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1. Introduction
Object class recognition in a given image is a difficult problem. To classify a test image as hit or  
match for a particular object class requires the abstraction of an object, developed using real world 
images. This is where the difficulty lies - since the images of an object class can have large-scale 
variations  in  terms of  illumination,  angle  of  view,  scale,  rotation,  color,  location,  type  etc  (in-
tra-class variations). For example, the different photographs of the object class ‘car’ from PASCAL 
VOC 2007 [1] dataset shown below differ from each other in aspects mentioned previously.

This necessitates use of complex algorithms to develop as robust abstraction as possible within 
computational budget, to handle the variations while still producing useable classification perform-
ance. The complete process of object class recognition can be understood as a three step process 
involving : 1) Representation of the object, 2) Learning an abstraction or a model using set of train-
ing images which are represented by method developed in previous step, 3) Testing the object  
class recognition. A discussion of proposed approach for these steps follows.

For image representation, I used Bag of Visual Words approach. For learning an image model, I  
tried Diversity Density and Citation-K-Nearest-Neighbor (CKNN) approaches and found CKNN ap-
proach to be better suited for the task of object class recognition. For testing these algorithms, I  
collected free-usage images available on the internet. 

Figure 1 : Image showing object class 'car' from PASCAL VOC 2007 data-set. Note the variations in 
the illumination, scale, rotation, angle of view, occlusion, manufacturer and model etc.



To perform the experiments, I decided to use only 4 object classes from the PASCAL VOC 2007 
data-set, namely : Aeroplanes, Buildings, Cars and Monitors. My objective was to have 4 classes  
that would range from relatively easier  to more difficult  object classes for  the purpose of  ob-
ject-class recognition. Looking at the images in the data-set, I observed that images of the Aero-
planes had a similar background (mostly sky) so I expected Aeroplanes to be the easier class to  
classify. Buildings and Cars usually had varying backgrounds and I expected them to be somewhat 
difficult object-classes. I expected Monitors to be the most difficult object-class in the four to be 
classified. Since Monitors typically occupied a smaller region, and had high dissimilarities in the 
background and the image being displayed in the monitor, majority of the visual words describe 
the background and would lead to inaccuracies in the classification. This report is organized as fol-
lows : Section 2 describes the object-class abstraction. Section 3 Describes the Multiple Instance 
Learning (MIL) approach. Section 4 details the MIL algorithms that I tried. Section 5 presents the 
results and discusses their comparison against the baseline methods. Section 6 concludes the re-
port and references are provided towards the end of the report.

2. Object Class Abstraction
To represent each image, we need image-features which are not only highly discriminative, but are 
also robust to the variations. To decide which features to use, I did a survey of features which are  
typically used for object class recognition and shortlisted the following features.

1. Bag of Visual Words (BOVW) : A commonly used technique to represent image as a histogram of 
visual words. Introduced by Csurka et al. in 2004 [2], this has grown up to be a very popular 
method of image representation. This works by first finding a number of interest points in an im-
age - this step is often called ‘detection’. Next, the region around interest points is windowed 
and abstracted - this step is often called ‘description’. These descriptors are then quantized into 
visual words, often using k-means clustering with Mahalanobis or Euclidean distance [3]. The 
feature vector then contains the number of occurrence of each visual word in an image.

2. GIST : Developed by Torralba et al. [4], this algorithm computes the histograms of gradient ori-
entations which are localized at test point. It roughly abstracts the spatial arrangement of image 
structures and has been proven to work well for describing the general appearance of scene.

3. Histogram of Oriented Gradients (HOG): Developed by Dalal and Triggs [6], this is a well-known 
feature that has shows its promise in state-of-the-art part-based object detector [5].

Several auxiliary features can be combined with the ones listed above to suit a specific application 
and requirement, [3,  pp.  205-266] has a comprehensive list of them. The three features listed  
above make a good choice and have been shown to work well for object-class recognition problem 
by Torressani et al. [7]. For the Bag of Visual Words feature, I used SURF (Speeded Up Robust Fea-
tures), which is a fast and scale-invariant, rotation-invariant detector and descriptor [8]. The MAT-
LAB implementation of SURF used for this project is [10].

