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Problem Statement 

In multiclass object classification, a key element is to design a robust identification of 
relevant class specification in presence of intra-class variations. However, this is a 
difficult problem due to high variability of visual appearance within each class. One 
possible approach is to adaptively combine a set of diverse and complementary 
features-such as features based on color, shape-in order to discriminate each class 
best from all other classes [1].  

Gehler and Nowzin proposed a booting approach that is to optimize jointly over a 
linear combination of some real valued functions (vf). 5 fold CV is used to select the 
best hyper parameters for each vf individually. Intuitively, randomly split the training 
dataset may not yield the best training result of vf. Torralba and Efros [2, 3] provided 
a comparison study using a set of popular datasets to evaluate relative data bias, 
cross-dataset generalization, etc. The study showed an insight that we might be able 
to improve training by carefully collect the datasets.  
 

Inspired by Torralba and Efros's research, I proposed a variation of feature 

combination algorithm that implements data classification before the hyper 

parameters selection in the Gehler and Nowzin's approach. We anticipate that pre- 

data classification will yield a better training result in hyper parameters selection, 

which will ultimately improve the overall model performance in terms of accuracy. 

 

Methods 

My proposed model is a combination of feature combination for multiclass object 
classification and a clustered dataset, each of which has an associated weighting of 



stylistic features. I will address the methods for dealing with each aspect of the 
project individually. 

 

 

 

 

 

 

 

Figure 1. Model schematic 

 
Proposed algorithm 

1. Choose F features, cluster dataset to K subsets by spectral clustering algorithm 
[8] 

2. Train C classifiers for F features on K*F subsets. The real valued output of K*F 
SVMs: 
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    Where: c(i) is the classifier of class i 

 

An important problem when analyzing relational data between features is clustering, 
finding sets data sets that are "more similar" to each other in the dataset. Here, we 
implement the spectral clustering algorithm by Andrew NG et al for data clustering 
[11]. 

 

1. Spectral clustering 

Three futures are selected for clustering: color, shape and texture. Kernel 
matrix is defined as: Km=exp(gamma^-1*d(xi, xj)) [1]. Where, gamma is the 
mean of the pairwise distances, and d is the pairwise distance matrix. 

Affinity matrices for color shape and texture:  

 
Figure 2. Affinity matrices 

 

However, there is a open issue in the spectral clustering: how to estimate the 
number of groups? For feature color, it is possible for me to manually label the 



data. But it is much harder for me to label the data based on texture and 
shape. Therefore, it is worth studying a new method to automatically 
determine the number of groups. Lihi Zelnik-Manor and Pietro Perona [12] 
proposed a self-tunning spectral clustering algorithm, which will automatically 
give the number of groups. 

 

2. Self-tuning spectral clustering 

Zelnik-Manor modified the Ng-Jordan-Weiss algorithm by substituting the 
locally scaled affinity matrix instead of affinity matrix. The resulting algorithm 
automatically defined a scheme to set the scale parameter, which is used in 
affinity matrix calculation. By analyzing the eigenvectors, Zelnik-Manor 
proposed a new method to determine the number of groups automatically. 

 
However, in practice, less number of groups works best for our project. 
Therefore, number of groups in our project is set at k=2. 
 

 
3. Training for SVMs 

 
The SVMs are trained on clustered dataset. The algorithm I choose to learn 
SVMs is L1-norm soft margin. The label of dataset y(i)s have been mapped into 
{-1 1}. “quadprog” in Matlab is used to optimize the primal problem: 
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4. LP-beta 



In our project, the function Vf is a C dimensional space Vf(x)->Rc. The c’th 
output at sub dataset k of Vf is denote by Vfk. The mixing coefficients βfk are 
learned by the multiclass extension of LP-beta. Where, βfk is a single vector for 
all classes. The βfk defines a combination that works well for all classes jointly. 
“linprog” from Mosek is used to optimize the linear combination problem. 
 

Dataset 

In consistent with Gehler and Nowzin's study, I will apply the method to two data 
sets: Oxford flowers [4] and Caltech datasets [5, 6]. I might choose some other 
datasets for preliminary testing. 

 
Figure 3. Example images from Oxford flowers dataset 

 
The dataset consists of 17 different types of flowers with 80 images per category. 
The dataset comes with three pre-computed distance matrices [4]. I split the dataset 
into three subsets: test (17x20 images), train (17x40) and validation (17x20 images). 
 
 

Results and discussion 

In this section I present results on the Oxford flowers dataset. 7 experiments have 
been conducted for comparison study. Training accuracies for all experiment are 
above 99%. Since the training accuracy is not very informative across the 
experiments, I will not report it for each experiment individually. 

1. Experiment 1 



Experiment 1 serves as a baseline case here for comparison study later. We do 
not perform any data clustering. We simply train SVMs on three feature 
dataset for each class. Then, SVMs trained on the dataset are linearly 
combined by the βfk optimized through LP-beta.  

