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Abstract

The availability of large collections of digital images via the Internet has necessitated
the development of algorithms for searching for and retrieving relevant images, given
a particular query. Traditionally, these algorithms have described images in terms of
associated metadata (such as tags), as well as with content-based features and sta-
tistical descriptions. Furthermore, while the digitization of vast archives of cultural
artifacts has made these objects more accessible both to the general public and to
researchers, the increase in their availability requires more efficient means of locating
objects relevant to a particular query. In the case of works of art, one obvious means
of describing these objects is by statistical features derived from their digitized ver-
sions. These features could then be used to facilitate a style-based image retrieval
system that returns stylistically relevant images with respect to a query image (or
query string). I propose a system that implements similarity-based image search
using a query image provided by the user, along with the ability to automatically
learn the stylistic categories that describe style relationships between images from
feedback on search results provided by the system.

Introduction

Increasingly, large collections of various types of images are being made accessible
via the World Wide Web [1, 2]. Searching for images of a particular class is an
important problem in machine learning that has received a great deal of attention
[3, 4]. To this point, research has focused primarily on retrieving images based
on object classes and the content present in images, known as content-based image
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retrieval (CBIR) [3, 5]. In my project, I will extend some of these ideas to the problem
of style-based image retrieval (SBIR), or retrieving images based on low-level features
that describe identifiable characteristics of images, but are not directly related to the
content in the images. Although one can describe natural images according to this set
of characteristics, the natural domain for SBIR is art, since art images are routinely
(if not primarily) described according to their stylistic variations. With increasing
digitization of cultural artifacts and the availability of these digital representations
via in the Internet [6, 7], there is an obvious cultural and scientific usefulness in
describing the meaningful variations in style among works of art.

Human perception of artistic style is a combination of a number of salient visual
characteristics in works of art, from the use of particular colors to the extent to
which brushstrokes or pen strokes are visible. Style is also informed by a number
of external factors, such as prior knowledge of the historical trends in art mak-
ing. Nevertheless, the agreement of both experts and people in general in defining
regularities among the styles of different artists suggests that there is a common
framework for understanding style. Recent studies have focused on determining
statistical features that are capable of discriminating between the styles of various
artists [8, 9, 10, 11, 12, 13, 14, 15, 16]. However, these studies have failed to focus
on exactly what features are contributing to stylistic distinctions, at least at a level
beyond a very specific statistical feature. To illustrate the point: although we can
tell a van Gogh from a Vermeer, we do not at present have a good sense of exactly
what makes a van Gogh a van Gogh and a Vermeer a Vermeer. I will develop a
model that is capable of combining statistical features for the task of style-based
image retrieval, while at the same time automatically learning the salient statistical
features that contribute to stylistic distinctions.

Style-based image retrieval

I define the problem of style-based image retrieval as follows: given a large collection
of images T and a user-specified input image I, the system should retrieve (i.e., re-
turn) a set of images Dt that are stylistically relevant according to some category Ck.
Systems exist that model global stylistic characteristics (i.e., in which the relevant
category Ck is not considered) [17] and in which users, rather than categories, are
modeled [18]. A further distinction of the current model is that it aims to under-
stand important statistical categories as functions of the relationship between images
according to their features, rather than model distinctions based directly on the fea-
tures. This enables the model to learn for example that “color” is an important
aspect of stylistic variation, rather than any particular color.
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Ideally, the relevant stylistic categories would be learned from user interactions
with the system by incorporating feedback from the user. However, due to time
constraints and the complexity of such an approach, I have chosen to train the
model on predefined categories (which could be used to bootstrap the system for use
in recommending images before online learning begins) and evaluate the system using
traditional metrics and others that are more applicable to the image recommendation
context.

As a practical example, consider a user providing an art image I for which he
or she wishes to find stylistically similar images. At the first stage, the system will
provide a sample of possible relevant images according to the stylistic classes that
it currently knows about. The user will then indicate among the returned results
which are relevant to the query image I. As the user selects more relevant images,
the query is refined, incorporating information it has about the most likely stylistic
category Ck, according to the selections made by the user. The statistical definition
of the chosen category Ck will then be updated according to the set of relevant
images the user chose, enabling the system to incorporate experience in deriving its
representations of stylistic categories, although, as stated, taking user feedback into
consideration is not implemented in this project.

