
Handwritten Digit Classification 
Sucharita Jayanti 

 
 
Original Problem: 
 
My original goal was to obtain a proper data set and narrow down my potential set of 
classification methods to one specific method.   
 
Problems with that Problem: 
 
I tried numerous methods to try to obtain a data set for the Telugu Alphabet and ran into 
the following problems (essentially in order): 
 

• The Telugu Alphabet has 58 (18 vowels and 40 consonants) letters, and each of 
these letters can be combined in a number of different ways, resulting in hundreds 
of different symbols that need to be distinguished. Therefore, any data set that 
contained all of these letters would have to be huge.  I therefore, knew that I 
would have to work with a subset of these letters if I was to try to create my own 
data set. 

• To create a data set, the simplest method would have been to get several people to 
write out the letters and then scan in the results.  However, this method would 
case several problems. 

o Finding more than 15 different people in the Hanover area who actually 
read and write Telugu would be difficult.  While I could potentially get 
non-Telugu speakers to write out the alphabet, this practice would defeat 
the purpose of the exercise since they would show little to no 
inconsistency.  

o In order for the data set to be usable, the letters would have to all be 
approximately the same size and position on the paper.  Size, to maintain 
resolution and image size, and position, because many Telugu letters are 
very similar in shape and various letters can only be told apart due to the 
varying positions of different symbols. 

• When my first idea failed, I attempted to get sample letters out of scanned texts on 
the internet.  However, as I stated above, there are hundreds of different symbols 
in the Telugu language, since each consonant can be combined with up to 1 vowel 
and up to 1 consonant: 

So the number of symbols: 
18 vowels + 40 * 19 * 41 consonants = 31, 178 symbols 
Not all of these are practically used… but that still leaves nearly 25, 000 
symbols 

It was therefore, difficult to consistently find the same symbols in different 
handwritings.  I also once again, ran into problems with the image resolution. 



• Finally I attempted to contact professors who were researching this particular 
problem.  My quest for a data set still failed, however, in doing this I learnt that 
my inability to find a data set was not due to a lack of persistence on my part, but 
was rather, because there were no publically available data sets for me to use. 

• Ultimately, I ended up understanding that sometimes, you fail, and you need to 
make the best of it and move on.   
 

The New Problem – Classifying Handwritten Digits 
Having put all this thought into this problem, I decided that it would be best for me to 
stick to a similar problem, and I have therefore moved onto trying to classify handwritten 
digits. 
 

• The Data Set: 
 
The data set I’m using can be found at:  
And belongs to Semeion Research Center of Sciences Communication, Rome, 
Italy. 
It consists of 1593 images, each represented as a 1 by 256 matrix (to be reshaped 
into a 16 by 16 matrix). 
The images have been converted into black and white by rounding the value of 
each pixel into a 1 or a 0.  
 
 

 
Figure 1: An image from the data set representing the digit 0 

 
I then split this data set into a training set and a testing set. 
 

• The Algorithm:   
 
I have implemented the following algorithms: 
- Principal Component Analysis (PCA) to explore the data. 
- Fisher Linear Discriminant (FLD) followed by a simple nearest neighbor 

classifier to establish a baseline accuracy. 
- K – nearest neighbor algorithm on the original data set with the original 

dimensionality. 



- Large Margin Component Analysis (the linear version) as explained in “Large 
Margin Component Analysis by Torresani and Kuang-chih (2006). 

 
Large Margin Component Analysis: 
 
The Goal: To reduce the dimension of the training data to the most relevant 
components and simultaneously cluster the data based on it’s labels. 
 
Method: 
Let D be the original dimension of the data. 
Let d be the dimension you wish to reduce the data to. 
 
L is a d by D matrix 
 
We want to optimize: 

 

 
 
using gradient descent to optimize the function and using 

 
as the update function 

 
Results: 
 
Note: there are 10 classes, therefore random accuracy = 10% 

 
- The Results of PCA: 
 

 
Figure 2: PCA to 2 dimensions on the train dataset. 



