
Handwritten Digit Classification
Sucharita Jayanti

Original Problem:

My original goal was to obtain a proper data set and narrow down my potential set of
classification methods to one specific method.

Problems with that Problem:

I tried numerous methods to try to obtain a data set for the Telugu Alphabet and ran into
the following problems (essentially in order):

• The Telugu Alphabet has 58 (18 vowels and 40 consonants) letters, and each of
these letters can be combined in a number of different ways, resulting in hundreds
of different symbols that need to be distinguished. Therefore, any data set that
contained all of these letters would have to be huge. I therefore, knew that I
would have to work with a subset of these letters if I was to try to create my own
data set.

• To create a data set, the simplest method would have been to get several people to
write out the letters and then scan in the results. However, this method would
case several problems.

o Finding more than 15 different people in the Hanover area who actually
read and write Telugu would be difficult. While I could potentially get
non-Telugu speakers to write out the alphabet, this practice would defeat
the purpose of the exercise since they would show little to no
inconsistency.

o In order for the data set to be usable, the letters would have to all be
approximately the same size and position on the paper. Size, to maintain
resolution and image size, and position, because many Telugu letters are
very similar in shape and various letters can only be told apart due to the
varying positions of different symbols.

• When my first idea failed, I attempted to get sample letters out of scanned texts on
the internet. However, as I stated above, there are hundreds of different symbols
in the Telugu language, since each consonant can be combined with up to 1 vowel
and up to 1 consonant:

So the number of symbols:
18 vowels + 40 * 19 * 41 consonants = 31, 178 symbols
Not all of these are practically used… but that still leaves nearly 25, 000
symbols

It was therefore, difficult to consistently find the same symbols in different
handwritings. I also once again, ran into problems with the image resolution.

• Finally I attempted to contact professors who were researching this particular
problem. My quest for a data set still failed, however, in doing this I learnt that
my inability to find a data set was not due to a lack of persistence on my part, but
was rather, because there were no publically available data sets for me to use.

• Ultimately, I ended up understanding that sometimes, you fail, and you need to
make the best of it and move on.

The New Problem – Classifying Handwritten Digits
Having put all this thought into this problem, I decided that it would be best for me to
stick to a similar problem, and I have therefore moved onto trying to classify handwritten
digits.

• The Data Set:

The data set I’m using can be found at:
And belongs to Semeion Research Center of Sciences Communication, Rome,
Italy.
It consists of 1593 images, each represented as a 1 by 256 matrix (to be reshaped
into a 16 by 16 matrix).
The images have been converted into black and white by rounding the value of
each pixel into a 1 or a 0.

Figure 1: An image from the data set representing the digit 0

I then split this data set into a training set and a testing set.

• The Algorithm:

I have implemented the following algorithms:
- Principal Component Analysis (PCA) to explore the data.
- Fisher Linear Discriminant (FLD) followed by a simple nearest neighbor

classifier to establish a baseline accuracy.
- K – nearest neighbor algorithm on the original data set with the original

dimensionality.

- Large Margin Component Analysis (the linear version) as explained in “Large
Margin Component Analysis by Torresani and Kuang-chih (2006).

Large Margin Component Analysis:

The Goal: To reduce the dimension of the training data to the most relevant
components and simultaneously cluster the data based on it’s labels.

Method:
Let D be the original dimension of the data.
Let d be the dimension you wish to reduce the data to.

L is a d by D matrix

We want to optimize:

using gradient descent to optimize the function and using

as the update function

Results:

Note: there are 10 classes, therefore random accuracy = 10%

- The Results of PCA:

Figure 2: PCA to 2 dimensions on the train dataset.

The x-axis is roundess of the symbol and the y-axis is bottom-
heaviness

Figure 3: PCA to 3 dimensions on the train dataset

- The Results of FLD (Fisher Linear Discriminant):

Figure 4: Dimensions to which the data is reduced, vs the

Accuracy of the FLD classifier.

As	 you	 can	 see,	 after	 reducing	 the	 data	 to	 around	 50	 dimensions,	 the	 accuracy	
simply	 goes	 down.	
	
- The Results of knn:

	
	

Figure	 5:	 k-value	 vs	 error	 value	 for	 knn	 algorithm	
	

-	 The	 Results	 of	 LMCA:	
	

K-	 Value	 LMCA	 Train	 KNN	 Train	 LMCA	 Test	 KNN	 Test	
1	 0.206250	 0.000000	 0.192603	 0.387997	
2	 0.393750	 0.187500	 0.344033	 0.568737	
5	 0.587500	 0.512500	 0.593161	 0.744592	
10	 0.756250	 0.725000	 0.769714	 0.872994	
15	 0.893750	 0.856250	 0.844382 0.896022

	
	
Observations	 and	 Trends:	
	
LMCA	 has	 4	 variables:	

- alpha	 for	 the	 gradient	 descent	
- N	 =	 number	 of	 dimensions	 to	 which	 you	 are	 reducing	 the	 data	
- K	 of	 the	 knn	 at	 the	 end	

- c	 for	 the	 relative	 weight	 of	 the	 factor	 that	 distances	 the	 various	 clusters.	
	

1. As	 k	 increases,	 c	 must	 also	 increase	 to	 achieve	 the	 best	 results.	
2. Lower	 ks	 tend	 to	 have	 the	 best	 results,	 however,	 that	 could	 be	 due	 to	 the	

small	 training	 set	 used	 (150	 samples	 -‐>	 15	 samples	 for	 each	 class).	
3. Alpha	 had	 to	 be	 incredibly	 low	 (10^-‐7	 or	 smaller)	
4. The	 update	 function	 contains	 a	 nested	 loop	 that	 runs	 |training	 set|^3	 times.	
5. For	 the	 comparison	 between	 knn	 and	 LMCA:	

a. Knn	 consistently	 does	 better	 on	 the	 training	 set.	 	 However	 a	 large	 part	
of	 this	 is	 most	 likely	 the	 bias	 caused	 by	 the	 original	 point	 being	 one	 of	
the	 k	 nearest	 neighbors.	

b. LMCA	 consistently	 does	 better	 on	 the	 testing	 set,	 and	 is	 therefore	
actually	 useful.	

	
References:	
	
	
Belhumeur, Peter N, Joao P Hespanha, and David J Kriegman. “Eigenfaces vs. Fisherfaces:

Recognition Using Class Specific Linear Projection.” IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND MACHINE INTELLIGENCE 19.7 (1997): n. pag.
http://www.cs.columbia.edu/ . Web. 28 May 2012.

Torresani, Lorenzo, and Kuang-chih Lee. “Large Margin Component Analysis .”
Advances in Neural Information Processing Systems 19 (2006): n. pag.
http://books.nips.cc/ . Web. 28 May 2012.	
	

	
	
	