Objectives

My objectives for this project are as follows:

1. Design and implement a style-based image retrieval model that learns categor-
ical distinctions (described below)

2. Validate this model using simulated training data, organized according to pre-
defined stylistic categories

The similarity-based image prediction model

As stated above, a user inputs an image I into the system in order to find stylistically
relevant images among the set of images T = {T1, . . . , TN} in the database. Each
image Ti is described according to set of features φi = {φi1, . . . , φiM}, which may be
scalars, vectors, or collections of vectors. Critically, we define a similarity function
κj(φ

x
j , φ

y
j ) that describes the similarity between feature j for images X and Y , and

this value will be a scalar for any feature j.

3



Initially, we must decide what set of images D0 ⊆ T to display in response to
the query image I. Since at this point we have no information about what stylistic
category the user intends to search with respect to, we can choose the set of images
D0 based on two different approaches: we can simply choose a set of “likely” images
according to the current set of categories C = {C1, . . . , CK}, with a fixed number
of images (say, 10) chosen according to each category; or, we could select a set of
images according to the marginal probability of each image Ti in the database. Both
of these approaches will be described in more detail below; it should suffice at this
point to recognize that whatever strategy we adopt for displaying images, we will
eventually decide on some subset D0.

Among the images D0 that are displayed, the user may select any number of
them as being “relevant” to the query image I in whatever way the user chooses.
We call the entire set of relevant images chosen by a user up to and including time
t St ⊆ D0 ∪D1 ∪ . . . ∪Dt. Once the user has indicated some relevant images to the
query image I, we can begin to leverage this information. Consider the following
function, which describes the likelihood of observing an image Ti, given a particular
stylistic category Ck (with its associated parameter βk) and query image I:

P (Ti|Ck, I) = fβk(Ti, I)Li(1− fβk(Ti, I))1−Li , (1)

where f : R → [0, 1] to form a valid probability and Li is the label of exemplar
Ti. In this model, I use the logistic sigmoid function for f , and so the likelihood
above is modeling the probability that the image Ti is in- or out-of-category with
respect to the query image I under the model Ck, where the label Li is determined
by user feedback (which defines a logistic regression model on user feedback [19]).
The function f has the following form, given βk, Ti, and I:

fβk(Ti, I) =
1

1 + exp
(
−
[
βk0 +

∑M
j=1 β

k
j κj(φ

i
j, φ

I
j )
]) .

Using this formulation for an individual image, we can construct the likelihood of
observing a set of relevant and irrelevant images Dt at an arbitrary iteration t of the
search (specified by the user as feedback):

P (Dt|Ck, I) =
∏
Ti∈St

P (Ti|Ck, I).

If we assume a uniform prior on all categories Ck (although this assumption is not
necessary and is motivated at this point strictly by convenience), then we can infer
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the posterior probability of each class Ck via Bayes’ Rule:

P (Ck|Dt, I) =
P (Dt|Ck, I)P (Ck)∑
Cl∈C P (Dt|Cl, I)P (Cl)

,

where P (I) has been omitted as it is taken to be constant. Without a more complex
form for the prior P (Ck), the maximum a posteriori choice for Ck will be the same as
the one determined by maximum likelihood. Nevertheless, it is instructive to consider
the full posterior over Ck, since it highlights areas in which the complexity of the
model could be increased, for example by estimating a “prior” over Ck by simply
using the fraction of times Ck was predicted to be the relevant stylistic category.
Another possible extension would be to consider the conditional P (Ck|I), which was
omitted from the current model, since we assume no dependence of Ck on I, but
which could be used to estimate a category according to some function of the images
currently in the database, before any relevant images S0 are selected by the user.