The x-axis is roundess of the symbol and the y-axis is bottom-
heaviness 

 

 
Figure 3: PCA to 3 dimensions on the train dataset 

- The Results of FLD (Fisher Linear Discriminant): 
 

 
Figure 4: Dimensions to which the data is reduced, vs the 

Accuracy of the FLD classifier. 



 
 
As	
  you	
  can	
  see,	
  after	
  reducing	
  the	
  data	
  to	
  around	
  50	
  dimensions,	
  the	
  accuracy	
  
simply	
  goes	
  down.	
  
	
  
- The Results of knn: 

 

	
  
	
  

Figure	
  5:	
  k-­value	
  vs	
  error	
  value	
  for	
  knn	
  algorithm	
  
	
  

-­	
  The	
  Results	
  of	
  LMCA:	
  
	
  

K-­	
  Value	
   LMCA	
  Train	
   KNN	
  Train	
   LMCA	
  Test	
   KNN	
  Test	
  
1	
   0.206250	
   0.000000	
   0.192603	
   0.387997	
  
2	
   0.393750	
   0.187500	
   0.344033	
   0.568737	
  
5	
   0.587500	
   0.512500	
   0.593161	
   0.744592	
  
10	
   0.756250	
   0.725000	
   0.769714	
   0.872994	
  
15	
   0.893750	
   0.856250	
   0.844382 0.896022 

	
  
	
  
Observations	
  and	
  Trends:	
  
	
  
LMCA	
  has	
  4	
  variables:	
  

- alpha	
  for	
  the	
  gradient	
  descent	
  
- N	
  =	
  number	
  of	
  dimensions	
  to	
  which	
  you	
  are	
  reducing	
  the	
  data	
  
- K	
  of	
  the	
  knn	
  at	
  the	
  end	
  



- c	
  for	
  the	
  relative	
  weight	
  of	
  the	
  factor	
  that	
  distances	
  the	
  various	
  clusters.	
  
	
  

1. As	
  k	
  increases,	
  c	
  must	
  also	
  increase	
  to	
  achieve	
  the	
  best	
  results.	
  
2. Lower	
  ks	
  tend	
  to	
  have	
  the	
  best	
  results,	
  however,	
  that	
  could	
  be	
  due	
  to	
  the	
  

small	
  training	
  set	
  used	
  (150	
  samples	
  -­‐>	
  15	
  samples	
  for	
  each	
  class).	
  
3. Alpha	
  had	
  to	
  be	
  incredibly	
  low	
  (10^-­‐7	
  or	
  smaller)	
  
4. The	
  update	
  function	
  contains	
  a	
  nested	
  loop	
  that	
  runs	
  |training	
  set|^3	
  times.	
  
5. For	
  the	
  comparison	
  between	
  knn	
  and	
  LMCA:	
  

a. Knn	
  consistently	
  does	
  better	
  on	
  the	
  training	
  set.	
  	
  However	
  a	
  large	
  part	
  
of	
  this	
  is	
  most	
  likely	
  the	
  bias	
  caused	
  by	
  the	
  original	
  point	
  being	
  one	
  of	
  
the	
  k	
  nearest	
  neighbors.	
  

b. LMCA	
  consistently	
  does	
  better	
  on	
  the	
  testing	
  set,	
  and	
  is	
  therefore	
  
actually	
  useful.	
  

	
  
References:	
  
	
  
	
  
Belhumeur, Peter N, Joao P Hespanha, and David J Kriegman. “Eigenfaces vs. Fisherfaces: 

Recognition Using Class Specific Linear Projection.” IEEE TRANSACTIONS ON 
PATTERN ANALYSIS AND MACHINE INTELLIGENCE 19.7 (1997): n. pag. 
http://www.cs.columbia.edu/ ‌. Web. 28 May 2012. 

 
Torresani, Lorenzo, and Kuang-chih Lee. “Large Margin Component Analysis .” 
Advances in Neural Information Processing Systems 19 (2006): n. pag. 
http://books.nips.cc/ ‌. Web. 28 May 2012.	
  
	
  

	
  
	
  
	
  