During experiments with Multiple Instance Learning algorithms, I realized that using all three fea-
tures listed above will significantly increase the computational cost. This is a critical consideration 
for this project since I used a Bag-of-Image representation for all of the images used in the experi-
ments, which meant each sub-image of the image, whether small or large, would have a large fea-
ture vector length. Thus, I decided to use only BOVW to represent images, since it is the most com-



monly used feature [7], [11-13]. The BOVW representation of an image is essentially a histogram of 
frequently observed visual words, which have been previously extracted from a diverse set of im-
ages and stored in the computer in form of a visual-word-book. This visual-word-book is usually  
called 'Vocabulary' in the literature. Process of obtaining a histogram representing images can be 
divided into three parts : 

1. Compute interest points for the given image : In case of SURF, the interest points are com-
puted using Hessian matrix [8], [14]. Figure 2 shows the interest points computed using 
OpenSurf for one of the images taken from PASCAL VOC 2007 data-set.

2. Compute descriptors for the interest points : SURF descriptors describe a distribution of 
Haar-Wavelet responses within the interest point neighborhood [8].

3. Quantize all feature vectors to obtain a histogram of visual words. This is done by assigning 
the computed descriptors to the closest matching visual word in the Vocabulary.

Figure 4 : Plot of the histogram of visual words obtained for the image shown in Figure 2.

Figure 3 : Plot showing descriptor computed for one of the 
interest points  of the image shown in Figure 2.

Figure 2 : Image showing the interest points that were detected for one of the image from PASCAL 
VOC 2007 data-set.



Once the interest points have been detected, descriptors are calculated to describe the 'neighbor-
hood' of the interest points. Descriptors are 

Vocabulary Generation : Step 3 requires a code book of visual words which stores all visual words 
that define our algorithm's 'vocabulary'. I created a Vocabulary using 157 images which had images 
drawn from the four object classes chosen for this project, as well as other images of common 
scenarios. To create the vocabulary, I first extracted descriptors from all of the images, and then 
clustered them using K-Means clustering algorithm to have 2000 visual words. The histograms ob-
tained are vectors of length 128 elements that represent an image.

3. The Multiple Instance Learning Approach Consider the image of the car and its interest points computed  using SURF shown below :

Images  such  as  this  one,  often  have  a  significant  number  of  detected  interest  points  on  the 
background. Thus, the histogram representation of this entire image will often have visual words 
that describe the background. This leads to inaccuracies in the classification, since we do not have 
an accurate representation of the class. 

To overcome this problem, I decided to try Multiple Instance Learning approach, where each image 
is  represented as  a  bag of  sub-images.  MIL algorithms are  used to solve  the problems where 
instead of having a label corresponding to each instance, there is a label for a bag of instances. This 
is an example of weakly supervised learning. Popular MIL algorithms have been reviewed in [15]. 
The image shown below, (taken from [15] shows a graphical illustration of the idea behind MIL 
approach. 

Figure 5 : Image of the car with its interest points superimposed. Notice the number of 
interest points that are on the background.

Figure 6 : Illustration of the idea behind "Bag of Instances" having a single label, as 
used in MIL approach. Image reference [15].



The intuition behind using MIL approach is that if subimages can be obtained which contain a good 
portion of the object-class, then there will be a stronger match between them as compared to the 
match  between  the  corresponding  original  images,  which  typically  contain  a  significant 
contribution of background and clutter in the histogram of the image. Thus using MIL, we can 
possibly get better classification results as compared to approach using each image as an instance. 
Please note that in MIL, bags of instances are labeled 1 if there is at least one instance belonging to 
the class being searched for. However, negative bags of instances are labeled 0 only if none of the 
instances belong to the object class under search.

To obtain the subimages from the window, I used Objectness measure proposed by Ferrari et al.,  
[9] which returns a score of 'objectness'  of many sampled subimages.  This objectness score is 
generic  over classes.  The objectness score takes four visual  cues into account  to measure the 
relative chances of a sampled subimage containing a generic object. The four visual cues are :

1. Multi Scale Saliency : This is based on the spectral residual of the FFT, which favors regions with 
a unique appearance within the entire image.

2.  Color  Contrast  :  This  cue  is  a  measure  of  the  localized  dissimilarity  of  a  window  to  it's  
neighborhood.

3. Edge Density : This cue measures the density of edges near the window borders.

4. Superpixel Straddling: This cue captures the closed boundary characteristic of the objects by 
using superpixels as features. Superpixels divide the image into small connected-components that 
have uniform texture. A key property of superpixels is that they preserve object boundaries, and all  
pixels within a superpixel constitute the same object [16].

Using the Objectness Measure 1.5 code available from [17], I generated a bag of 10 sub-images 
corresponding to each image in the training and test set of the four object-classes. In my trials, I  
found 10 subimages to be a good number to cover the most important objects as determined by  
the objectness measure. Figure below explains this idea.

