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Abstract

Karyogram is a visual depiction of chromosomes as a pair-wise ordered arrangement. 
Chromosomes from 30 karyograms of the Lisbon-K1 dataset are automatically paired by 
a multiclass k-Nearest Neighbor classifier and the performance is discussed.   
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1. INTRODUCTION

Karyotype [1] is a set of characteristics that describe the chromosomes in a cell. An ordered 
depiction of the karyotype, as an image, in a standard format, is called a karyogram; 
chromosomes are arranged in pairs by size (decreasing order) and centromere position. Study of 
karyograms is at the heart of cytogenetics. These analyses contribute greatly to the study of 
chromosomal abnormalities and aberrations, genetic disorders, taxonomical relationships etcetera. 

In humans, somatic cells have 23 classes of chromosomes (22 autosomes and 2 sex 
chromosomes), and a total of 46 chromosomes per cell; 22 pairs of chromosomes are present in 
each cell. In order to develop a karyogram, cells  arrested at the metaphase stage of cell division 
are stained, by a dye, such as Giemsa [2] and imaged. The chromosomes then need to be arranged 
in pairs in order of decreasing size. As a result of staining, each chromosome has a unique 
banding pattern that aids classification. This process of pairing and karyotyping is usually done 
manually and requires considerable time of an expert. Automating these is an active field of 
research [3] and is highly desirable. Figure 1 shows a karyogram from the Lisbon-K1 dataset, 
where chromosomes are arranged in the order of their class. Figure 2 shows a stained 
chromosome with distinct banding pattern. 

1.1 DATASET

The Lisbon-K1 (LK1) dataset [3, 15], of chromosomes from bone marrow cells of leukemia 
patients, developed by the technicians of Institute of Molecular Medicine of Lisbon, was 
used for this project. The dataset contains 200 karyograms (9200 chromosomes). For the 
purpose of this project a subset of 33 Karyograms from this dataset was used. This dataset 
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Fig.1 Karyogram 1 from Lisbon-K1 dataset. The chromosome class is indicated by the red 
numbering and the first pair is highlighted by a box.

Fig.2 Visible banding pattern 



is of much lower quality than other more widely used datasets. Figure 3 shows a 
comparison between the LK1 dataset and Copenhagen dataset.

1.2 RELATED WORK

For pairing based on classification, numerous methods of classifier design have been 
proposed in literature. For example, hidden markov models [5], template matching [6], 
neural network and multilayer perceptron [7] – [12], wavelet [13], fuzzy [6] and Bayes [9] 
classifiers have been proposed. Classification success is usually in the range of 70% to 
80% with these (on high quality datasets), which is much lower than the accuracy of 
99.70% achieved by a human expert [3]. Khmelinskii et al propose an algorithm that pairs 
chromosomes directly without accurately classifying them and assistance from a rough 
classification, performed using Support Vector Machine (SVM) classifier is used [14]. 

2. METHOD

The chromosomes available in each karyogram are ordered and arranged according to the 
class to which they belong. Figure 1 shows a karyogram image. The adopted methods for 
pairing uses the distance between feature vectors associated with each chromosome. The 
distances of a given chromosome from each chromosome in the training set are calculated 
and the chromosome is classified to the class that is nearest to it. The following steps 
describe two methods adopted and tested for pairing and classification.

2.1 FEATURE EXTRACTION

In order to build a metric for calculating distance 
between two chromosomes, some features need 
to be extracted. Preceding this the chromosome 
images are pre-processed and geometrically 
corrected so that their boundaries are more-or-
less parallel and an axis of symmetry if drawn 
would be parallel to the lateral boundaries[4].  
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of extraction of accurate band profile, representative of intensity
distribution over each chromosome, more challenging. A robust
method is hence required to tackle this problem. An algorithm was
thus developed, which estimates a single-line medial axis, the basis
for computation of band profile. Medial axis was generated by com-
puting a final prediction, using primary and secondary predictions
obtained by a nonparametric machine learning algorithm trained
with data from chromosome’s skeleton, and geometrical properties
of medial axis, respectively. Experiments were performed using the
LK1 dataset. The algorithm was found capable of estimating a sat-
isfactory single-line medial axis. Band profile obtained was found
to be a good representation of intensity levels in different regions
of chromosomes. Additionally, this algorithm is robust in terms of
growing a very small seed region into desired medial axis and also
handling highly irregular chromosomes.