Once a search has been completed, we can update the parameters βk associated
with category Ck by considering the images chosen by the user as relevant (St) and
the set D = D0 ∪ D1 ∪ . . . ∪ Dt of possible relevant images shown to the user. For
each image Ti ∈ St we define an associated target variable Li, which we set equal
to 1, indicating that the relevant images in the set St, as chosen by the user, are
“in-category” images with respect to I and the class Ck. Furthermore, we say that
all images Ti ∈ Dout = D \ St are the “out-of-category” images, where \ denotes the
set minus operation, and concomitantly these images have associated target variables
Li = 0. We can now reconsider Equation 1 in this conetxt:

P (Ti|Ck, I) = σ

(
βk0 +

M∑
j=1

βkj κj(φ
i
j, φ

I
j )

)Li

σ

(
βk0 +

M∑
j=1

βkj κj(φ
i
j, φ

I
j )

)1−Li

, (2)

where σ is the logistic sigmoid function. Given the relevant images chosen by the user
(and the disregarded images Dout), we can now update the parameters βk according
to the error function defined by the negative log-likelihood of the relevant/disregarded
images, given our set of “labeled” images Ti ∈ St∪Dout and associated target classes
Li [19]:

E(βk) = − lnP (L|βk) = −
∑

Ti∈St∪Dout

[
Li ln yi + (1− Li) ln(1− yi)

]
,

where yi = σ
(
βk0 +

∑M
j=1 β

k
j κj(φ

i
j, φ

I
j )
)

. Taking the gradient of the error function
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with respect to βk, we obtain an update rule for the weight vector:

∂E

∂βkj
=

∑
Ti∈St∪Dout

(yi − Li)κj(φij, φIj ).

Thus we can adjust the weights βk iteratively using gradient descent, with each new
input I and given the chosen relevant images St and those Dout disregarded by the
user.

Choosing the set of display images

As mentioned above, there are several alternatives for choosing the set of images
Dt to display at any iteration t of a particular query. Of particular interest is the
method with which one might choose D0, the initial set of images displayed to the
user in response to a query image I. We may choose for example n of the most
probable images for each of the existing categories Ck, or we may choose the overall
most probable images by marginalizing over the categories in the following way:

P (Ti|I) =
∑
Ck∈C

P (Ti|I, Ck)P (Ck).

In order to compute the posterior over Ck, this quantity must be computed, so the
increased computational cost of this approach is negligible.

Image features

I spent a great deal of time collecting images from Bing Image Search [2] in order to
provide some base stylistic classes that could be used to evaluate the efficacy of the
model (e.g., I searched for images matching the queries “Abstract art,” “Cubism,”
“Impressionism,” and “Renaissance art,” among others). Critically, the images re-
turned for each query were stylistically quite diverse, although they did in some sense
fit their categorical description. This highlights the fact that stylistic periods are in
many ways more historical artifacts than concrete descriptions. For example, the art
of Jackson Pollock is quite different from that of Mark Rothko, although both are
Abstract Expressionists.

For this reason, I concentrated on identifying stylistic categories that were more
visually consistent. These categories may be individual subsets of an artist’s work,
separated according to style. For example, I took 79 paintings by Picasso and grouped
them according to their common stylistic category. I also created a dataset from
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drawings by three artists (see below) that have relatively good in-category stylistic
similarity, and further expanded this to seven different stylistically consistent sets
of images by six artists (see also below). Datasets such as this provide a “simpler”
ground truth against which the model can be tested.

In my experiments, I considered several image features (which will be indicated below
by the tag specified here):

1. color1: Histogram intersection between RGB color histograms [20, 21]

2. color2: Absolute difference in entropy of color distributions [19]

3. fourier1: Hausdorff distance between slopes of log rotational average of patch-
wise amplitude spectra between images [22]

4. fourier2: Hausdorff distance between KL-divergence of radial averages of
patch-wise amplitude spectra [22]

5. gabor1: Histogram intersection between cluster proportions per image based
on k-means clustering of patches according to correlation distance between
basic statistics derived from a Gabor function decomposition of the patches
(32 patches from each image, 4 clusters) [22]

6. gabor2: Histogram intersection between cluster proportions per image based
on k-means clustering of patches according to correlation distance between per-
filter energies from a Gabor function decomposition of the patches (32 patches
from each image, 4 clusters) [22]

7. line1: Histogram intersection of line orientations for lines detected using the
Hough transform on an edge image [23]

