
Soft-clustering dynamic networks with probabilistic tensor

factorizations

Nick Foti

May 31, 2011

1 Introduction

Relational data has become abundant, examples of which include social networks, users
ratings of items, gene interactions and correlations between financial instruments. This
data is often represented as a network where the nodes represent the objects, e.g. users,
items, genes, financial instruments, etc. and edges connect nodes that exhibit the relation.
The edges may also have an associated weight indicating the strength of the relation.
Most current work analyzing such data treats the networks as static objects. However, in
most cases both the edges and weights change over time. For example friend relationships
on Facebook are added and deleted, users may change their ratings of items over time,
genes may interact with different strengths at different stages of the cell cycle and financial
instruments exhibit dynamic correlations over time.

An important problem when analyzing relational data between nodes of a single type
(e.g. a social network) is community identification (or clustering), finding sets of nodes
that are more similar to each other than other nodes in the network. A related problem
is co-clustering for networks with two types of nodes (e.g. users rating items), which aims
to simultaneously cluster both types of nodes. There has been a lot of work on both
clustering and co-clustering for static networks, however algorithms for dynamic networks
have received little attention [4, 1].

In this work we develop probabilistic methods based on tensor factorization to cluster
dynamic networks [3, 2]. The proposed methods solve both the clustering and co-clustering
problems in their respective contexts. We develop inference algorithms and evaluate the
performance of the methods on synthetic and real data sets.

2 Data

We consider both synthetic and real data to evaluate the effectiveness of the proposed
models. The synthetic data is used to validate the learning algorithms and to provide a

1

dynamic network with a ”ground truth” clustering to compare our learned clusters to. We
consider real data from three application areas described below that represent both the
clustering and co-clustering problems.

2.1 Synthetic Data

We consider two types of synthetic data. The first type is random data generated from the
proposed statistical models. These synthetic data are used strictly to test the convergence
of the learning algorithms and are not intended to represent meaningful clustering. The
proposed models will be described in more detail below. For each model we generate
a sparse third-order tensor with a specified number of non-zero entries (or a specified
fraction of nonzero entries) per time. The number of latent factors is also specified a
priori. We divide the non-zero entries of the random tensor into a training and validation
set. As mentioned previously, we then use this data to test the convergence of our learning
algorithms.

The second type of synthetic data we consider is a small hand-made network that
evolves over time with known clusters. The data is snapshots of a 16 node network at five
time stamps. Figure 1 depicts the network at the different time stamps. There are obvious
clusters at the various time points, some of them constant over time, others going in and
out of existence.

2.2 Real Data

The first real data set we consider is the World Trade Web network. This network contains
196 contains corresponding to countries and directed edges between countries such that an
edge from country i to j indicates the amount of U.S. dollars exported from country i to
country j. Each edge has an associated time stamp in the years 1948 to 2000. Note that
the network is directed and that nodes are not necessarily present at each year. The goal
with this network is to find clusters of countries over time and so represents the clustering
problem. Table 1. reports some useful statistics of the world trade web network.

The second real data set we consider is the evolving network of correlations between the
monthly returns of equities from the S&P 500 stock index from January 2005 to December
2007. These dates were chosen as it produces a manageable size data set and represents
a more or less normal period for the market. The data was constructed by obtaining the
daily closing prices of the stocks from the S&P 500 using the DataStream service. The
prices were converted to returns using the standard formula:

Ri,t =
Pi,t − Pi,t−1

Pi,t−1

where Ri,t and Pi,t are the return and price of asset i at time t, respectively. The time
series of returns are then smoothed with a 20-point moving average filter. A month of

2

1	

2	
3	

4	

5	

6	

7	

9	

10	

11	

12	

13	

14	

15	 16	

1	

2	
3	

4	

5	

6	

7	 8	

9	

10	

11	

12	

13	

14	

15	 16	

1	

2	
3	

4	

5	

6	

7	
8	

9	

10	

11	

12	

13	

14	

15	 16	

1	

2	
3	

4	

5	

6	

7	

9	

10	

11	

12	

13	

14	

15	 16	

1	

2	
3	

4	

5	

6	

7	

9	

10	

11	

12	

13	

14	

15	 16	

T=1	

T=2	

T=3	

T=4	

T=5	

1-‐5	

6-‐10	

11-‐15	

Figure 1: Small synthetic network with known clusters.