Index Terms—Band profile, biological cells, bone marrow cells,
discrete-curve evolution (DCE), machine learning, medial axis.

I. INTRODUCTION

IN CYTOGENETICS, karyotype is the set of features that
have been used to study taxonomic relationships, chromo-

somal aberrations, and evolutionary biology. Manual procedure
of karyotyping requires considerable time of an expert; thus,
automating it is desirable. Classifier performance for automatic
karyotyping purpose suffers from measurement degradation in
features. Band profile is one such prominent feature, which has
been used widely [1]–[4]. The extracted band profile should be
an accurate representation of the spatial distribution of intensity
over chromosomal surface to increase the discriminative power
of the classifier. Thus, an algorithm that can accurately extract
band profiles from the chromosomes is essential.

The ultimate scope of this study is automatic processing of
bone marrow cells’ images for leukemia diagnosis. This type
of analysis is favored by features, such as centromere position,
high degree of condensation, and well-defined intensity distribu-
tion over chromosomal surface. These features while typically
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Fig. 1. Image showing comparison between karyograms from LK1 (left) and
Copenhagen (right) datasets.

present in classical, high-quality karyogram datasets such as
Edinburgh [1] or Copenhagen [1], [11] which have been used
earlier for genetic analysis, are either very hard to extract or ap-
parently absent from LK1 (see Fig. 1). Previously, medial axis
transform [1], [11], [13] and recursive thinning [14] have been
popularly used to obtain initial medial axis, and interpolate it to
meet the ends of the boundary for estimating a complete medial
axis. Different variations of piecewise curve fitting combined
with interpolation have also been tested [3], [4]. These meth-
ods suffer due to misidentification of the end pieces of medial
axis, thus producing error in its length and shape. A different ap-
proach using vessel-tracking algorithm has also been taken [15].
This approach uses center of mass (CoM) of the chromosome
as a seed region (SR) and this prevents its use for chromosomes
highly distorted, as the CoM tends to shift closer to the bound-
ary. Thus, a robust algorithm to adapt to the deformation in the
contour of chromosome is required.

The algorithm proposed here begins with the computation of
medial axis. It does so by first training a nonparametric machine-
learning algorithm with training set taken from the skeleton of
the chromosome being analyzed, from which a primary pre-
diction is obtained. Using the information available about the
dependence of points on medial axis over contour of chromo-
some, a secondary prediction is computed as well. Finally, us-
ing the primary and secondary predictions, a final prediction is
computed, which is then appended to the SR. SR is the part of
the skeleton, which is grown into medial axis. The algorithm
recursively continues until a complete single-line medial axis
has been estimated, and as a last step, band profile is com-
puted. The algorithm described is robust and computationally
inexpensive.

II. ALGORITHM DESCRIPTION

In this study, medial axis of a closed contour is defined as
a single continuous curve transversing across the length of the

0018-9294/$26.00 © 2010 IEEE

Geometric Correction

Fig.3 Comparison of chromosomes of low-quality LK1 dataset (left) from bone-marrow 
cells and chromosomes from high quality Copenhagen dataset (right) [16] 

Fig. 4 Geometric Correction



The features considered can be grouped into size-based – length, width, ratio of length of 
width and area of bounding box – and patter-based features – band profile and mutual 
information. 
❖  Band profile : Average intensity along each row of the corrected chromosome image.
❖ Mutual Information : This feature is always measured for pair of chromosomes and 
cannot be calculated for a single chromosome. The mutual information MI between a pair 
of chromosome images IA and IB is: 

where pAB (a,b) is the joint histogram of the images IA and IB and pA(a) and pB(b) are the 
histograms of each image respectively.