8. line2: Euclidean distance of basic statistics on line lengths for lines detected
using the Hough transform on an edge image [23]

9. line3: Histogram intersection of patch-wise line density (i.e., number of edge
pixels in a patch of fixed size)

10. raw1: Correlation between raw images (i.e., a downsampled version of each
image) [20]

11. gist1: χ2 distance between GIST features [20]
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12. slope1: Euclidean distance between slope of the log of the rotational average
of the amplitude spectrum for each image [15, 22]

In each case, if a distance was computed, then it was converted to a similarity via
exp(−d(x, y)/0.5), where d(x, y) is the distance between two sets of features x and
y.

Experiments

The ultimate goal of this project is to develop a system that is capable of taking
user feedback and learning a set of stylistic classes that describe the relationships
between images determined by user-provided feedback. However, before this goal
can be accomplished, it is necessary to validate the model and to demonstrate that
1) it can learn stylistic distinctions between images described by salient features and
2) that such distinctions actually appear in the data, at least using the features we
have at present.

It is critical also to emphasize that the learned models βk are not feature-based,
but rather feature similarity-based. For this reason, a requirement of model val-
idation is that it is capable of learning the commonalities among similar images
according to their features. Since the weights we learn in the logistic regression
model directly refer to the individual feature similarities (although the method for
calculating these similarities is effectively hidden from the model), we can interpret
large (relative) weights as placing strong emphasis on the corresponding feature. This
suggests a means to initially validate the model: create images that vary according
to a particular stylistic feature (or set of features) and evaluate the degree to which
the model is capable of “recognizing” which features are important and which are
not.

Methodology

In all experiments below, I trained models in the following fashion. first, I held
out 25% of the overall data for testing, and kept the remaining 75% for training.
Given a particular stylistic class that I was attempting to model (e.g., “Picasso”),
I trained the model using each true image from the corresponding class as a target
image and the similarities to all other images as regressors in the model. That is, I
treated the entire training set as pseudo-feedback with in- or out-of-category labels
given by the true labeling. For example, if the class I was attempting to model was
“Picasso,” then all Picasso images would be considered in-category and all other
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images out-of-category. Similarities κj(φ
i
j, φ

I
j ) were computed separately, as per the

description above, for each target image Ti. These regressors were stacked into a
single matrix, as were the corresponding labels. In this way, I simultaneously used
all possible training data (for a particular class) to learn a model to distinguish one
class of images from the rest. This is not necessarily how training would proceed in
the online setting, but it is instructive in the context of model validation.

Evaluation criteria

In order to evaluate the performance of a given model or set of models, I concentrated
on several criteria that describe various aspects of the performance of the model(s):

1. Training and testing error for classifying images as in- or out-of-category

2. Visual inspection of the learned weights

3. Best model prediction using log-likelihood (i.e., the method above that would
be used to select the optimal Ck, given the observed data)

4. False positive vs. true positive prediction rates on testing datapoints

5. The fraction of possible in-category images predicted in the top 10 most likely
images, according to each model, which simulates recommending images to
users (the intuition being that we want in-category images to be highly likely
and thus predicted before out-of-category images)

Except for the initial two experiments (which used only the first two criteria), all of
these criteria were used to evaluate the learned models in the experiments described
below.

Experiment 1 - Distinguishing based on color feature

To validate the model and demonstrate that it is capable of learning which features
are important in a highly controlled setting, I created two sets of random images,
each of which contained variation along a particular feature.

The first set of random images I created were random RGB images that varied
according to their color histograms (i.e., “color” was the perceptually salient dimen-
sion of stylistic variation). I created three “stylistically distinct” subsets of random
images by first creating, for each image, three 256x256 pixel uniform random im-
ages using Matlab’s rand function. Each of these represented the red, green, and
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blue channel of the random image, respectively. In order to emphasize one of the
three color components, I multiplied the noise image in either the red, green, or blue
channel by a factor of 3. Effectively, this makes images whose (for example) red com-
ponent at a particular pixel is on average three times larger than the corresponding
green or blue component. This will cause images to appear more red, green, or blue,
depending on the category. Figure 1 shows an example of a random image from each
of the three groups. I created 75 random images from each category. Critically, since
the images are noise images, they should not meaningfully vary according to any
other stylistic feature.