3

trading days is roughly 20 days, thus the choice of a window size of 20. We then compute
the correlation matrix between equities for each month using the values of the smoothed
series for each day of the current month. The hope is that the smoothing performed will
mitigate any edge effects introduced by the finite window size. See Table 1. for some
overall statistics. This network represents an instance of the clustering problem as the goal
is to cluster stocks over time.

The last real data set we consider consists of authors publishing at ACM conferences
over time. The data was mined from DBLP and the resulting data is a third-order tensor
where the (i, j, l)’th entry contains the number of papers that author i published in confer-
ence j in year l. This tensor represents an evolving bipartite network where the goal is to
find clusters of authors and conferences simultaneously and so represents the co-clustering
problem. See Table 1. for general statistics. This data set is very large and even modestly
sized versions of it were prohibitive to run our algorithms on, we thus leave analyzing this
data to future work.

Table 1: General statistics of real data sets.

Nodes # timestamps # Edges Sparsity
WTW 196 53 48336 2.37%

S&P 500 474 36 28768 0.36%
DBLP 655551 (auths), 5121 (confs) 52 2294930 1.315e-05%

3 Models and Learning

We develop two statistical models for the evolving network data considered. The first model
posits that edges arise from a Normal distribution and is natural for networks where the
observed edges may be positive or negative, for instance if modeling the deviation from a
baseline, e.g. ratings. The second model posits that edges arise from a Poisson distribution
and so is natural for networks with all positive edges that are integers, e.g. counts.

3.1 Gaussian Model

The normal model (NPTF) [7] posits that, given factor matrices U ∈ RK×M , V ∈ RK×N

and W ∈ RK×L, the entries of the third-order tensor X = [xi,j,l] ∈ RM×N×L are generated
from a Normal distribution,

xi,j,l ∼ N(x̂i,j,l, σ)

where x̂i,j,l =
∑K

k=1(Uki � Vkj � Wkl) and σ is a constant variance (� means element-
wise multiplication). We place Normal priors on the entries of U and V with mean 0 and

4

variances σU and σV respectively. To model temporal dependence in the factors we make
the columns of W follow an AR-1 process,

W:,1 ∼ N(µW , σW)
W:,l ∼ N(W:,l−1, σW), l ∈ {2, ..., L}

Intuitively the U and V matrices indicate the degree to which the factors contribute
to the connections that the nodes make. The matrix W indicates when factors are active
and inactive. The use of the Normal distribution means that generate edge values may be
positive or negative. Most network data is inherently positive so at first glance the Normal
model might not seem to be a good idea. One reason to formulate the model is that some
network data may be well modeled as a deviation from a baseline. In this case one would
first subtract the mean value from all edges and then the Normal distribution is a natural
distribution for the deviation (modeling this type of data is not a goal of this work, but
it is important to notice). Even in cases where we only observe positive data the Normal
model may be useful. Note that there is no constraint the the columns of U , V and W
be orthogonal, so when observing all positive data there is nothing keeping the entries of
U , V and W from all being positive. In this case we can interpret the learned columns as
posterior probabilities of cluster membership and activity.

With the generative model specified we can turn our attention to inference. For sim-
plicity we will resort to MAP estimation of the factor matrices U , V and W with the other
parameters held fixed. This amounts to minimizing the following error function:

E(U, V,W, µW) =
M∑
i=1

N∑
j=1

L∑
l=1

Iijl(Xijl − x̂ijl)2 +
λU

2

M∑
i=1

||Ui||2 +
λV

2
(1)

N∑
j=1

||Vj ||2 +
λW

2

L∑
l=2

||Wl −Wl−1||2 +
λW

2
||W1 − µW ||2 (2)

We have derived and implemented both a batch alternating least squares (ALS) al-
gorithm as well as a stochastic gradient descent (SGD) algorithm to minimize this error
function. In more detail, the batch alternating least squares algorithm works by updat-
ing all factors in the U matrix for a fixed index i of the first dimension. The algorithm
then updates all factors in the V matrix for a fixed index j of the second dimension and
lastly all factors of W for a fixed index l of the third dimension. The algorithm is called
ALS because updating the factors for a fixed index is a simple least squares problem on
the subset of the data corresponding to the fixed index. The SGD algorithm updates the
components of all factors for each observation separately. Figure 2 depicts the convergence
of the ALS algorithm on random tensors drawn from the generative model and Figure 3

5

depicts the same for the SGD algorithm. The alternating least squares method is faster in
Matlab for the data we consider and requires less tuning so later results will only consider
this algorithm. However, the SGD algorithm could be more useful for very large data sets
if implemented in C.