The following figure summarizes the above.
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smoothing, Fig.6.c), iii) Interpolation along orthogonal
lines to the smoothed medial axis, Fig.6.d-e) and iv)
border regularization, Fig.6.f).

3) Shape normalization - The features used in the com-
parison of chromosomes are grouped into two classes:
a) geometric based and b) pattern based (G-banding).
To compare chromosomes from a band pattern point of
view, geometrical and dimensional differences must be
removed, or at least attenuated. Therefore, a dimensional
scaling is performed before the pattern features is ex-
tracted to make all the chromosome with the same size
and aspect ratio by interpolating the original images, as
shown in Fig.7.a-b).

4) Intensity compensation - The metaphase plaque from
which the chromosomes are extracted does not present a
uniform brightness and contrast. To compensate for this
inhomogeneity the spatially scaled images are histogram
equalized [31] as shown in Figs.7b-c).

(a) (b)

(c) (d)

Fig. 7. Dimension and shape normalization and intensity equalization. a)
Geometrically compensated image, b) Spatial normalization, c) Histogram
equalization and d) Band profile.

B. Feature Extraction
The processed images are used to extract discriminative

features to pair the chromosomes. We are using some of the
most used features in the classification of chromosomes, but
others, such as the centromere location, are not used due the
very poor quality of the images. The extracted features, used to
compute the distance between two chromosomes in the pairing
process according to a metric defined later, are the following:

1) Size/Area - This class of features includes the area in
pixels of each chromosome, its perimeter, bounding box
dimensions and aspect ratio, extracted from the non
normalized shape images.

2) Shape - Normalized area is computed as the ratio
between the perimeter and the area of the normalized
shape images.

3) Pattern - Two classes of features are used to dis-
criminate chromosomes pairs with respect to its pattern
characteristics:

- Band profile - Band profiles, like the one displayed in
Fig.7.d), are computed as the average intensity values
across each line of the shape normalized processed
image, h(n) = (1/N)

∑N
i=1 I(n, i) where N is the

number of columns of the image. To avoid measurement
degradation due to misalignment during the comparison
step, the band profiles of two chromosomes are aligned.
A shift constant τ̂ is estimated by maximizing the cross
correlation function of the two profile vectors, hi(n) and
hj(n),

τ̂ = arg max
τ

φi,j(τ) (1)

where φi,j(τ) = φ(hi(n), hj(n − τ)), is the cross
correlation function [32]. The maximum of this function,
when both profiles are aligned, occurs for τ = 0.
The distance between the chromosomes with respect to
the band profile is the Euclidean distance between one
profile and the other, shifted by τ̂ ,

d(i, j) = ‖hi(n) − hj(n − τ̂)‖2. (2)

-Mutual Information - The Mutual Information (MI) is
proposed in this paper as a new feature for chromosome
pairing that aims at increasing the discriminative power
of the classifier with respect to the band pattern (G-
banding) that characterizes each class of chromosomes.
This measure is widely used in medical image pro-
cessing, namely in medical image registration [26] and
is particularly suitable to compare pattern similarities
based on the histograms of two images [31], such as
chromosome images. This is a valid assumption since
given 2 chromosomes from the same class, the corre-
sponding G-banding will overlap and maximal depen-
dence between the gray value of the images will be
obtained [26].
The MI associated with two chromosome shape normal-
ized images, IA(i, j) and IB(i, j), is defined as follows
[26]:

MI(IA, IB) =
∑

a,b

pAB(a, b) log

[
pAB(a, b)

pA(a)pB(b)

]

(3)

where pA(a) and pA(b) are the histograms of the im-
ages IA and IB respectively and pAB(a, b) is the joint
histogram of both images. Notice that this feature is
not associated with each chromosome individually, as
the previous ones, but is calculated for every pair. This
property is particularly useful in our approach where the
chromosomes are not individually classified.

