
a user doesn’t type, but the text exists in a line
with user typed text. These expressions strip such
non-typed characters.

taining the recipient list in a python “set” structure.
A python set functions as a mathematical set; it does
not store duplicates.

Dataset Sanity Check

To sanity check the word distribution of the dataset,
we plotted its n-gram frequencies and compared it to
Zipf’s Law. Standard linguistic texts should follow
Zipf’s Law for frequency distributions, which says
that a few events occur with high frequency and a
number of events occur with low frequency [9]. Fig-
ure 3 shows that our email text seems to follow Zipf’s
Law.

3 Estimation Algorithm

To predict words, we use a statistical estimate of the
next word derived from a smoothed probability di-
stirbution over our n-gram sets. We have chosen to
use a version of the Good-Turing [4] estimator called
Simple Good-Turing (SGT) [2] to smooth probabil-
ity mass among both seen and unseen n-gram values.
SGT assumes the underlying distribution is binomial.

2

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

Fr
eq

ue
nc

y

Rank Order

Occurrence Distribution (Scaled down 100-fold in point density)

1-grams
2-grams
3-grams

594/x

Figure 3: Comparing n-gram frequencies to Zipf’s Law. We sanity check our data to see if it follows
the pattern we expect: Zipf’s Law. The probability mass plot shows that n-gram frequencies of our
dataset follow the Law. We plotted the Zipf line using an exponent of −1. To facilitate plotting, we
filtered the vocaulary size down by two orders of magnitude to ≈ 600 elements for each n-gram set.

In 1995, Gale and Sampson published the Simple
Good-Turing model with an algorithm, sample data,
and code for the estimator [2]. Our work relies on
Sampon’s C code [8] and a python script we wrote
to manage n-grams and compute word predictions.
The original Good-Turing estimator was developed
by Alan Turing and an assistant I. J. Good while
they worked at Beltchley Park to crack the German
Enigma cipher during World War II [5].

The estimator deals with frequencies of frequen-
cies of events and was designed to smooth a proba-
bility distribution in such a way that it accounts rea-
sonably for events that have not occurred. A standard
machine learning practice called Maximum Likeli-
hood Estimation (MLE) does not work suitably for
word prediction because it assigns probability mass
solely to seen events. As we demonstrate next for

unigrams, MLE neglects unseen events2:

PM L E(wi) =
C(wi)

N
,

where the probability of a word wi is the count of the
word C(wi) divided by the total number of words in
the dataset N .

Add-one or Laplace smoothing as shown in equa-
tion 1 and seen in class, adds one to estimation com-
ponents to account for unseen events. Unfortunately,
it takes away too much probability mass from seen
events and adds to much to unseen events.

PLaplace(wi) =
C(wi) + 1∑V
j=1 C(w j) + 1

=
C(wi) + 1

N + V
, (1)

where j ranges across the entire vocabulatry V
(unique words) in the dataset.

2A majority of the analytical discussion and notation in this
section derives from a combination of three sources [3, 6, 7].

3

Frequency Frequency of Frequencies
i Ni

1 26972
10 693
100 13
1000 0
3288 2
31262 1

Table 2: Sample of unigram frequencies where
N = 910812. Good-Turing shifts probability
mass from large Ni , which are better measure-
ments, to unseen values. Note that even among
the few samples shown, lower Ni values clearly
become noisy. This behavior is common in lin-
guistics data.

Simple Good-Turing apportions probability mass
to unseen events by using mass associated with
events that occur 1 time. All events that occur
n times are reassigned probability mass associated
with events that occur (n − 1) times.

To make this notion concrete, consider Table 2
which contains a sample of unigram frequencies
from our dataset. If we define the total number
of words in the dataset as N =

∑
i Ni and use

Good-Turning to compute the total probability of
all unseen events as N1/N , then the total probabil-
ity of all unseen events in our unigram dataset is
26972/910812 = .0296.

The goal, then, in Good-Turing is to compute the
probability for events seen i times as

PGT (wi) =
i∗

N
.