I trained a model to distinguish the images in this experiment using the procedure
described above. In this particular experiment, we need to learn only one βk, since
we are only attempting to model one distinction (i.e., color). The learned model is
shown in Figure 2; clearly, the model has learned that “color” is the most important
distinguishing feature. Furthermore, this model achieved 0% training and testing
error (i.e., it was able to perfectly distinguish the images based primarily on their
color distributions). Note that in this experiment I did not use the color entropy
feature, since I added this feature later.

Experiment 2 - Distinguishing based on slope feature

I performed an experiment similar to the one above using images that varied ac-
cording to a different feature, namely the slope of the log rotational average of the
amplitude spectrum. Shown below are two images, one noise image with a flat ampli-
tude spectrum, and another whose frequency spectrum has been modulated so that
it contains more low-frequency than high-frequency information (and the frequency
response falls off as 1/f 1.5, where f denotes frequency). This will affect the slope
of the line fit to the log of the rotational average of the amplitude spectrum in a
consistent way, so this feature should stand out as being important. Specifically,
the unmodulated image should have slope of roughly 0, while the modulated images
should have a slope of roughly -1.5. Figure 3 shows an example of a uniform random
image and a random image whose frequency spectrum has been modulated.

The learned weights from training a model as described above are shown in Figure
4. Clearly, the slope1 feature, which refers to the slope of the log of the rotational
average of the amplitude spectrum, is the most dominant feature, but other features,
particularly those that are sensitive to frequency structure in the image (e.g., Fourier-
and Gabor-based features) also show discriminative power. This is not surprising,
since the uniformity of the frequency structure of the noise in both types of images
is present (at least at random) in all parts of the images; thus, patch-based methods
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should recover differences similar to those that the global slope feature is able to
distinguish. As before, I achieved training and testing error of 0%.

Experiment 3 - Distinguishing drawings by three artists

In order to create a more realistic setting in which to test the model, I took drawings
from three artists that were fairly stylistically consistent. Figure 5 shows one drawing
each by Pieter Bruegel the Elder, Raymond Pettibon, and Rembrandt van Rijn.
These drawings are from wildly different periods in art (Bruegel lived in the 16th
century, Rembrandt in the 17th, and Pettibon in the 20th), and are distinguished in
subject and medium, to some extent. This dataset included 46 drawings by Bruegel,
29 by Pettibon, and 20 by Rembrandt.

I trained models as before, holding out 25% of the images from each class and
keeping the remaining 75% as training data. I trained a model to distinguish each
artist’s works from all the rest. The learned models are shown in Figure 6.

Clearly, the most important features appear to be gist1 (for all classes) and var-
iously the color1, color2, fourier2, and line3 features. I achieved a respectable
training error (below 15% for all models, as shown in Figure 7) and overall testing
error rates of 3%, 5.6%, and 16.4% for each of the three classes, respectively, using
the corresponding model. Furthermore, the corresponding models produced good
tradeoff between false positive and true positive rates, as shown in Figure 8. Thus it
is clear that the learned models were good at separating the three classes of drawings.

I evaluated the performance in other ways more germane to the task of recom-
mending stylistically similar images as well. As described above, I also considered the
ability of the model to predict in-category images among the top 10 most probable
images, given a testing image as a query image.

The performance of the model with respect to this metric is shown in Figure
9. The testing error indicated that the model corresponding to the query image
results in good overall performance, and the model scores shown in Figure 9 indicate
that in-category images were highly consistently placed in the top 10 most probable
images for all three models, though less strongly for the Rembrandt model. In a real
setting, however, we would not know which model was the optimal one for an input
query, so it is also instructive to consider how often the model corresponding to the
class of the testing (query) image was in fact the correct model. For this dataset,
the model achieved 0% error in choosing the correct model (based on log-likelihood
of the training images treated as observations), which suggests that the model has
captured relevant structure in these images.
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Experiment 4 - Distinguishing works of art in seven styles

In order to create a more complex comparison (in particular, one that includes more
stylistic classes), I augmented the drawings dataset with works of art by several other
artists to create a dataset with the following composition:

• 46 drawings by Bruegel

• 29 drawings by Pettibon

• 20 drawings by Rembrandt

• 14 paintings/drawings by Charlotte Capsers, which include multiple copies of
the same setting for comparison

• 12 paintings by Odilon Redon

• 13 portrait paintings by Rembrandt

• 19 paintings by Vincent van Gogh

In this case, the imbalance in data is even more pronounced, and it will be shown
that this creates overfitting problems in training.