3.2 Poisson Model

The Poisson model (PPTF) [5, 6] assumes that given factor matrices U , V and W , the
edge weights of the third-order tensor X = [xi,j,l] ∈ RM×N×L are generated from a Poisson
distribution with rate (mean) given as in the normal model. Specifically, we have

xi,j,l ∼ P(x̂i,j,l) x̂i,j,l =
K∑

k=1

Uki � Vkj �Wkl

uki ∼ HN(0, β−1
k)

vkj ∼ HN(0, β−1
k)

wl |wl−1 ∼ N(wl−1, σwI)1[0,∞)(wl)

w1 ∼ HN(µw, σwI)
βk ∼ G(ak, bk)

where we have placed half-normal priors on the entries of U and V . If y is a scalar
random variable with a normal distribution, then |y| has a half-normal distribution. Ad-
ditionally, the columns of W again follow an AR-1 process, however, it is restricted to be
greater than 0. Note that each factor in U and V has a different precision, βk. We place a
sparse Gamma prior on each βk which has the effect of performing model selection for us
as most βk’s will be forced to infinity.

Having specified the generative model we will again resort to MAP estimation of the
factor matrices. Our goal is thus to maximize the posterior probability of the factor
matrices given the observed tensor. It turns out that the function we are maximizing
has close connections with the generalized Kullback-Leibler divergence. We have derived
and implemented a stochastic gradient ascent algorithm as well as a multiplicative update
gradient algorithm to learn the MAP factor matrices. The SGD algorithm works the same
as in the Gaussian case with a different objective function. The multiplicative algorithm
is a first-order gradient method where the step-size is chosen to produce multiplicative
updates REF. In practice the algorithm converges quickly. The SGD algorithm also is very
hard to get to converge to a reasonable solution as it very often eliminates all but one
factor on the first iteration and never is able to recover as seen in Figure ??. Similarly
to the learning algorithms for the Gaussian model above we only report results for the
multiplicative algorithm as it was quicker to run and required less tuning.

6

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

epochs

ob
je

ct
iv

e
fu

nc
tio

n

λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 5

(a)

0.001 0.01 0.1 1 5

0.5

1

1.5

λ

tra
in

in
g

er
ro

r

(b)

0.001 0.01 0.1 1 5

1

2

3

4

5

6

7

8

9

λ

te
st

in
g

er
ro

r

(c)

Figure 2: Convergence of ALS algorithm on random tensors. We depict the objective
function versus epoch (number of times through all observations) (a), the distribution of
the training errors (b) and the distribution of the testing errors (c). We see that the
algorithm does converge to a minimum for small values of λ which is probably over-fitting
the training data. For larger values of lambda we see the algorithm converge and then the
objective function increases indicating that it is starting to over-fit the training data. The
plots of training and testing error for various values of λ are what one would expect.

7

0 20 40 60 80 100 120
300

350

400

450

500

550

600

650

700

750

800

epochs

ob
je

ct
iv

e
fu

nc
tio

n

λ = 0
λ = 0.001
λ = 0.01
λ = 0.1
λ = 1
λ = 5
λ = 10

(a)

0 0.001 0.01 0.1 1 5 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

λ

tra
in

in
g

er
ro

r

(b)

0 0.001 0.01 0.1 1 5 10

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

λ

te
st

in
g

er
ro

r

(c)

Figure 3: Convergence of SGD algorithm on random tensors. Similarly to the previous
figure the objective function is converging, however we probably have not let the algorithm
run long enough. Additionally, the training and testing error seem reasonable.

8

0 20 40 60 80 100 120
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5 x 105

epoch

lo
g−

pr
ob

ab
ilit

y

Figure 4: Convergence of objective function for Poisson SGD algorithm. The algorithm
eliminates all but one factor and is never able to recover.

In addition to the Poisson tensor model, we also consider a special case of the model
where we only observe one snapshot of the network. In this case the Poisson model corre-
sponds to a non-negative matrix factorization REF. We can use the multiplicative gradient
algorithm derived for the Poisson tensor model to learn the factors in this model. This
special case performs soft-clustering of a static network and provides some hope that these
factorization models will work for clustering tensors as well as providing a sanity check
that the algorithms are converging.

