

Predicting Tennis Match Outcomes

Through Classification

Shuyang Fang

CS074 - Dartmouth College

Introduction
The governing body of men’s professional tennis is the Association of Tennis Professionals or ATP for short. It

organizes the year-to-year tournaments and other events that male professionals participate in. It is perhaps most

notable for publishing a weekly ranking of players, the ATP rankings. A player’s ranking is based on the total points

he accrued in a specific set of tournaments within the last 52 weeks, more points equates to a higher ranking

(standard ranking system, where #1 is the top rank, #2 is second, and so on).

The question of who wins a given tennis match is of both recreational (fans) and professional (Vegas) interest.

Conventional wisdom suggests that given two tennis players, the one with a higher ranking will win more often than

not. This may be true; however, tennis is a game that revolves around matchups. There are a multitude of factors that

play into a match: first serve percentage, win loss record, break point conversion percentage just to name a few. It

goes without saying that the combination of these factors with player ranking serves as a far stronger predictor of

match outcome than ranking alone.

The goal of this project is to instruct the computer to predict the winner of a tennis match with greater accuracy than

both random guessing and ranking comparison.

State – of – the – Art
There is surprisingly little work/research on this topic. Machine learning methods have been applied to more popular

sports such as American football and baseball to predict the winner, but I could not find any similar research on

tennis.
[3][5]

Data
I used match results data from

http://www.tennis-data.co.uk/alldata.php

which contains all matches and results for ATP seasons 2000-2012. For player info I used statistics from

http://statracket.net/?view=stats/stats.php

which is a dataset of ATP matchfacts for the top 200 or so players from 2004 to 2010. Using these two datasets in

conjunction, I compiled my training and test data. Training data consisted of matches from 2005 to 2009, using player

http://www.tennis-data.co.uk/alldata.php
http://statracket.net/?view=stats/stats.php

info from the previous years, so 2004 to 2008 (one to one, so 2004 player info was used for 2005 matches). Test data

consisted of matches from 2010 to 2011, using player info from the previous years, so 2009 to 2010.

There are 15 features for each match, measured as real valued differences between the two players in the feature

category. They are in order:

1. ranking difference

2. win % difference

3. tiebreak win % difference

4. matches played difference

5. aces/match difference

6. double faults/match difference

7. 1
st
 serve % difference

8. % of 1
st
 serve points won difference

9. % of 2
nd

 serve points won difference

10. % of service games won difference

11. % of break points saved difference

12. % of return on 1
st
 serve points won difference

13. % of return on 2
nd

 serve points won difference

14. % of break points won difference

15. % of return games won difference

Initially, I created a single dataset comprised of two sub-datasets. One subset contained all matches where complete

player info of both players was available, 12,313 matches for the training, 4650 test. The other sub-dataset was itself a

subset of the first subset. It only contains matches where the ranking difference between the two players was less than

10. For all matches, I measured the feature values as the difference between the winner’s statistic in that feature and

the loser’s statistic (winner – loser). I had to take the absolute value of the ranking difference, otherwise, Adaboost

simply used the ranking difference to achieve perfect classification. I classified a match as 1 if the higher ranked player

won and -1 if the lower ranked player won. From here on out, this dataset will be called tennisdata.

However, some last-minute advice revealed that how I constructed this first dataset could have introduced significant

bias, since all feature values and even the classification are measured with respect to the match winner . To test this

theory and for more complete results, I created a second data set (with the same sub-dataset divisions as above). For

each match, I randomly chose a player as the first player and assigned the other player to the second player.

Classification is then 1 if the first player won, -1 if he did not. Feature values are measured as the difference between

the first player’s data and the second’s (first – second). I also artificially increased the size of the dataset by appending

the case where the current player configuration is switched, i.e. if the player assigned to the second player was

assigned to the first and vice versa. From here onwards, this dataset will be called unbiased_tennisdata.

Methods

I implemented three different classification methods, ranking, logistic regression, and Adaboost. The ranking and

logistic regression methods are used to serve as benchmarks.

The ranking method simply always chooses the higher ranked player as the winner.

The second is the logistic regression algorithm we implemented in class, simply modified to accommodate the new

dataset.

Adaboost is the main algorithm I focus on. It aims to create a strong classifier as a linear combination of

weak classifiers . The pseudocode can be presented as such:

Initialize a distribution

 where is the number of examples, so initially weigh all examples equally.