As before, I trained a model to distinguish each of the seven groups above from
the rest. The learned models are shown in Figure 10. Interesting, there seem to be
a variety of different features that are important across the classes, which suggests
that this set of features is fairly diverse, although it is likely that some redundancy
exists. Even so, the gist1 feature seems to be dominant across models, which may
be account for by the fact that in many cases, the groups are fairly stylistically
distinct. These models resulted in (fairly) good training and testing error, as shown
in Figure 11. However, looking at the trade-off between false- and true-positive rates
(Figure 12), it is clear that, while testing error is fairly low overall, this is largely
due to the fact that most negative exemplars are correctly identified, but many (if
not most) positive exemplars are not correctly identified.

In order to mitigate the problems of what appears to be underfitting with respect
to the in-category datapoints most likely caused by the major imbalance between
the amount of positive and negative data available during training, I implemented
a version of the model that allows for variable weighting of misclassification of the
datapoints, so that misclassifying a positive exemplar carries a much larger penalty.
Specifically, misclassification was weighted in the following manner:

wi =

{
m+

m−
, if Li = 1

m−

m+ , if Li = 0
,

12



where m+ is the number of in-category exemplars and m− is the number of out-
of-category exemplars. This transforms the likelihood function, which alters the
gradient of the log-likelihood function in the following way:

∂E

∂βkj
=
∑
Ti∈Dt

wi(yi − Li)κj(φij, φIj ).

From this it is clear that, if the number of positive exemplars is smaller than the
number of negative exemplars, then an equivalent misclassification will result in a
higher penalty for an in-category exemplar than for an out-of-category exemplar.

Using this strategy, I trained seven new models to distinguish the drawings above,
as shown in Figure 13. The training and testing errors are generally higher for these
models (see Figure 14), but the false versus true positive tradeoff on the testing set
is significantly improved. Figure 15 shows the tradeoff for each model (indicated by
a colored symbol) with respect to all testing images from the category indicated in
the title of the figure. For example, for all Bruegel drawings in the test set, I look at
the tradeoff between false and true positive rates when predicting the category for
the training images (using the testing image as a query image). In most cases, the
tradeoff is much better than the one shown in the equivalent figure for the unweighted
model, and the true positive rate is typically much higher, though this often comes
with a somewhat higher false positive rate as well.

It is interesting to consider the predictive capabilities of these models, as men-
tioned above, in the image retrieval setting. For the testing images, the weighted
models were able to accurately predict the best model (based on log-likelihood) with
an error rate of only 13.9%. Furthermore, the models were also able to achieve a
high rate of success at placing in-category images within the top 10 most probable
images with respect of the query image and corresponding model, as shown in Figure
16. Nevertheless, performance was poor for some classes, such as “Redon.” Inter-
esting, despite having worse performance with respect to category a labeling, the
unweighted models performed overall slightly better at predicting in-category images
among the top 10 results. The scores for each testing image are shown in Figure 17
for comparison.

Experiment 5 - Distinguishing the styles of Picasso

I tried a similar experiment using images from Picasso’s various stylistic periods.
The dataset I used consisted of

• 8 paintings from the Blue period
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• 8 paintings from the Rose period

• 25 paintings from the early Cubist period

• 9 paintings from the Analytical Cubist period

• 11 paintings from the Synthetic Cubist period

• 8 paintings from the Interwar period

• 4 paintings from the post-World War II period

• 6 paintings from the Late period

Unfortunately, the results for this dataset were not as good as those for the previous
experiments. Both training and testing error for weighted models (necessary due
to the extreme data imbalance) were quite high, and the tradeoff between false-
and true-positive rates for the testing data was quite unfavorable in all cases, which
suggests that the models learned were highly overfit to the training data and possess
little ability to generalize to new exemplars.

