
Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

1 Introduction

Music Information Retrieval (MIR) tasks aim to learn about music, such as the structure of
a piece, how various pieces compare to each other, and how to recommend music to listeners.
There are many approaches to MIR tasks, and a single song can be represented in several
different ways. In our project, we created an algorithm that detects structure in a musical
song. By structure, we do not necessarily mean verse or chorus. Instead, our algorithm
should detect the same kinds of structure that a human eye sees when looking at the matrix
that represents a song.
Our goal is to find exact repeats of square-submatrices of varying sizes. A relaxed version
of this goal is to cluster square-submatrices that are close to each other. Our algorithm
is based on Ng et al’s [4] spectral clustering algorithm. Our algorithm learns both the σ
for creating the affinity matrix and the appropriate K, the number of clusters. Then our
algorithm clusters the square-submatrices and performs various statistics on the resulting
clusters.

2 Data Set

Our song data from Beatles Dataset created by Prof. Michael Casey, Department of Music,
Dartmouth College. Each song is represented by distance matrix of squared-Euclidean dis-
tances between song‘s audio shingles. Audio shingles are comprised 30 concatenated feature
vectors , created by splitting the audio track into tenth of a second windows and extracting
the mel-frequency cepstral coefficients (MFCCs) for each of the window[1]. Song’s Distance
Matrix cleaned by separating recorded zeros from non-recorded distances with non-recorded
distances set to 3. We chose 3 for these non-recorded values because the largest possible
recorded value is 2. Thus by choosing 3, we have clearly separated the recorded values from
the non-recoded ones. Below are two cleaned songs from the Beatles Dataset:

3 Method

Our algorithm has three phases: feature extraction, clustering, and evaluation. Our algo-
rithm makes a number of assumptions. First, it has been shown that for this particular
kind of song data that that repeats present themselves as diagonals[3]. Therefore we will
only compare the diagonals of square-submatrices of the song data matrix. Second, we are
fixing the size of the sub-matrrices to be 100× 100. We have also decided to comparison of
diagonals whose sub-square-matrices overlap in someway. Lastly due to memory constraints,
we will only consider one band of diagonals. We will only be considering diagonals begin at
entry (1,i) for all i from 1 to (n-100+1), where n is the number of rows (and columns) of the
full song matrix.
Using the above assumptions, we rewrite our goal as follows: we group square-submatrices
together if their diagonals are identical. Thus the relaxed version is that we group square-
submatrices together if their diagonals are near each other (i.e. if they are in the same
cluster.

1



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

3.1 Algorithm – Learning σ and K

1. Feature Extraction
In this step, we will extract one band of diagonals and convert the diagonals into
columns (to be acceptable input for MATLAB). Then we will create a pairwise squared-
Euclidean distance matrix D .

2. Perform Spectral Clustering (based on algorithm from [4])
In this step of the algorithm, we first need to find an appropriate value for σ that will

be used to create the affinity matrix A, which is defined as Aij = exp
(

−Dij

2σ2

)
for i 6= j

and Aii = 0. Given a vector of possible values for σ, our algorithm looks for the value
that minimizes the mean of the entries of A, while also looking for the sigma which
maximizes the value for the variance. In our algorithm, we compute A for each of the
possible σ values, then choose the five values that give the lowest mean for the entries
of A. Then we choose of those five possible σ the one whose associated A has the
largest variance. (Although we did run an experiment of first choosing five values of
σ based on the largest variance and then chose the value of σ that yields the A with
the smallest mean. Our resulting σ was the same for each experiment. This of course
makes sense to us due to definition of variance and the fact that the entries of A are
all between 0 and 1. Thus if we subtract a small mean from each of the entries of A
- as one does in the computation of variance - then we would expect the mean of the
entries of the resulting matrix to be higher than if we had subtracted a larger mean
from each of the entries of A).

Using this affinity matrix, we compute the eigenvalues using SVD. We note that since
D is symmetric, then so is A. Thus the eigenvalues of A are real. As shown in class,
if we define Λ to be the diagonal matrix with the eigenvalues of A along the diagonal
in descending order and if we define U to be the matrix comprised of the eigenvectors
of A as its columns, then we have that:

AU = ΛU = UΛ

AUU t = UΛU t

A = UΛU t

Therefore, we use the preferred MATLAB function SVD() instead of EIG().

