
COSC134S11 Project Final Report: Geometric Shape

Recognition

Ping Lin



COSC134S11 Project Final Report: Geometric Shape Recognition

Figure 1: Schematic view of the problem.

The Problem

The goal for this project is to recognize simple 2D geometric shapes one sketches on a pen-based

device like Tablet PC. One important consideration of the system is the ability to generalize to

larger/different symbolic sets. The idea is to confine the domain of recognition to be the simple

geometric shapes, like circle, rectangle, triangle, arrow, etc. so that the complexity of the problem

is not overwhelming with the time constraints, but at the same time, try hard to make the system

general-purpose augmentable. Schematically, the problem can be summarized in Figure 1.

Background

Free-hand sketch recognition is a problem that has been studied for a long time. But because of

the diversity of the possible target objects to be recognized, there has not been any method that

is ”the” method to use.

This shape recognition problem is closely related to the familiar OCR problem. But there are

differences between them. One such difference is that, in OCR, we rely on character’s orientation

to distinguish some symbols, say “6” and “9”. In shape recognition, however, we really would like

to have rotational invariant property. First, it is natural and often needed to draw the same shape

in different orientations, say, an arrow from left to right and another from up to down. Second, the

orientation of shapes tend to have a continuum in contrast to OCR, where the margin for heading

difference of two characters is very large. In shape recognition, the shape could be tilted to any

slope; there is no clear cut. So, it is best to identify the shapes different only in orientation.

Because anything relying on the temporal information will put constraints on the order strokes are

written, which is not so desirable for geometric shape recognition. Also for simplicity of feature

generation, in this project, the input is merely a 2D image.
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Also, for generalizability, the proposed method is chosen to be in the category of statistical methods.

Methods

Moments method is popular in statistical methods of classification. Among them, Zernike moments,

when taking its magnitudes, are naturally rotational invariant. So, Zernike moments, or more

precisely, magnitudes of Zernike moments up to certain order of the input 2D binary image are

served as the feature vector in this project. [1]

Zernike polynomials are a set of complex, orthogonal polynomials defined over the interior of the

unit disk. And they are complete on the interior of the unit disk, so they form an orthogonal basis.

Zernike moments are then obtained as projections of the input image on these Zernike polynomials.

Precisely, Zernike polynomials Vnm are computed as follows:

Vnm = Vnm(ρ, θ) = Rnm(ρ)ejmθ (1)

Rnm =

n−|m|
2∑

s=0

(−1)s
(n− s)!

s!(n+|m|2 − s)!(n−|m|2 − s)!
ρn−2s , (2)

where n is a non-negative integer, m is an integer such that n− |m| is even and |m| ≤ n.

Then, Zernike moment Anm of order n with repetition m is:

Anm =
n+ 1

π

∑
x

∑
y

f(x, y)Vnm(x, y), x2 + y2 ≤ 1 . (3)

The component of the feature vector is thus |Anm|, where the largest order n needs to be specified

to make our feature vector finite dimensional.

Notice that An,−m = A∗nm, so |Anm| = |An,−m|. We thus only need to consider |Anm| with m ≥ 0.

This together with the constraint: m is an integer such that n − |m| is even and |m| ≤ n, will

establish the number of moments at a given order of Zernike moments, which is summarized in

Table 1. This will give us the dimension of our feature vector at each order we specify.

Zernike moments are not, however, possess all invariances needed in practice. In particular, Zernike

moments are not scale and translation invariant. We need to rely on some preprocessing to achieve

these two invariances, which are indispensable in geometric shape recognition.
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Order Moments No. of
Moments

0 A00 1

1 A11 1

2 A20, A22 2

3 A31, A33 2

4 A40, A42, A44 3

5 A51, A53, A55 3

6 A60, A62, A64, A66 4

7 A71, A73, A75, A77 4

8 A80, A82, A84, A86, A88 5

9 A91, A93, A95, A97, A99 5

10 A10,0, A10,2, A10,4, A10,6, A10,8, A10,10 6

Table 1: Number of Zernike moments from order 0 to order 10

Preprocessing

Besides, translation and scaling normalization. Another thing that needs to be done in preprocess-

ing is to make the input strokes have evenly distributed data points [2]. This is done by first using

a data reduction filter to reduce data points that are overly close to each other and then applying

a stroke interpolation procedure to add points properly so that no two adjacent points are too far

away. The more evenly distributed data points on the image tends to give more consistent Zernike

moments,which is crucial to this project. Obviously, the above processes need threshold values of

the proper adjacency distances. To make these thresholds not depending the original scaling of the

image, a prefix step is added to first map all x,y coordinates of the plot to the unit interval.