4 Results

We conducted experiments using all three models described above. As mentioned before
the DBLP data considered was too large to run any experiments in a reasonable amount
of time. We also discovered that the S&P 500 data was not very amendable to the PPTF
model and that the WTW data was not amenable to the NPTF model. The reason for
this is that the values in the S&P 500 network are in [0, 1] which a Poisson distribution
will have trouble approximating. On the other hand, the WTW data contains very large
positive integer values which the Normal distribution does not model well. Therefore, we
applied the NPTF model only to the S&P 500 data set, and the PPTF model only to the
WTW data. We were able to apply the static PPTF (i.e NMF) model to the toy, S&P
500 and WTW data sets, noting that the results should be taken in the context of the
restrictions mentioned above.

Evaluation metrics for soft-clusterings and dynamic clusters are currently non-existent.
In the case of soft-clustering what is done is a hard-clustering is formed and standard

9

evaluation criteria for hard clusters are used. The problem of dynamic clustering is not
widely studied and so there is currently no state of the art for evaluation. In this work we
follow the current trend in evaluating our static model and to evaluate dynamic clusters
we see how well we predict held out edges of the network.

4.1 NMF Model

We applied the NMF model (PPTF model restricted to one snapshot) to the first snapshot
of the toy, S&P 500 and WTW networks. Figure 5 depicts the toy network considered and
the resulting clustering. Note that nodes are assigned probabilities of belonging to a given
cluster where nodes that are definitively in a cluster (e.g. nodes 1 and 2, or 14, 15 and 16)
are given most mass to a single cluster. Nodes that have evidence of belonging to multiple
clusters (e.g. nodes 6, 9 or 10) are given different masses proportional to their degree of
membership in the given cluster. Additionally the number of clusters in the network was
learned as clusters 2 and 3 were not used, i.e. no node had mass assigned to clusters 2
or 3. Table 2 shows some measure of how well the method performs on the toy and real
data sets. Specifically it reports the number of clusters learned as well as the modularity
of the clustering REF. Modularity is a measure of how well a clustering is grouping the
nodes in a network and is basically a measure of how different the clustering is from a
random clustering of the nodes. To measure the modularity we need a hard-clustering of
the nodes which we create from our soft-clustering by assigning a node to the cluster with
the highest probability. Typically values greater than 0.3 are deemed good for modularity
so the results for the toy and S&P 500 networks are good. The result for the WTW is
spurious as it appears that nodes with weak connections are being clustered together. This
is probably an artifact of the dynamic range of the edge weights present and will need
to be explored further. Regardless, the results of this simplified model are promising for
probabilistic tensor factorization clustering models.

Toy WTW S&P 500
Keff 4 13 11

Modularity 0.5850 -0.1022* 0.5883

Table 2: Number of clusters learned (Keff) and modularity of clustering learned with static
PPTF model. The negative value for the WTW seems to be an artifact of the data,
however, the results for the toy and S&P 500 networks are very good as modularity values
of 0.3 are considered good.

10

In the next section, we present an illustrative example of this community extraction scheme, followed
by experimental results from various artificial and real-world networks.

3 Applications

We start by presenting an illustration of our community detection scheme and form of results, using
the simple toy graph of Fig. 2(a) that has N = 16 nodes and M = 25 links of various weights.
We applied NMF based community detection and extracted K� = 4 overlapping groups as shown
in Fig. 2(b). We can see that these communities share the boundary nodes, which lie on high flow
paths in the network and are usually difficult to classify in one module or another [22] by traditional
hard-partitioning methods.

!"

#"

$"

%"

&"

'"

(")"

*"

!+"

!!"

!#"

!$"

!%"

!&" !'"

!,&"
',!+"
!!,!&"

(a) A simple undirected network of N = 16 nodes and M = 25
links.

!"

#"

$"

%"

&"

'"

&

'"

(")"

*"

!+"
%"

'"

*"

!+"

!!"

!#"

!$"

!$"

!%"

!'"

1 3

2 4

!&"

!%"

(b) Decomposed into K� = 4 overlapping com-
munities.

Figure 2: We use the weighted undirected network of 2(a) to illustrate our community detection
scheme. Our algorithm extracted four overlapping modules, as shown in 2(b).

Allocating nodes to multiple modules as in Fig. 2(b), is only one part of the solution. We also
capture the degree of participation of individuals to each community by using the incidence matrix
W� described in the previous section. Fig. 3(a) shows W� ∈ R16×4

+ where different colors indicate
various levels of participation of nodes to communities. We can see that the matrix is not in a clear
block diagonal form, as an individual can have some form of membership into multiple groups.