 

2. Experiment 2 
 

For the second experiment, spectral clustering algorithm is applied to three 
feature dataset. k, here, is 2 for each feature. SVMs are trained on clustered 
sub datasets. The final classifier is a linearly combination of SVMs trained in 
previous step.  

 

  Validation  Test 

Accuracy 0.6088 0.6471 

 
However, the accuracies on validation and test sets are worse comparing to 
the results from the baseline case. The reason for the worse results is caused 
by some poor performance SVMs trained on clustered sub dataset. Some 
clustered sub datasets only have few positive data points. As a consequence, 
the SVMs trained on these datasets have poor accuracy in validation and test 
sets.  

 
3. Experiment 3 
 

Given the results in experiments 2, it is intuitively that we need to change the 
data clustering strategy. Instead of clustering the data on three feature 
dataset, we clustered the dataset within each class. Firstly, we define the 
subset data for each class for three features respectively. Then, we train the 
SVMs on each subset data within each class, and linearly combine the SVMs. 

 

  Validation  Test 

Accuracy 0.6794 0.6882 

  Validation  Test 

Accuracy 0.7382 0.7265 



 
No surprise, the accuracy has been improved. However, the results from 
experiment 3 are still worse than the one from experiment 1. A intuitively 
guess for the worse results is caused by the SVMs for experiment 3 are trained 
on the subset data, which has less positive label data than experiment 1. In LP-
beta step, it requires strong SVMs, which normally can be obtained from 
training on dataset with more positive label data.  
 

4. Experiment 4 
 

In experiment 3, we concluded that LP-beta tends to work better on SVMs 
trained on dataset with more positive label data. In experiment 4, we 
manually segmented train set to 17*39 and 17*1, two subsets. In this way, we 
at least have one SVMs trained on dataset with more positive label data. And 
we increase the dimension of βfk. 

 

  Validation  Test 

Accuracy 0.6794 0.6412 

 
However, the results form experiment 4 is not as good as we expected. An 
analysis of a low accuracy is straight forward. We increased the fitting 
parameters, which demands more training data.  

 
5. Experiment 5 

 
Since there is no way to obtain more training data points, I simply linearly 
combined the SVMs trained from experiment 1 and 3, three SVMs for each 
feature for each class.  It gave the best accuracy for data clustering based 
algorithm. 

 

 
Validation  Test 

Accuracy 0.7147 0.6912 

 
 
6. Experiment 6 
 

In previous experiments, all algorithms based on clustered dataset failed to 
outperform the baseline case. Experiment 6, I conducted in this project is to 



linear combine the best SVMs in terms of validation error from experiment 1 
and experiment 3, one SVM for each feature.  

 

  Validation  Test 

Accuracy 0.7088 0.6735 

 
However, the validation error is in terms of accuracy of prediction of class. 
While in LP-beta, it takes real values. The optimization result heavily relies on 
the quality of the SVMs. It requires SVMs that results large margin in training 
and validation steps.  
 

7. Experiment 7 
 
In this experiment, I changed my linear combination method in experiment 6. 
Instead of linear combine the best SVMs in terms of validation error from 
experiment 1 and experiment 3, I replace the classifiers in experiment 3 with 
linear combination of classifiers in experiment 3. New algorithm: 
 

 Train SVMs on the dataset without clustering, you will have one classifier 
for each feature of each class, c_f(i), i for class 1 to 17, f for feature. 

 Cluster the data within each class, k=2. 

 Train SVMs within each class, you will have two classifiers for each feature 
of each class, c_f1(i) and c_f2(i) 

 Loop through the 17 classifier, replace c_f(i) by c_f1(i)+c_f2(i). By linear 
combining c_f1(i) and c_f2(i), we make points further away from the hyper-
plane.  

 Run LP-beta, and choose the best combination of replacement 
 

  Validation  Test 

Accuracy 0.7618 0.7471 

 
Finally, we figure out an algorithm that outperforms the state of art classifier. 
In this algorithm, the weak learners in experiment 1 have been replaced by 
strong learners, which are composed of two weak learners by linear 
combination from experiment 3.  
 



Conclusion 

In this project, we tested several clustering based multiclass object classification 
method. Experiment 1-6 failed to outperform the baseline case. Experiment 7 
actually outperformed the state of art classifier. One may be improve the accuracy 
by carefully picking classifiers for the linearly combination step. 

There several lessons I learned from this project: 

• The LP-beta algorithm for multiclass object classification requires strong SVMs 
• Clustering data for all classes method tends to have worse results comparing 

to the one with clustering data within each class 
• Clustering based algorithms increase the number of fitting parameters, which 

demands for more training data. 
• Feature combination multiclass object classification algorithm takes real value 

for     learning. Therefore, the accuracy of individual classifier is not a good 

indicate of a strong SVM. 
• Simply segmenting dataset to increase the dimension of     does not benefit 

the performance of the algorithm. 
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