Once the sub-images have been obtained, histograms are computed for each sub-image that serve 
as an instance. Thus we get a bag of instances corresponding to each image (instance). 

                        Figure 7 : An image represented as bag of sub-images.



4. Multiple Instance Learning Algorithms
Diversity Density  : Input histograms of 2000 visual words can be considered as a combination of 
2000 basis vectors in feature space. The idea behind Diversity Density is to find a combination of  
these basis vectors,  which lies at  the intersection of the positive bags minus the union of the 
negative bags [18]. Such combinations are called 'Concepts'.

Let us represent the i-th positive bag, that is the bag-of-subimages containing the object-class as 
Bi

+  and the i-th negative bags as Bi
-.  The j-th instance of positive i-th bag is given by B ij

+.  Then, 
finding the Concepts is equivalent to maximizing the objective function shown below :

To calculate the Concepts the objective function mentioned above is maximized with respect to 
the data. This is the general definition of the Diversity Density. To instantiate this, we need to 
define the terms in the product. Maron et al. [18], suggest using a noisy-or model where the 
probability that not all instances belong to the object-class is :

 Pr( x = t | Bi
+ ) = Pr( x = t | Bi1

+, Bi2
+,...) = 1 - ∏j ( 1 – Pr( x = t |Bij

+))
and similarly,

Pr( x = t | Bi
+ ) = Pr( x = t | Bi1

+, Bi2
-,...) = ∏j ( 1 – Pr( x = t |Bij

-))
The causal probability of an individual instance on a potential concept is given by a Gaussian 
kernel which uses Euclidean metric to measure the 'closeness' of the two. To tone down the 
contribution of irrelevant features in measuring this probability, weights corresponding to each 
feature is calculated as well. Note that the assumption that there exist a common single point 
for all of the positive bags is not necessarily correct. Thus, multiple concepts can be calculated 
and the maximum probability of an instance for any of these concepts can be chosen to obtain  
the probability of concept given the bag. 

I  implemented Diversity  Density  algorithm using  the code provided by  [21]  and obtained the 
concepts for object-class Aeroplanes. As the starting point to begin line search of concepts and 
weights, I used all of the instances from all of the positive bags of training set. For 370 instances in 
total, the algorithm took over 24 hours to compute the concepts. Results that I obtained for test  
bags of the Aeroplanes object-class were surprisingly bad. I observed that The Euclidean distances 
between the concepts and the positive & negative bags from the training set varied from 0+eps to 
26.  Researching on this problem, I  learned that  there are several  problems with the Diversity 
Density  method.  Some  of  the  problems are  :   1.  The  algorithm requires  multiple  starts  with 
different  starting  points.   2.  The  algorithm takes  very  long  time to  compute the  concepts.  3.  
Performance varies depending on metric used to define the "closeness". 

Euclidean metric, Earth Mover's Distance, χ2-metric,  etc. have been tried before with Gaussian 
Kernel  for  object  classification.  Previous  studies  report  that  Euclidean distance does  not  carry 
topological  information  of  the  histograms,  and  relative  scaling  of  the  distances  should  be 
performed to have an acceptable threshold for classification. Rubner et al. [20] have pointed out 

that EMD & χ2 are better measures of “closeness” for object classification tasks. Due to the very 
long computational time and no guarantee of obtaining globally optimal concepts, I decided to not 
to continue experiments with the Diversity Density algorithm.



Citation-K-Nearest-Neighbors (CKNN) :  CKNN [19] is a kNN-like approach to multiple instance 
learning. In CKNN, distance between the bags is given by modified Hausdorff distance

Hausdorff distance :  for a set  A = {a1,  a2,......,am} and set  B = {b1,  b2,.......,bn}, the Hausdorff 
distance between sets A and B is given by  H(A,B) = max{h(A,B),h(B,A)} where h(A,B) is given by:

An illustration of minimum Hausdorff distance taken from [21] is shown below.

CKNN approach is different from regular kNN. Instead of using minimum Hausdorff distance, CKNN 
uses k-th Hausdorff distance for finding out k-nearest citations and references of a given instance.  
However, the major difference arises from the idea of using both citations and references of a giv-
en instance, as opposed to only references of an instance as  in the kNN algorithm. That is, for a  
given instance, we not only look at the references of an instance (also defined as it's nearest neigh-
bors in the kNN algorithm), we also consider the instances from the training set that refer to the 
given instance. Including the citations improves the classification results [19] since the negative in-
stance in the positive bags, along with the negative instances from the negative bags might over-
whelm the simple KNN algorithm. This idea is illustrated below.