In our framework, community allocation is not a Boolean decision but a belief ; each node is assigned
a membership distributed over communities, as seen in Fig. 3(b). We can see that mediator nodes
of high “betweenness”, such as i = 6, have a more entropic distribution (similar to the concept
of “bridgeness” [14]) while for nodes such as i = 4 or i = 14 we have much more confident
allocations.

4

(a) (b)

Figure 5: The first snapshot of our toy network (left) and the resulting clusters learned
from the static PPTF model (NMF model). Notice that nodes are given probabilities of
cluster membership and that the number of clusters was automatically learned. The color
of each cell in the right figure represents the probability that a node belongs to a given
cluster.

4.2 NPTF Model

We applied the NPTF model to the S&P 500 network performing learning with the ALS
algorithm as our implementation converged faster. First we investigate the behavior of
the learning algorithms and how well the models are able to explain the data by looking
at the errors. We first divided the data into a training set and testing set with 85% of
the data used for training. The model has a few parameters which we collapsed to two
parameters, a regularization parameter λ and the number of clusters K (as this model
doesn’t learn the number of clusters). We performed cross-validation to find good values
using 5-folds on the training set (this still took about 2 hours). Figure 6 shows the mean
cross-validation score (the value of Equation 1) with one standard deviation. We see the
usual pattern of the error increasing as the value of regularization parameter. Figure 7
shows the value of the objective function on the test set with a model trained on the entire
training set. We see the same behavior as in the cross validation with increasing error with
larger values of λ and notice that the values of the objective function (error) is higher for
the test data as expected. Figure 8 shows the root-mean-square-error (RMSE) of the test
data which decreases to a seemingly good value of 0.25 for larger values of λ. However,
more investigation needs to be performed to determine if this is meaningful.

Next, we explore the actual clusters that are learned by the model. Figure 9 shows the
factor value of each node for factor 7. We see positive, negative and very small values and
we can interpret the positive values as a node belonging to this cluster and small values as
a node not belonging to the cluster. Negative values are harder to interpret but a naive
interpretation is that the node is opposed to being in this cluster. Further inspection as

11

to what nodes have large relative positive values shows that the cluster is rather spurious
with equities that don’t really seem to have anything in common. We can also explore the
temporal patterns of the learned clusters as shown in Figure 10. We see some interesting
temporal patterns as some of the learned factors are periodic, some are constant and others
decrease over time. So we see that the NPTF model is good at reconstructing the data,
but our results have not shown meaningful clusters are learned and further work will need
to be conducted. For instance, we should compare these results with a baseline method
such as predicting the held out edge weights to be the mean edge weight of the training
data.

0.0001 0.01 0.1 1.0
0

100

200

300

400

500

600

700

800

900

1000

M
ea

n
ob

je
ct

iv
e

fu
nc

tio
n

(w
/ 1

 s
td

. d
ev

)

 25
 50
100

Figure 6: Value of NPTF objective function on validation folds (mean and one standard
deviation) for 5-fold cross validation with various values of λ and K.

4.3 PPTF Model

We applied the PPTF model to the WTW network using the multiplicative gradient descent
algorithm. As with the NPTF model there are a few parameters in the PPTF model,
however, in our experiments we only vary the number of initial clusters, K0, as the model
is pretty robust to the other parameters. As with the NPTF model we perform 5-fold
cross validation to determine a good value for the number of initial clusters where we run
the multiplicative gradient descent algorithm for 100 iterations. Figure 11 shows boxplots
of the distributions of of the objective function (negative log-probability) of the PPTF
model. We see that increasing the number of initial clusters noticeably decreases the value
of the objective. Setting K0 forces the algorithm to use too few factors, however choosing

12

0.0001 0.01 0.1 1.0
0

200

400

600

800

1000

1200

1400

1600

1800

2000

O
bj

ec
tiv

e
at

 te
rm

in
ta

tio
n

 25
 50
100

Figure 7: Value of NPTF objective function on validation fold for 5-fold cross validation
with various values of λ and K.

0.0001 0.01 0.1 1.0
0

0.5

1

1.5

2

2.5

Te
st

 s
et

 R
M

SE

 25
 50
100

Figure 8: RMSE of test set for various values of λ and K.

13

0 100 200 300 400 500
0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

Node

Ac
tiv
at
io
n

Figure 9: The seventh learned factor for the nodes in the NPTF model on the S&P 500 data.
Nodes with large activations are part of this cluster while small or negative activations are
not.