Then for where is the desired number of weak classifiers

 the classifier that minimizes the classification error w.r.t. the current distribution

Let be the coefficient of the

 where is the classification error of the current

classifier

Update the distribution using the previous distribution and the current weak classifier such that

greater weight is assigned to incorrectly classified examples. Normalize the distribution.

Finally

 ∑

My weak classifiers are simply binary decision stumps with an associated feature. If the example is above/below some

threshold value with respect to that feature then it is classified appropriately. The algorithm learns both the optimal

feature and threshold for each weak classifier such that the weak classifier minimizes classification error within that

iteration

Results/Dicussion
The following are the results on the tennisdata data set (all values measured respective to winner)

Figure 1: tennisdata dataset. Error is simply calculated as percentage of examples misclassified. 40 or so weak

classifiers seems to be enough for convergence.

It is unsurprising that the classification error is so low on the large training/test sets, even when only one weak

classifier is used. When matches where one player far outclasses the other are considered, as in the case when the

ranking difference between two players is huge, the feature values are also large. Since the large training/test sets

contain many such unequal matchups, a threshold/feature pair that immediately leads to low classification error is

expected. Subsequent weak classifiers do little to lower the classification error; however, the performance of the strong

classifier on the test set indicates that it is properly constructed.

When ranking difference between two players is small, the difference between the two players across the board is

probably small as well. A feature that may have been important when one player far outclasses the other may now be

a poor classifier. In fact, as the data suggest, it may be very difficult to achieve low classification error in this case. An

initial weak classifier achieves ~33% classification error on both the small training/test sets. Although subsequent

weak classifiers do lower the training error, they actually lead to overfitting, suggesting that when the ranking

difference is small and consequently, feature values are also small, the approach is invalid. The other implication is

that when players are close in level, the features this project considers are no longer predictive. Indeed, one can

imagine that players’ mental games are the driving deciders of match outcomes where players are close in skill. A

recent example of this phenomenon is the tennis rivalry between Rafael Nadal and Novak Djokovic. Both are players

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

classifiers

%
 e

rr
o
r

Classification error versus # weak classifiers

Large Train

Large Test

Rank Diff < 10 Train

Rank Diff < 10 Test

of high caliber, often separated by only one in rank. Yet, when they meet on the court, the result is anything but a

coin toss. Instead, the outcome seems to be entirely a matter of confidence. Nadal won five straight finals against

Djokovic before Djokovic, coming off an emotional Davis Cup victory, won the next seven. The dynamic of the

rivalry completely shifted even though both men statistics changed little. Pundits all attributed this to Djokovic’s

“confidence”, a purely subjective attribute.

For a quantitative analysis of this phenomenon, let us look at the features that the first 10 weak classifiers consider.

Figure 2: Features associated with the first 10 weak classifier, when 100 weak classifiers are considered. I.e., the

initial features that minimize classification error. The Y-axis is simple the # of the feature in order. See the Data

section

For both the large training set and the small (rank diff < 10) training sets, the most common feature considered by

the first 10 weak classifiers are 4 and 2, differences in matches played and match win % respectively. This is

unsurprising. They are good indicators of not only quality of play but also mental strength. The more a player wins,

the further he moves through a tournament and thus the more matches he plays. Later rounds of tournament are

thus also against strong players and require the mental game to compliment the physical. Thus, these two features are

the best at encapsulating the true difference between two players. These features seem closely related; however a

player could choose to play the minimum required matches and boast a high winning % or play a large amount of

matches and have a low winning %, so they are not necessarily the same. Surprisingly, the ranking difference is not

associated with any of the first 10 classifiers, although this is probably a result of me taking the absolute value.

Removing the sign removes the information associated with it.

For the sake of comparison, let us see the classification error of the three methods.

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

First 10 Weak Classifiers

Im
p

o
rt

a
n

t
F

e
a

tu
re

Features of First 10 Weak Classifiers

Large Train

Rank Diff < 10 Train

Figure 3: Performance of all three methods measured through classification error % on the data.

All three methods outperform a simple coin flip. All three methods perform better on the large datasets than the ones

where the ranking difference is small as expected. Both machine learning algorithms significantly outperform ranking

on the large datasets while they still manage to outperform ranking, albeit to a lesser extent on the small datasets.

This is to be expected with the nature of the data, the unequal matchups are easier to classify than close ones.

Unfortunately, as explained earlier, bias was introduced into the tennisdata dataset by my preprocessing. What

follows are the results of the same methods applied to the unbiased_tennisdata.