The next step of the algorithm requires choosing K, the number of clusters. We
have two methods for making this choice. In the first method, we approximate the
tangent curve of the relative eigenvalues and choose the firstK where this approximated
tangent curve has slope within ελ of 0. We approximate the tangent curve at the
Kth relative eigenvalue difference by using the Kth and (K − 1)th relative eigenvalue
differences. Similarly for method two, we attempt to approximate the tangent curve of
the eigenvalues and choose the first K where this approximated tangent curve has slope
within ελ of 0. However to approximate the tangent curve at K we use the (K + 1)th

and (K−1)th eigenvalues. We are aware of the inconsistency between the two methods.

2



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

but we note that in the second method, we know that the eigenvalues are in descending
order, while for the first method, we do not have such knowledge. In fact, we note that
it is possible to have the relative eigenvalue differenced fluctuating between positive
and negative results, hence the use of two consecutive relative eigenvalue differences,
while for the eigenvalue differences we know that they are all negative. Also, please
note that for our experiments, we chose ελ = 0.01. We then use this K to cluster the
diagonals of the square-submatrices.

3. Evaluation In the final step of our algorithm, we determine if the clusters are comprised
of near-repeats. Noting that if a cluster is comprised of diagonals that are all close to
each other, then for any two diagonals d, d̃, we have that ‖d− d̃‖ ≤ ε for a small value
of ε > 0. Therefore, we will evaluate each of our clusters by computing the range,
mean, and variance of the pairwise distances between distinct diagonals belonging to
that cluster.

4 Results & Discussion

For both songs from the data set, we found σ = 0.05. Our method is flawed - for both
songs and both methods for finding K, there is one cluster has range of pairwise distances
significantly larger than 0. We note that we found a typo in our method 1 computation for
K and the below results for those methods are different than the presented poster.

As a result of the discussion at the poster session, I created three test matrices. The
first (SongID = 3) is created by tiling the row A = [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3] to
become a matrix of size 698× 698. The second (SongID = 4) is created by tiling the 10× 10
identity matrix to be a matrix of size 698× 698. The third one is the first 10 columns tiled
to create a matrix that is 698 × 698. In all three cases, we expect there to be 10 clusters.
Unfortunately, in none of these cases did this happen. In fact, we had to further the code
to handle empty clusters due to these cases. Please see Figure 5 for the visualizations.

After looking at the results for all three test matrices, we certainly feel that the method
must be flawed because for none of the songs in either method of computing K does the
algorithm find 10 clusters as we would expect. For further comparison, we ran k-means on
these test matrices using k = 10, the K that the algorithm found before performing k-means
(K B) and the K that the algorithm found after performing k-means (K A). Below is the
number of clusters that k-means found performed on the extracted diagonals from the test
matrix (before the spectral clustering step).

3



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

SongID Method K = 10 K B K A

3 1 10 2 2
3 2 10 2 2
4 1 10 4 4
4 2 10 4 2
5 1 10 2 2
5 2 10 2 2

We notice that if we set K = 10 for the test matrices and then cluster the resulting
diagonals, we still have 10 diagonals. Thus we believe that there must be a flaw in either
our method for choosing σ or our method for choosing K. We should also note that the
second test matrix (Song ID = 4) for the second method for finding K, the later k-means
computation resulted in two empty clusters and the number of clusters was therefore reduced.

4



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

5 Future Work

We recognize that our work is just a first step into building a hierarchical decomposition for
song data. But even before building such a decomposition, some future work may include
perform network analysis on resulting clusters with largest range, creating an algorithm that
learns the appropriate band width, and creating an algorithm that ignores diagonals that
have no near-repeats (i.e. ones that are too far from all other diagonals). After building a re-
liable algorithm for this first decomposition step, then we could use this technique recursively
on resulting clusters to create hierarchical representations for our song data