The features extracted in this step are used to compute
a (44)2 × L matrix of distances, as shown in (8), where
442 is the total number of chromosome pairs in a given
karyogram, excluding the sexual pair and L is the total number
of features. The distance between two chromosomes with
respect to each kth feature, fk, is the absolute difference of
both features when they are scalars, dk(a, b) = |fak−fbk|, an
Euclidean distance when they are vectors (e.g. band profile),
dk(a, b) =

√∑

n (fak(n) − fbk(n))2 and a single scalar in
the case of the Mutual Information.

Authorized licensed use limited to: UNIVERSIDADE TECNICA DE LISBOA. Downloaded on March 17,2010 at 12:32:31 EDT from IEEE Xplore.  Restrictions apply. 

Fig. 5 Summary of feature extraction
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2.2 CALCULATION OF DISTANCE BETWEEN CHROMOSOMES

Two approaches were adopted for the calculation of distance between pairs of 
chromosomes. The first was a weighted-distance approach and the second was a Euclidean- 
distance approach. Both of these are discussed.

✤ Weighted-Distance Approach

As proposed by [16], the distance between two chromosomes i and j with respect to the kth 

feature is,

where w(k) is the weight associated with the kth feature and w represents the weight vector.

The weights w are obtained during the training step by a constrained optimization of the 
following objective, 

 

Where V(i) is the set of chromosomes of the ith class and U(i) is the set of chromosomes 
containing no more than one chromosome from the ith class. So each wi is computed by 
minimizing the sum of intraclass distances and maximizing the sum of interclass distances. 
This constrained optimization problem is approached using the method of Lagrange 
multipliers and the cost function E (w) is then,

where       is the Lagrange multiplier and  

Here each element di(k) is the distance between the ith pair of chromosomes from training 
set associated with the kth feature such that all pairs belong to class r.          thus represents 
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C. Distance between chromosomes

The overall distance between two chromosomes involving
all features, given a vector of weights, w, is defined as a
weighted distance computed as follows

D(i, j;w) =
L

∑

k=1

w(k)dk(i, j) (4)

where w(k) is the weight associated with the kth feature and
dk(i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised
classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
weights wr with 1 ≤ r ≤ N = 22 are estimated by using all
possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,

D(i, j) = min
r∈{1,...,22}

D(i, j;wr) (5)

The vectors wr, obtained during the training step, are com-
puted by minimizing an energy function under the constraint
‖w‖ = 1,

wr = arg min
w:‖w‖=1

E(w). (6)

where

E(wi) =
∑

(a,b)∈V (i)

D(a, b;wi)

︸ ︷︷ ︸

intraclass distance

−
∑

(a,b)∈U(i)

D(a, b;wi)

︸ ︷︷ ︸

interclass distance

(7)

where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,

Θr =









d1(1) d1(2) d1(3) ... d1(L)
d2(1) d2(2) d2(3) ... d2(L)
d3(1) d3(2) d3(3) ... d3(L)

... ... ... ... ...
dR(1) dR(2) dR(3) ... dR(L)









. (8)

Θr is a R × L matrix where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr but
now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method the energy function may be
written as follows

E(wr) = Φrwr + γw
T
r wr (9)

where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1

is a column vector of ones and γ is the Lagrange multiplier.
The minimizer of E(wr) is

wr = ΦT
r /

√

ΦrΦT
r = vers(Φr) (10)

where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute

the set of vectors wr, with 1 ≤ r ≤ 22, which are then used in
turn to compute the distance between two chromosomes using
the expression (5).

The distances computed using expression (5) form a sym-
metric matrix of distances D, where each element, D(i, j), is
the distance between the i-th and the j-th chromosomes,

D =







D(1, 1) D(1, 2) D(1, 3) ... D(1, 22)
D(2, 1) D(2, 2) D(2, 3) ... D(2, 22)
D(3, 1) D(3, 2) D(3, 3) ... D(3, 22)

... ... ... ... ...
D(22, 1) D(22, 2) D(22, 3) ... D(22, 22)







.