Figure 4: unbiased_tennisdata dataset. Error is simply calculated as percentage of examples misclassified.

Convergence is immediate on the large datasets, but 100+ seems to be required for the small ones. Significant

overfitting occurs on the small datasets.

0

0.1

0.2

0.3

0.4

0.5

Large Train Large Test Rank Diff <
10 Train

Rank Diff <
10 Test

error%

Classification Error of Three
Methods

AdaError

RankError

LogReg

0 20 40 60 80 100
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

classifiers

%
 e

rr
o
r

Classification error versus # weak classifiers

Large Train

Large Test

Rank Diff < 10 Train

Rank Diff < 10 Test

Indeed, it seems I did introduce bias. The classification error is significantly higher on this unbiased_tennisdata

dataset. What is revealing is that the # of weak classifiers seems to matter little on the large sub-datasets, while they

do lower the error on the small training sub-dataset but have little impact on the small test sub-dataset. To examine

what exactly changed, let us look at the features considered important by the first 10 weak classifiers.

Figure 5: Features associated with the first 10 weak classifier, when 100 weak classifiers are considered. I.e., the

initial features that minimize classification error. The Y-axis is simple the # of the feature in order. See the Data

section

By removing the bias, we see that the ranking difference is incredibly important for determining match outcome on

the large sub-dataset. The ranking is a measure of all other factors and cannot simply be neglected. It accounts for

half of the first 10 weak classifiers, and probably accounts for a majority of the 100. This would explain why the

classification error on the large sub-dataset is essentially the same as ranking’s.

On the sub-dataset that only contains matches where the ranking difference was less than 10, ranking was still

important, but it is encouraging to see that features 3 and 14 were also expressed multiple times. These are tiebreak

win % and % of break points won respectively. When players are close, more tiebreaks are expected and a single

break of serve can decide sets and matches. The computer was able to recognize this, which suggests that although

the approach was flawed, the results are not entirely without merit.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

First 10 Weak Classifiers

Im
p

o
rt

a
n

t
F

e
a

tu
re

Features of First 10 Weak Classifiers

Large Train

Rank Diff < 10 Train

Figure 6: Performance of all three methods measured through classification error % on the data.

On this unbiased dataset, all three methods were essentially equal. It is consoling that both machine learning methods

perform better than chance, and even though they perform about the same as ranking, that is a small

accomplishment. Tennis ranking does hold merit, it is representative of a player’s accomplishments/level. Adaboost’s

performance on the small training subset is a small consolation. Even though its overall performance is not

spectacular, it was able to capture deem features that we would perceive as important to be important.

Conclusion
 Assuming tennisdata was truly biased (strong assumption), it seems that it is difficult to teach the machine

to do better than a simple prediction by ranking for tennis, at least with the data I compiled. Notably, I used player

data from the end of the previous year to train/test the algorithm. The matches themselves occurred through the

timespan of the following year. Sports are mercurial from year to year, and I was unable to capture these changes. If I

had a way to measure player data at the time of the match, the results may have been significantly better. It is

encouraging that although both machine learning algorithms underperformed what I would have liked, they did still

manage to match ranking, which is a feat in of itself, since ranking encapsulates a player’s field of work.

References
[1] https://en.wikipedia.org/wiki/Tennis

[2] https://en.wikipedia.org/wiki/Machine_learning_algorithms

[3] Hamadani Babak. Predicting the outcome of NFL games using machine learning. Project report for Machine

Learning, Stanford University.

[4] R.P. Adams, G.E. Dahl, and I. Murray. Incorporating Side Information in Probabilistic Matrix Factorization with

Gaussian Processes. Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, 2010.

[5] G. Donaker. Applying Machine Learning to MLB Prediction & Analysis. Project report for CS229 – Stanford

Learning 2005.

0

0.1

0.2

0.3

0.4

0.5

0.6

Large Train Large Test Rank Diff <
10 Train

Rank Diff <
10 Test

error%

Classification Error of Three
Methods

AdaError

RankError

LogReg

[6] J. Matas, J. Sochman. AdaBoost. Centre for Machine Perception, Czech Technical University, Prague.

http://cmp.felk.cvut.cz

[7] Y. Freund, R.E. Schapire. A Short Introduction to Boosting, AT&T Labs – Research, Shannon Laboratory.

Florham Park, NJ, 1999.