6 References

[1] M. Casey, C. Rhodes, and M. Slaney, Analysis of minimum distances in high-dimensional
musical spaces, IEEE Transactions on Audio, Speech, and Language Processing 16 (2008),
no. 5, 1015 − 1028.
[2]M. Meila and L. Xu Multiway Cuts and Spectral Clustering. Retrieved from:
http://www.stat.washington.edu/mmp/Papers/
[3]M. Müller, P, Grosche, and N. Jiang, A Segment-based fitness measure for capturing repet-
itive structures of music recordings, 12th International Society for Music Information Re-
trieval Conference (ISMIR 2011), Miami, Oct, 2011.
[4]A. Y. Ng, M. I. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an algorithm,
Advances in Neural Information Processing Systems 14: Proceedings of the 2002 conference
2 (2002), 849 − 856. Retrieved from: http://ai.stanford.edu/ ang/papers/nips01-spectral.pdf
[5]J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence 22 (2000), no. 8, 888 − 905
[6]U. von Luxburg, A Tutorial on Spectral Clustering, Mathematics and Computing 17 (2007)
no. 4, 395 − 416. Retrieved from:
http://www.kyb.mpg.de/fileadmin/user upload/files/publications/attachments/Luxburg07
tutorial 4488%5b0%5d.pdf

5



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

7 Images

Below are the resulting images for our algorithm. First are the images for the cleaned songs,
which are followed by the test matrices.

Figure 1: Cleaned song visualizations for “Polythene Pam” (Abbey Road), “You Know What
To Do” (Anthology 1, Disc 2)

6



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 2: “Polythene Pam” Isolated Diagonals - (a) with remaining cleaned song set to 0,
(b) as columns, (c) normalized pairwise distances between diagonals, (d) resulting affinity
matrix, (e)-(f) plots of Range (red), Mean (blue), Variance (green) for Ck for - (e) Method
1: K = 17, (f) Method 2: K = 24

7



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 3: “You Know What To Do” Isolated Diagonals - (a) with remaining cleaned song
set to 0, (b) as columns, (c) normalized pairwise distances between diagonals, (d) resulting
affinity matrix, (e)-(f) plots of Range (red), Mean (blue), Variance (green) for Ck for - Range
(red), Mean (blue), Variance (green) for Ck - (b) Method 1: K = 6, (c) Method 2: K = 26

8



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 4: “Polythene Pam” - (a) Diagonals as columns, Clustering assignments visualiza-
tions: (c) Method 1, (e) Method 2. Similarly (b),(d),(f) for “You Know What To Do”

9



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 5: Visualizations of the three test songs (SongID 3, 4, 5)

10



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 6: First Test Matrix (SongID = 3) Isolated Diagonals - (a) with remaining cleaned
song set to 0, (b) as columns, (c) normalized pairwise distances between diagonals, (d)
resulting affinity matrix, (e)-(f) plots of Range (red), Mean (blue), Variance (green) for Ck

for - Range (red), Mean (blue), Variance (green) for Ck - (b) Method 1: K = 2, (c) Method
2: K = 2

11



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 7: Second Test Matrix (SongID = 4) Isolated Diagonals - (a) with remaining cleaned
song set to 0, (b) as columns, (c) normalized pairwise distances between diagonals, (d)
resulting affinity matrix, (e)-(f) plots of Range (red), Mean (blue), Variance (green) for Ck

for - Range (red), Mean (blue), Variance (green) for Ck - (b) Method 1: K = 4, (c) Method
2: K = 2 (original found K = 4)

12



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 8: First Test Matrix (SongID = 3) Isolated Diagonals - (a) with remaining cleaned
song set to 0, (b) as columns, (c) normalized pairwise distances between diagonals, (d)
resulting affinity matrix, (e)-(f) plots of Range (red), Mean (blue), Variance (green) for Ck

for - Range (red), Mean (blue), Variance (green) for Ck - (b) Method 1: K = 2, (c) Method
2: K = 2

13



Final Project Write-Up - Katherine Marie Kinnaird May 30, 2012

Figure 9: SongID = 3 - (a) Diagonals as columns, Clustering assignments visualizations: (c)
Method 1, (e) Method 2. Similarly (b),(d),(f) for Song ID = 4

Figure 10: SongID = 5 - (a) Diagonals as columns, Clustering assignments visualizations:
(b) Method 1, (c) Method 2.

14