Image recommendation and style-based image retrieval

The core goal of my project was to provide a platform that could be used for two
tasks: first, recommending images that are stylistically similar to a query image; and
second, automatically learning salient stylistic classes from user input. The latter
goal has been achieved in this project using simulations rather than actual user input,
and the former goal has been touched on in the results. Specifically, I have given, for
the tasks described, some measures of the quality of the recommended images and
the ability of the learned models to “detect” the correct stylistic class. However, up
to this point I have not given any specific examples of the success (or failure) of the
model to recommend images that appear to be stylistically similar to the query.

Here I present several examples of query images and the 5 most probable images
according to the learned models, using testing images from the “seven styles” exper-
iments shown above. Figure 18 shows the returned images according to the Bruegel
model, using a Bruegel landscape drawing as input. Figure 19 shows returned images
using a scene with people as a query image. In both cases, all five drawings are by
Bruegel, and most are not only stylistically but also semantically related to the query
image (four of five drawings in each example are semantically related to the query
image). This is not due to semantic information as such being capture by the model
(since none is), but rather because of shared statistical features between images of
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particular types. However, the model seems able to abstract away from these, too,
since it correctly predicts Bruegel drawings, regardless of content, as the most likely
images.

Figure 20 also shows an interesting recommendation result, in which the most
likely images given the Caspers model returned four images that were copies of the
query image. This dataset had several base images that were copied by the artist,
but retain objects and of course stylistic similarities with the original. Another test
using a Rembrandt drawing and the Rembrandt drawings model yielded predicted
images, four out of five of which were also from the Rembrandt drawings dataset (see
Figure ??). The one non-Rembrandt image contained a scene similar to the query
image. A final example (shown in Figure 22) shows the most probable images using
the van Gogh model, using a van Gogh painting as a query image. This example
shows a less successful result (only three of the top five images were by van Gogh),
but in some ways the non-van Gogh images returned do possess stylistic similarities
with the query image.

Conclusions

I have implemented a model that is capable of learning stylistic classes from inputs
and I have demonstrated that this model is capable of learning predefined stylistic
classes in a simulated setting. Clearly, the next step is to extend this to actual
perceptual data and a much more diverse set of images. I have also shown that
the models learned capture important features of the input images and are able
to recommend similar images with fairly good consistency for several classes. In
some cases, however, the “correct” in-category images were not among the most
probable images. In these cases, though, it seemed that a paucity of data was likely
to blame. Categories in which there was a large number of exemplars tended to
have better rates of prediction for in-category images, and the relationship between
these quantities was somewhat strong (on 7-category dataset with weighted model,
Pearson’s r between size of each group of images and prediction scores on test images
was 0.58 at p = 2.3×10−4). The results I obtained so far indicate that there is promise
in this model, but, as stated, it is important to apply it to the arguably much more
difficult task of modeling human perception of artistic style. In future, I also plan
to explore the discriminative power of this model for categorical distinctions other
than between artists or periods in an artist’s work, for example whether the model
can distinguish between landscapes and non-landscape works of art, regardless of
medium or the time period in which the works were created.
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Figure 1: Random images from the red, green, and blue classes. Each was created
using uniform random noise to represent each color channel, except that the noise in
the channel corresponding to the desired class was on average three times larger in
magnitude than for the other two channels.
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Color model

Figure 2: Learned model in color experiment. The color feature (‘color1’) is clearly
the most important feature, indicating that the model has identified the correct
distinguishing feature.