The trick is to compute i∗ smoothly such thtat p0 6= 0
as it would be using a method such as MLE (i.e.,
applying MLE to unseen events yields p0 = i/N =

0/N = 0). To do this, we rely on a theorem that
states the following:

i∗
= (i + 1)

E[Ni+1]
E[Ni]

[1]

When Ni is large (at lower frequencies) it repre-
sents a better measurement. In these cases, we re-
place E[Ni] with Ni and call i∗ a Turing estima-
tor [3]. Small values of Ni represent poor mea-
surements with much noise, and so replacing E[Ni]

with Ni is a poor choice. In these cases, we replace
E[Ni] with a smoothed estimate S(Ni) as suggested
by Good [4] and call i∗ according to the smoothing
function used. Table 2 shows noise in our dataset as
i increases: Ni oscillates at lower values.

At this point, the problem of smoothing boils
down to choosing a good smoothing function and
deciding when to switch between using Ni and
the smoothing function. For the function, we use
log(Ni) = a + b log(i) defined by Gale and Samp-
son [2]. The value of b is learned using linear
regression. Gale and Sampson call the associated
Good-Turing estimate the Linear Good-Turing es-
timate (LGT) and a renormalized version of LGT
in combination with the Turing-estimator, Simple
Good-Turing (SGT). Note that once the C-code be-
gins using the smoothing function, it continues to do
so.

Word Prediction

So far, we have discussed smoothing a probability
mass using Simple Good-Turing. After computing
smooth mass values, we compute the following us-
ing them. Our word prediction is associated with the
P(w1 · · · wi) that maximizes the following equation.

P(wi |w1 · · · wi−1) =
P(w1 · · · wi)

P(w1 · · · wi−1)
(2)

4 Analysis

Here, we apply the C-based SGT estimator to uni-
grams, bigrams, and trigrams from the entire dataset
and subsequently compute word predictions using a
python script.

Figure 4 depicts the probability mass associated
with each these n-gram dissections of the dataset,
Figure 5 shows word prediction performance us-
ing estimators derived from unigrams and bigrams
according to equation (2), and Figure 6 shows
keystroke reduction as a result of correct word pre-
diction. We have not yet analyzed performance after
splitting data into training and testing sets, nor have
we analyzed the effects of trigrams on prediction per-
formance. We plan to take these steps later.

To gain a sense of performance, we have smoothed
the entire dataset and computed hits, near hits, and

4

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1 10 100 1000 10000 100000

Frequency (i)

3-gram SGT-Smoothed Probability Mass (0.2984 reserved for unseen trigrams)

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1 10 100 1000 10000 100000

Sm
oo

th
ed

 P
ro

ba
bi

lit
y

M
as

s
(N

_i
)

Frequency (i)

2-gram SGT-Smoothed Probability Mass (0.1683 reserved for unseen bigrams)

 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1 10 100 1000 10000 100000

Frequency (i)

1-gram SGT-Smoothed Probability Mass (0.02961 reserved for unseen unigrams)

Figure 4: Simple Good-Turing smoothed n-gram probability mass for {1,2,3}-grams. Notice how each
log-log plot contains a smooth line, masses are concentrated in lower frequencies i as Ni increases,
and reserved probability mass increases with the n-gram size. The last point suggests larger n-grams
are very sparse. We do not have sufficient examples to see many new n-grams, and even if we had
them, grammatical correctness would limit the number of new n-grams.

misses for each message. A hit is the number of
times a correct prediction is made; a near hit means
that a bigram existed, but it wasn’t chosen because
it did’t have the highest smoothed probability; and a
miss is the number of incorrect predictions.

Overall, the mean of bigram performance is ap-
proximately 29% and the mean of the near-hit rate is
closer to 71%. Assessing trigram performance, per-
haps combining the two, and using context such as
the next typed letter might lead closer to the upper-
bound performance depicted in the plot. In the upper
bound, we assume an ability tob convert all near hits
to hits.

5 Schedule

We’ve completed the first two bullet points of the
project and have reached our goal of choosing a
word-prediction model by this milestone. Slightly

ahead of schedule, we have also begun to analyze
prediction performance.

• Collect, parse, and split email bodies into
n-grams, and compute cooccurrence statistics
for use in the prediction model.

• Create the Markov-based, word prediction
model. [Completed at the milestone.]

• Analyze model performance and productivity
increase in writing emails.

• Complete analyzing bigram model perfor-
mance.

• Analyze trigram model performance.