Then, data points of the image are translated so that their centroid is at the origin of the image

(the center of the square matrix representing the image).

After this, the usual way is to resample the image so as to make its total pixel count equal to some

fixed value; thus the scaling invariant is obtained [3]. But this process introduces sampling errors,

which are annoying in the final moments generation. Instead, here we adopt a modified way [4]

of treating the scaling invariance, that is, first go ahead and compute the Zernike moments and

then normalize the moments directly by dividing them by the total number of pixel counts (in the

binary case). From the experiments, this modification achieves scaling invariance very nicely.

To summarize, the procedure from raw plot data to the final feature vector is schemed in Figure 2.
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Figure 2: Schematic procedure of the method.

Results and Discussion

The key of success in the shape recognition turns out to be the preprocessing step. This makes

sense in that the preprocessing (including the moment generation and normalization) produces the

sole identifier of the input image, namely, the feature vector. Once the feature vector is generated

with the desired invariances properties and so on, the classification stage is just cruising.

So the results start from the preprocessing. Figure 3 shows the intermediate results after different

stages in preprocessing.

The input image could range in anywhere (in my case, the input area is normalized to [0, 1], but

the input image could only occupy a small area in the [0, 1] × [0, 1] box). The upper left plot is

the one after mapping the data range to full scale of [0, 1], without changing the number of data

points. So, it has 149 points as that in the original plot.

Then, the upper right shows the plot after applying the data reduction filter. Points are too close to

each other are filtered out and the total points is now reduced to 93. This also will make moments

generation a little faster.

Then, seemingly counter intuitively, an interpolation procedure is employed to add points back.

The idea is that some segment may be sketched too fast so the adjacent point distance is too large

and interpolation is applied to add points in between these points so the final plot has no two

adjacent points are more than some threshold distance away. The lower left plot shows the output

of the interpolation and we see the total points increased a little to 101, but the points are much

more evenly distributed. This, verified by experiments, will give more consistent Zernike moments.
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The lower right plot shows the image after we translate the points so that the centroid is moved to

the center of the image (the square). This is to take care of the translation invariance.

Figure 3: Preprocessing (upper left: map to [0,1], upper right: data reduction, lower left: interpo-
lation, lower right: translation normalization).

Next, we show in Figure 4 that the final Zernike moments generated out of the above preprocessing

are indeed invariant under rotation, scaling and translation. Rotation invariant is inherent in

magnitude taking of Zernike moments. Translation is taken care of as mentioned above. The

scaling invariance is achieved by the normalization on the computed Zernike moments.

In Figure 4, the left-hand side are two original plots input. They are quite different in scale,

orientation and location. The right-hand side are the corresponding normalized Zernike moment

magnitude up to order 10 (from Table 1, there are 36 moments). Notice that from the formulas

and our normalization procedure, it can be shown that the first moment |A00| is the same for all

images and A11 is always zero. So, in the final feature vector used for classification, the vector

starts from the third moment (for instance, for order 10, there are going to be 34 features). Here,

we see that the moments, especially the salient ones of the two are quite close to each other. So,

in the classification, we are going to likely to group these two into the same class.

Finally, we are ready to do classification. With a training set containing 10 samples for each

shape, which is drawn manually, the Zernike moments are computed up to order 10. The leave-

one-out training results on different maximum Zernike moment orders are shown in Figure 5.

Here, Minimum-mean-distance learning methods is compared with multi-class SVM by one-vs-one

scheme. The MMD is actually weighted minimumu-mean-distance. For a test image, this method
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Figure 4: Rotation, scale and translation invariances.

measures a weighted Euclidean distance between the feature vector of the test image and the mean

of the feature vectors of each classes, weighted feature-wise by the inverse of the variance in that

feature.

Clearly, this shows that too low the order is not enough; also, it suggests, that, too high an order is

also not necessary. From this figure, order 8 seems the optimal one that achieves the lowest error

rate on both minimum-mean-distance and support vector machine classifiers.

Also from the above figure, the proposed method works pretty well on this small shape set. Es-

pecially, our careful preprocessing takes care of several invariances that Zernike moments do not

have.

In terms of learning methods, SVM performances slightly better and should be the preferred method

to use in practice. MMD has the advantage of being fast, so if real-time processing is at risk, MMD

might be considered as an alternative.
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Figure 5: Training error vs Zernike moment order.

Future Work

The obvious first one is to expand the shape data set. This can be readily done given the nature

of the method is statistical.

Another direction toward application is to add some functionality recognition such as delete, select

and move, so that this system can be easily used to draw figures made of simple geometric shapes.

This is also called gesture recognition in the literature.
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