III. CLASSIFIER

The pairing process is a computationally hard problem
because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
∑

(i,j)∈P

D(i, j), (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
pairing matrix X = {x(i, j)}, where

x(i, j) =

{

1 (i, j) ∈ P or (j, i) ∈ P
0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’

denotes the usual matrix inner product, defined as follows

D · X :=
∑

i

∑

j

D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
this matrix has to satisfy constraints (a) and (b) above, which
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C. Distance between chromosomes

The overall distance between two chromosomes involving
all features, given a vector of weights, w, is defined as a
weighted distance computed as follows

D(i, j;w) =
L

∑

k=1

w(k)dk(i, j) (4)

where w(k) is the weight associated with the kth feature and
dk(i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised
classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
weights wr with 1 ≤ r ≤ N = 22 are estimated by using all
possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,

D(i, j) = min
r∈{1,...,22}

D(i, j;wr) (5)

The vectors wr, obtained during the training step, are com-
puted by minimizing an energy function under the constraint
‖w‖ = 1,

wr = arg min
w:‖w‖=1

E(w). (6)

where

E(wi) =
∑

(a,b)∈V (i)

D(a, b;wi)

︸ ︷︷ ︸

intraclass distance

−
∑

(a,b)∈U(i)

D(a, b;wi)

︸ ︷︷ ︸

interclass distance

(7)

where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,

Θr =









d1(1) d1(2) d1(3) ... d1(L)
d2(1) d2(2) d2(3) ... d2(L)
d3(1) d3(2) d3(3) ... d3(L)

... ... ... ... ...
dR(1) dR(2) dR(3) ... dR(L)









. (8)

Θr is a R × L matrix where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr but
now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method the energy function may be
written as follows

E(wr) = Φrwr + γw
T
r wr (9)

where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1

is a column vector of ones and γ is the Lagrange multiplier.
The minimizer of E(wr) is

wr = ΦT
r /

√

ΦrΦT
r = vers(Φr) (10)

where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute

the set of vectors wr, with 1 ≤ r ≤ 22, which are then used in
turn to compute the distance between two chromosomes using
the expression (5).

The distances computed using expression (5) form a sym-
metric matrix of distances D, where each element, D(i, j), is
the distance between the i-th and the j-th chromosomes,

D =







D(1, 1) D(1, 2) D(1, 3) ... D(1, 22)
D(2, 1) D(2, 2) D(2, 3) ... D(2, 22)
D(3, 1) D(3, 2) D(3, 3) ... D(3, 22)

... ... ... ... ...
D(22, 1) D(22, 2) D(22, 3) ... D(22, 22)







.

III. CLASSIFIER

The pairing process is a computationally hard problem
because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
∑

(i,j)∈P

D(i, j), (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
pairing matrix X = {x(i, j)}, where

x(i, j) =

{

1 (i, j) ∈ P or (j, i) ∈ P
0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’

denotes the usual matrix inner product, defined as follows

D · X :=
∑

i

∑

j

D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
this matrix has to satisfy constraints (a) and (b) above, which
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cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
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(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
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and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
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provided by experts. During the training step, a set of vector
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possible pairs of the training set.
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r∈{1,...,22}
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where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,
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now involving all pairs of the training set where at most one
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By using the Lagrange method the energy function may be
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is a column vector of ones and γ is the Lagrange multiplier.
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r /
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where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute

the set of vectors wr, with 1 ≤ r ≤ 22, which are then used in
turn to compute the distance between two chromosomes using
the expression (5).