• Time permitting, investigate performance im-
provements associated with context such as sub-
ject, recipient set, and next-letter typed.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pe
rfo

rm
an

ce

Message Number

n-gram Prediction Performance

Near Hits (mean=.7067) Hits (mean=.2879) Misses (mean=.7121)

Figure 5: Word prediction performance using unigrams and bigrams. We define “hit” to mean a cor-
rect word prediction, “miss” to mean an incorrect prediction, and “near hit” to mean that a matching
bigram existed, but wasn’t chosen because it didn’t have the highest smoothed probability. The plot
depicts the mean hit rate as ≈ 29% and the mean near hit rate as ≈ 71%. We computed these values
over our entire dataset after smoothing n-gram probability mass using SGT.

• Time permitting, determine the reply-to address
based on the message recipient set.

Next Steps

Next, we’d like to finish analyzing the bigram model,
tweak the model to improve its performance, and be-
gin analyzing the trigram model.

If time permits, we’d like to account for the mes-
sage recipient set, message context, and typed let-
ters to see if any of these attributes have a positive
impact on prediction performance. In practice, both
letter and message context seem important: certain
topic-based words can be used multiple times within
a message and typed letters narrow significantly the
word prediction scope. Furthermore, using letter-
typed context could convert a number of near hits
and near saves to hits and saves. Exploiting letters
might allow us to rely on posterior probability to re-
duce the set of predicted values.

Finally, we’d like to explore the use of the message
recipient set to determine the reply-to email address.
For example, I might use a jac@cs.dartmouth.edu
reply-to address in messages to academic peers and
a gmail reply-to address in messages to family mem-
bers.

References

[1] K. Church, W. Gale, and J. Kruskal. Appendix
A: The Good-Turing theorem. Computer Speech
and Language, pages 19–54, 1991.

[2] W. Gale and G. Sampson. Good-Turing fre-
quency estimation without tears. Journal of
Quantitative Linguistics, 2(3):217–237, 1995.

[3] W. A. Gale. Good-Turing Smoothing
Without Tears. http://citeseerx.ist.psu.edu/

6

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8518&rep=rep1&type=pdf

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pe
rfo

rm
an

ce

Message Number

Keystrokes Reduction (ignoring whitespace)

Theoretical Savings Bound = Saved+Near Saved (mu=.9935)
Near Saved (mean=.7271)

Saved (mean=.2664)
Typed (mean=.7336)

Figure 6: Keystroke reduction using unigrams and bigrams, not counting whitespace. We define
“saved” to mean a correct word prediction that eliminates typing; “typed” to mean characters typed
by the user because of an incorrect prediction; and “near saved” to mean that a matching bigram
existed, so typing could have been avoided, but the system didn’t choose the bigram because it didn’t
have the highest smoothed probability. The plot depicts the mean savings rate as ≈ 27% and the mean
near save rate as ≈ 73%. We computed these values over our entire dataset after smoothing n-gram
probability mass using SGT. We may find a lower “near save” when we split the dataset into training
and testing portions.

viewdoc/download?doi=10.1.1.110.8518&rep=
rep1&type=pdf, 1995.

[4] I. J. Good. The population frequencies of species
and the estimation of population parameters.
Biometrika, 40(3-4):237, 1953.

[5] Good-turing frequency estimation.
http://en.wikipedia.org/wiki/Good-Turing
frequency estimation, 2010.

[6] J. Hockenmaier. Lecture 4: Smooth-
ing. http://www.cs.uiuc.edu/class/fa08/cs498jh/
Slides/Lecture4HO.pdf, 2008.

[7] C. Manning and H. Schütze.
Foundations of Statistical Natural Nanguage Processing.
MIT Press, 2000.

[8] G. Sampson. Simple good-turing frequency
estimator. http://www.grsampson.net/D SGT.c,
2010.

[9] Zipf’s law. http://en.wikipedia.org/wiki/Zipf’s
law, 2010.

7

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8518&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8518&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8518&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8518&rep=rep1&type=pdf
http://en.wikipedia.org/wiki/Good-Turing_frequency_estimation
http://en.wikipedia.org/wiki/Good-Turing_frequency_estimation
http://www.cs.uiuc.edu/class/fa08/cs498jh/Slides/Lecture4HO.pdf
http://www.cs.uiuc.edu/class/fa08/cs498jh/Slides/Lecture4HO.pdf
http://www.grsampson.net/D_SGT.c
http://en.wikipedia.org/wiki/Zipf's_law
http://en.wikipedia.org/wiki/Zipf's_law

	Introduction
	Dataset
	Estimation Algorithm
	Analysis
	Schedule