0 5 10 15 20 25 30 35 40
5

4

3

2

1

0

1

2

3

4

Time stamp

Ac
tiv

at
io

n

Figure 10: The temporal signatures for all learned factors for the NPTF model on the S&P
500 data. We see some interesting temporal behavior.

14

K0 too large can cause the algorithm to overfit the data because it has too many degrees
of freedom. We did compute the KL divergence that corresponds to the PPTF model,
however the results were inconclusive at this time and further work needs to be performed
on the sensitivity to the learned clustering on the starting value of K0.

We then consider the actual clusters learned by the model. Figure 12 shows the acti-
vation of each node for the second cluster. In this case all values are positive and only a
few are much larger than the others. Unfortunately, again the nodes with large activations
correspond with countries that don’t seem to have anything to do with each other. Figure
13 shows the temporal signature of each cluster and in this case we see that all clusters
increase their influence over time. This is probably an artifact of the learning algorithm not
converging fully to a good solution. So again the results are promising in that the model
learns sparse clusters, but the reported results do not indicate that the learned model is
explaining the data well nor learning meaningful clusters.

1.2

1.22

1.24

1.26

1.28

1.3

x 107

 25 50 100
K0

O
bj

ec
tiv

e
fu

nc
tio

n

Figure 11: Value of objective function for PPTF model for the WTW data for various
values of the initial number of clusters.

5 Conclusions

In this work we proposed two models to perform soft-clustering of time-evolving networks,
one that treats the edge weights as Gaussian distributed and the other that treats the
edge weights as Poisson distributed. We have implemented learning algorithms for both
models and applied them to synthetic data and real evolving networks. We find that the
Gaussian model is able to learn latent clusters that explain the data well, but the clusters

15

0 50 100 150 200
0

5

10

15

20

25

30

Node

Ac
tiv
at
io
n

Figure 12: The second learned factor for the nodes in the PPTF model for the WTW data.
Nodes with large activations are part of this cluster.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

Time stamp

Ac
tiv

at
io

n

Figure 13: The temporal signatures for all learned factors of the PPTF model on the WTW
data. We see some interesting temporal behavior.

16

at first observation are not meaningful and the cluster indicators are hard to interpret. The
Poisson model learns sparse, easy to interpret factors, however, the model did not seem to
explain the real data we applied it to very well. Some of these problems may be mitigated
by a more sophisticated preprocessing of the raw data because for this work we attempted
to keep all preprocessing as simple as possible.

In future work we will augment the NPTF model with explicit positivity constraints to
make the learned factors easier to interpret. Sparsity could also be explicitly incorporated
into the model to enforce learning small clusters. Additionally, more work needs to be
done exploring the convergence of the algorithms and local minima. There is still hope
that the Poisson model will work because of the static NMF’s success. More work needs
to be done on the sensitivity of the algorithm to the initial number of clusters and on the
algorithm’s convergence in general to local minima. Additionally, though the toy network
is very simple with obvious clusters evolving over time, there may just not be enough
data to learn the sophisticated latent variable models. Therefore, it is very important to
develop a non-trivial time-evolving network with known clusters over time that the models
can learn. Lastly, a fully Bayesian model should be developed to alleviate any sensitively
to parameter values. Learning can be performed in the fully Bayesian setting either by
Markov chain Monte Carlo or with variational methods.

In closing, the project has been successful allowing us to explore an idea we have had for
a while. Though the models did not deliver all they were supposed to, the project allowed
the full models to be fleshed out and logical gaps to be filled as well as some simple learning
algorithms to be implemented. However, the most important results of this work were the
unanticipated new problems that arose during the work and that were discussed above. We
look forward to solving these problems and pushing work in the area of clustering dynamic
networks forward.

References

[1] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In Knowledge Discovery and Data Mining, pages 269–274, 2001.

[2] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link prediction
using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery
from Data, 5(2):Article 10, 27 pages, February 2011.

[3] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, September 2009.

[4] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems 14, pages
849–856. MIT Press, 2001.

17

[5] I. Psorakis, S. Robers, and B. Sheldon. Soft partitioning in networks via bayesian
non-negative matrix factorization. 2010.

[6] V.Y.F. Tan and C. Fevotte. Automatic relevance determintation in nonnegative matrix
factorization. 2009.

[7] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G. Carbonell. Tem-
poral collaborative filtering with bayesian probabilistic tensor factorization. In Proceed-
ings of SIAM Data Mining, 2010.

18