The algorithm for Citation-KNN requires number of citations and number of references to be used 
for classification as the inputs. In case of a tie in the positive versus negative poll using the in-
stances from the training set, I set the classification as negative. I obtained the CKNN code from 
[22]. 

Figure 8 : Illustration of minimum Hausdorff distance taken from [21].

Figure 9 : Illustration showing the idea of citations and references of a given instance.
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5. Results and Discussion
Results obtained using CKNN method for all of the four classes are summarized below. I ran 100 it -
erations of CKNN code to compute the classification accuracy for number of citations and refer-
ences each varying from 1 to 10. Please note that for all of the ribbon plots, left axis is the number  
of citations, right axis is the number of references and the z-axis is the classification accuracy.

Aeroplanes

I expected the results for this class to be generally better than the results for the other class since 
many of the test images had a relatively cleaner background. Results of all 100 iterations is shown.

Buildings 

I expected Buildings to be a more challenging class as compared to the Aeroplanes, since Buildings 
typically made background in the PASCAL VOC 2007 data-set.

Figure 10 : Results for Aeroplanes object-class.

Figure 11 : Results for the Buildings object-class.



Cars

Cars made for a more difficult class as compared to the buildings and aeroplanes. Primarily be-
cause images of cars in the PASCAL VOC 2007 data set have large-scale intra-class variations. The 
images are not only angled differently, but have many differences in the illumination, angle of view 
etc. See figure 1 for more details.

Monitors

Monitors were the most challenging class, with most of the iterations having accuracy in 60's or 
low 70's with only a few iterations closing towards 80. The plot below shows the results for all of  
the iterations.

Figure 12 : Results for Cars object-class.

Figure 13 : Results for the Monitors object-class.



Statistics and The Comparison with the Baseline Algorithms

To evaluate the effectiveness and the efforts involved in this procedure, I computed the classifica-
tion accuracy using Naive-Bayes and KNN algorithms, where each instance represented a complete 
image from the training or test set. For KNN algorithm, K varied from 1 to 13. The results are sum-
marized below :

Object Class Classification 
Accuracy Range 
– CKNN (MIL)

(Ref,Cit) - Min (Ref,Cit) - Max Classification
Accuracy 

Naive-Bayes

Classification
Accuracy - KNN

Aeroplanes 69.81 – 81.13 (1,2) (2,2)(4,2) (1,5)(8,5) 41.79 71.64 – 79.10

Buildings 68.42 – 85.96 (1,1) (10,5) 49.12 49.25 – 64.17

Cars 57.14 – 85.71 (2,2) (6,1)(10,2) 50 50.74 – 61.19

Monitors 63.79 – 81.03 (1,1)(3,6) (9,10) 51.72 61.19 – 74.62

The table above supports the initial hypotheses that using Multiple Instance Learning approach to 
the problem of object-class recognition Improves the classification accuracy ! The results clearly re-
veal an improvement in the classification accuracy, most prominently in the case of Buildings, Cars 
and  Monitors.  However,  a  more  exhaustive  testing,  as  well  as  the  comparison  against  more 
baseline algorithms may further the usefulness of the MIL approach.

Trends Observed : The ribbon plots shows some interesting trends. In the case of Buildings, Cars 
and Monitors, it can be observed that classification accuracy improves not only with increasing 
number of references, but also with increasing number of citations. This is in agreement with liter-
ature where the context of application was different [19]. Further, improvements in case of Aero-
planes is visible with first few increments in the number of references and citations, however, the  
improvement beyond isn't readily visible.

Examples of Correctly and Incorrectly Classified Test Images (Taken from the max accuracy case)

Aeroplanes Correctly Classified



Aeroplanes Incorrectly Classified

Buildings Correctly Classified

Buildings Incorrectly Classified

Cars Correctly Classified



Cars Incorrectly Classified

Monitors Correctly Classified

Monitors Incorrectly Classified

6. Conclusion
For this project, I investigated the effectiveness of Multiple Instance Learning algorithms in improv-
ing the classification accuracy as compared to the baseline algorithms (Naive-Bayes and KNN). I  
found that although the number of processing and computations involved in the case of MIL are 
more than the fully supervised approach, the results obtained using MIL approach are significantly 
better than the fully supervised approach.
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