18



Figure 3: Random noise images. Although both images were created using 256x256
uniform random noise, the amplitude spectrum of the left-hand image has been
modulated so that amplitude falls off roughly as 1/f 1.5 across frequency f .
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Figure 4: Learned model in slope experiment. The slope feature (‘slope1’) is clearly
the most important feature, although several other features contribute to the dis-
tinction between the frequency-modulated noise and the unmodulated noise.
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Figure 5: Drawings from each of the three artists in the drawings experiment. From
left to right: Bruegel, Pettibon, and Rembrandt.
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Figure 6: Learned models in drawings experiment. Several feature appear promi-
nently, though the ‘gist1’ feature appears dominant in almost every model.
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Figure 7: Training and testing error for each model (testing error represents average
over all testing images) in the drawings experiment.
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Figure 8: False- and true-positive rates for each category of images indicated at the
top of each plot; the plotted symbols indicate the false and true positive rates for the
corresponding model. In each case, the model corresponding to the image category
showed the best tradeoff (e.g., the Bruegel model was optimal for Bruegel drawings,
as shown by the open blue circle in the first plot).
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Figure 9: Model scores for testing images in drawings experiment. The vertical axis
represents the fraction of (possible) training images predicted among the top 10 most
probable images, given the testing (query) image. Clearly, each model was very good
at associating the testing exemplars with the correct images.
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Figure 10: Learned models in seven styles experiment. Several features appear promi-
nently, though once again the ‘gist1’ feature appears dominant in most models.

23



Bruegel Pettibon Rembrandt Caspers Redon Remb. portraitsVan Gogh
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Training and testing error for each learned model

Model

Er
ro

r

 

 
Training error
Testing error

Figure 11: Training and testing error for each model (testing error represents average
over all testing images) in the seven styles experiment.
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Figure 12: False- and true-positive rates for each category of images indicated at
the top of each plot; the plotted symbols indicate the false and true positive rates
for the corresponding model. Using an unweighted logistic regression model, the
generalization performance of all models (except the first) is relatively poor.
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Figure 13: Learned models in seven styles experiment using weighted logistic regres-
sion.
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Figure 14: Training and testing error for each model (testing error represents aver-
age over all testing images) in the seven styles experiment using weighted logistic
regression.
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Figure 15: False- and true-positive rates for each category of images indicated at the
top of each plot; the plotted symbols indicate the false and true positive rates for the
corresponding model. Using an weighted logistic regression model, the generalization
performance of all models is significantly better.
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Figure 16: Model scores for testing images in seven styles experiment using weighted
logistic regression. The vertical axis represents the fraction of (possible) training
images predicted among the top 10 most probable images, given the testing (query)
image.
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Figure 17: Model scores for testing images in seven styles experiment using un-
weighted logistic regression. The vertical axis represents the fraction of (possible)
training images predicted among the top 10 most probable images, given the testing
(query) image.
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Figure 18: Five most probable images according to learned Bruegel model in “seven
styles” experiment, using a Bruegel landscape drawing as the query image. Four of
the top five images are also landscapes (and all are drawings by Bruegel), indicating
that some meaningful information has been captured by the model.

30



Query image Returned image number [1] Returned image number [2]

Returned image number [3] Returned image number [4] Returned image number [5]

Figure 19: Five most probable images according to learned Bruegel model in “seven
styles” experiment, using a Bruegel drawing of a scene with people as the query
image. The top four of five images are also scenes with people (all returned images
are drawings by Bruegel), and the fifth is a landscape. Once again, it seems that
meaningful information has been captured by the model.
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Figure 20: Five most probable images according to learned Caspers model in “seven
styles” experiment, using a painting by Caspers as the query image. Four of the top
five images are also by Caspers, and are indeed copies of the query image.

32



Query image

Returned image number [1]

Returned image number [2]

Returned image number [3] Returned image number [4]
Returned image number [5]

Figure 21: Five most probable images according to learned Rembrandt drawings
model in “seven styles” experiment, using a drawing by Rembrandt as the query
image. Four of the top five images are also from the Rembrandt drawings set, and
the one non-Rembrandt drawing is a Bruegel drawing that contains a scene arguably
similar to the query image.
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Query image Returned image number [1] Returned image number [2]

Returned image number [3] Returned image number [4] Returned image number [5]

Figure 22: Five most probable images according to learned van Gogh model in “seven
styles” experiment, using a painting by van Gogh as the query image. Three of the
top five images are also by van Gogh, but the non-van Gogh images show some
stylistic similarity according to the types of brushstrokes present in the images.
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