The distances computed using expression (5) form a sym-
metric matrix of distances D, where each element, D(i, j), is
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The pairing process is a computationally hard problem
because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
∑

(i,j)∈P

D(i, j), (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
pairing matrix X = {x(i, j)}, where

x(i, j) =

{

1 (i, j) ∈ P or (j, i) ∈ P
0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’

denotes the usual matrix inner product, defined as follows

D · X :=
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D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
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all features, given a vector of weights, w, is defined as a
weighted distance computed as follows

D(i, j;w) =
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∑

k=1

w(k)dk(i, j) (4)

where w(k) is the weight associated with the kth feature and
dk(i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised
classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
weights wr with 1 ≤ r ≤ N = 22 are estimated by using all
possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,
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where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).
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di(k), is the distance associated with the kth feature of the
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written as

C(P) =
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and the goal of the pairing process is to find a total pairing P
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Note that the cost function (11) can be reformulated as a
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pairing matrix X = {x(i, j)}, where
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D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
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C. Distance between chromosomes

The overall distance between two chromosomes involving
all features, given a vector of weights, w, is defined as a
weighted distance computed as follows

D(i, j;w) =
L

∑

k=1

w(k)dk(i, j) (4)

where w(k) is the weight associated with the kth feature and
dk(i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised
classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
weights wr with 1 ≤ r ≤ N = 22 are estimated by using all
possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,

D(i, j) = min
r∈{1,...,22}

D(i, j;wr) (5)

The vectors wr, obtained during the training step, are com-
puted by minimizing an energy function under the constraint
‖w‖ = 1,

wr = arg min
w:‖w‖=1

E(w). (6)

where

E(wi) =
∑

(a,b)∈V (i)

D(a, b;wi)

︸ ︷︷ ︸

intraclass distance

−
∑

(a,b)∈U(i)

D(a, b;wi)

︸ ︷︷ ︸

interclass distance

(7)

where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,

Θr =









d1(1) d1(2) d1(3) ... d1(L)
d2(1) d2(2) d2(3) ... d2(L)
d3(1) d3(2) d3(3) ... d3(L)

... ... ... ... ...
dR(1) dR(2) dR(3) ... dR(L)









. (8)

Θr is a R × L matrix where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr but
now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method the energy function may be
written as follows

E(wr) = Φrwr + γw
T
r wr (9)

where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1

is a column vector of ones and γ is the Lagrange multiplier.
The minimizer of E(wr) is

wr = ΦT
r /

√

ΦrΦT
r = vers(Φr) (10)

where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute

the set of vectors wr, with 1 ≤ r ≤ 22, which are then used in
turn to compute the distance between two chromosomes using
the expression (5).

The distances computed using expression (5) form a sym-
metric matrix of distances D, where each element, D(i, j), is
the distance between the i-th and the j-th chromosomes,

D =







D(1, 1) D(1, 2) D(1, 3) ... D(1, 22)
D(2, 1) D(2, 2) D(2, 3) ... D(2, 22)
D(3, 1) D(3, 2) D(3, 3) ... D(3, 22)

... ... ... ... ...
D(22, 1) D(22, 2) D(22, 3) ... D(22, 22)







.

III. CLASSIFIER

The pairing process is a computationally hard problem
because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
∑

(i,j)∈P

D(i, j), (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
pairing matrix X = {x(i, j)}, where

x(i, j) =

{

1 (i, j) ∈ P or (j, i) ∈ P
0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’

denotes the usual matrix inner product, defined as follows

D · X :=
∑

i

∑

j

D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
this matrix has to satisfy constraints (a) and (b) above, which
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✤ The Euclidean-distance based classifier does not require such a constraint so the 
relative position of band profiles for a pair of chromosomes can be adjusted so that cross-
correlation is maximized.

The accuracy of 52.65% is acceptable and is comparable to an accuracy of < 50.50% 
achieved with a Nearest Neighbor classifier on the LK1 dataset reported by Khemlinskii 
et al [16]. 

5. CONCLUSIONS

Although the accuracy of classification is poor, it is promising. The observed trends are as 
expected. Use of a larger dataset, will enable a better understanding.
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