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Original Problem: 
 
My original goal was to obtain a proper data set and narrow down my potential set of 
classification methods to one specific method.   
 
Problems with that Problem: 
 
I tried numerous methods to try to obtain a data set for the Telugu Alphabet and ran into 
the following problems (essentially in order): 
 

• The Telugu Alphabet has 58 (18 vowels and 40 consonants) letters, and each of 
these letters can be combined in a number of different ways, resulting in hundreds 
of different symbols that need to be distinguished. Therefore, any data set that 
contained all of these letters would have to be huge.  I therefore, knew that I 
would have to work with a subset of these letters if I was to try to create my own 
data set. 

• To create a data set, the simplest method would have been to get several people to 
write out the letters and then scan in the results.  However, this method would 
case several problems. 

o Finding more than 15 different people in the Hanover area who actually 
read and write Telugu would be difficult.  While I could potentially get 
non-Telugu speakers to write out the alphabet, this practice would defeat 
the purpose of the exercise since they would show little to no 
inconsistency.  

o In order for the data set to be usable, the letters would have to all be 
approximately the same size and position on the paper.  Size, to maintain 
resolution and image size, and position, because many Telugu letters are 
very similar in shape and various letters can only be told apart due to the 
varying positions of different symbols. 

• When my first idea failed, I attempted to get sample letters out of scanned texts on 
the internet.  However, as I stated above, there are hundreds of different symbols 
in the Telugu language, since each consonant can be combined with up to 1 vowel 
and up to 1 consonant: 

So the number of symbols: 
18 vowels + 40 * 19 * 41 consonants = 31, 178 symbols 
Not all of these are practically used… but that still leaves nearly 25, 000 
symbols 

It was therefore, difficult to consistently find the same symbols in different 
handwritings.  I also once again, ran into problems with the image resolution. 



• Finally I attempted to contact professors who were researching this particular 
problem.  My quest for a data set still failed, however, in doing this I learnt that 
my inability to find a data set was not due to a lack of persistence on my part, but 
was rather, because there were no publically available data sets for me to use. 

• Ultimately, I ended up understanding that sometimes, you fail, and you need to 
make the best of it and move on.   
 

The New Problem – Classifying Handwritten Digits 
Having put all this thought into this problem, I decided that it would be best for me to 
stick to a similar problem, and I have therefore moved onto trying to classify handwritten 
digits. 
 

• The Data Set: 
 
The data set I’m using can be found at:  
And belongs to Semeion Research Center of Sciences Communication, Rome, 
Italy. 
It consists of 1593 images, each represented as a 1 by 256 matrix (to be reshaped 
into a 16 by 16 matrix). 
The images have been converted into black and white by rounding the value of 
each pixel into a 1 or a 0.  
 
 

 
Figure 1: An image from the data set representing the digit 0 

 
I then split this data set into a training set and a testing set. 
 

• The Algorithm:   
 
I have implemented the following algorithms: 
- Principal Component Analysis (PCA) to explore the data. 
- Fisher Linear Discriminant (FLD) followed by a simple nearest neighbor 

classifier to establish a baseline accuracy. 
- K – nearest neighbor algorithm on the original data set with the original 

dimensionality. 



- Large Margin Component Analysis (the linear version) as explained in “Large 
Margin Component Analysis by Torresani and Kuang-chih (2006). 

 
Large Margin Component Analysis: 
 
The Goal: To reduce the dimension of the training data to the most relevant 
components and simultaneously cluster the data based on it’s labels. 
 
Method: 
Let D be the original dimension of the data. 
Let d be the dimension you wish to reduce the data to. 
 
L is a d by D matrix 
 
We want to optimize: 

 

 
 
using gradient descent to optimize the function and using 

 
as the update function 

 
Results: 
 
Note: there are 10 classes, therefore random accuracy = 10% 

 
- The Results of PCA: 
 

 
Figure 2: PCA to 2 dimensions on the train dataset. 



The x-axis is roundess of the symbol and the y-axis is bottom-
heaviness 

 

 
Figure 3: PCA to 3 dimensions on the train dataset 

- The Results of FLD (Fisher Linear Discriminant): 
 

 
Figure 4: Dimensions to which the data is reduced, vs the 

Accuracy of the FLD classifier. 



 
 
As	  you	  can	  see,	  after	  reducing	  the	  data	  to	  around	  50	  dimensions,	  the	  accuracy	  
simply	  goes	  down.	  
	  
- The Results of knn: 

 

	  
	  

Figure	  5:	  k-value	  vs	  error	  value	  for	  knn	  algorithm	  
	  

-	  The	  Results	  of	  LMCA:	  
	  

K-	  Value	   LMCA	  Train	   KNN	  Train	   LMCA	  Test	   KNN	  Test	  
1	   0.206250	   0.000000	   0.192603	   0.387997	  
2	   0.393750	   0.187500	   0.344033	   0.568737	  
5	   0.587500	   0.512500	   0.593161	   0.744592	  
10	   0.756250	   0.725000	   0.769714	   0.872994	  
15	   0.893750	   0.856250	   0.844382 0.896022 

	  
	  
Observations	  and	  Trends:	  
	  
LMCA	  has	  4	  variables:	  

- alpha	  for	  the	  gradient	  descent	  
- N	  =	  number	  of	  dimensions	  to	  which	  you	  are	  reducing	  the	  data	  
- K	  of	  the	  knn	  at	  the	  end	  



- c	  for	  the	  relative	  weight	  of	  the	  factor	  that	  distances	  the	  various	  clusters.	  
	  

1. As	  k	  increases,	  c	  must	  also	  increase	  to	  achieve	  the	  best	  results.	  
2. Lower	  ks	  tend	  to	  have	  the	  best	  results,	  however,	  that	  could	  be	  due	  to	  the	  

small	  training	  set	  used	  (150	  samples	  -‐>	  15	  samples	  for	  each	  class).	  
3. Alpha	  had	  to	  be	  incredibly	  low	  (10^-‐7	  or	  smaller)	  
4. The	  update	  function	  contains	  a	  nested	  loop	  that	  runs	  |training	  set|^3	  times.	  
5. For	  the	  comparison	  between	  knn	  and	  LMCA:	  

a. Knn	  consistently	  does	  better	  on	  the	  training	  set.	  	  However	  a	  large	  part	  
of	  this	  is	  most	  likely	  the	  bias	  caused	  by	  the	  original	  point	  being	  one	  of	  
the	  k	  nearest	  neighbors.	  

b. LMCA	  consistently	  does	  better	  on	  the	  testing	  set,	  and	  is	  therefore	  
actually	  useful.	  
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