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Introduction

Karyotype [1] is a set of characteristics that describe the chromosomes in a cell. An 
ordered depiction of the karyotype, as an image, in a standard format, is called a 
karyogram; chromosomes are arranged in pairs by size (decreasing order) and centromere 
position. Study of karyograms is at the heart of cytogenetics. These analyses contribute 
greatly to the study of chromosomal abnormalities and aberrations, genetic disorders, 
taxonomical relationships etcetera. 

In humans, somatic cells have 23 classes of chromosomes (22 autosomes and 2 sex 
chromosomes), and a total of 46 chromosomes per cell; 22 pairs of chromosomes are 
present in each cell. In order to develop a karyogram, cells  arrested at the metaphase 
stage of cell division are stained, by a dye, such as Giemsa [2] and imaged. The 
chromosomes then need to be arranged in pairs in order of decreasing size. This process 
of pairing and karyotyping is usually done manually and requires considerable time of an 
expert. Automating these is an active field of research [3] and is highly desirable. 

Objective

The goal of this project is to automatically pair chromosomes from a karyogram. 

Dataset

The Lisbon-K1 dataset [3, 6], of chromosomes from bone marrow cells of leukemia 
patients, developed by the technicians of Institute of Molecular Medicine of Lisbon, will 
be used for this project. The dataset contains 200 karyograms (9200 chromosomes). For 
the purpose of this project a subset of 33 Karyograms from this dataset will be used.



Method

The chromosomes available in each karyogram are ordered and arranged according to the 
class to which they belong. The following karyogram image shows a highlighted pair and 
class numbers.

The adopted method for pairing uses the distance between feature vectors associated with 
each chromosome. The distances of a given chromosome from each chromosome in the 
training set are calculated and the chromosome is classified to the class that is nearest to 
it. The following steps describe the method adopted for pairing and classification.

1. Feature Extraction
	


	

 In order to build a metric for calculating distance between two chromosomes, 
some features need to be extracted. Preceding this the chromosome images are pre-
processed and geometrically corrected so that their boundaries are more-or-less parallel 
and an axis of symmetry if drawn would be parallel to the lateral boundaries[4].  
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The features considered can be grouped into size-based – length, width and area of 
bounding box – and patter-based features – band profile and mutual information.

❖  Band profile : Average intensity along each row of the corrected chromosome 
image.
❖  Mutual Information : This feature is always measured for pair of chromosomes 
and cannot be calculated for a single chromosome. The mutual information MI 
between a pair of chromosome images IA and IB is: 

where pAB (a,b) is the joint histogram of the images IA and IB and pA(a) and pB(b) are the 
histograms of each image respectively.

The following figure summarizes the above.
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smoothing, Fig.6.c), iii) Interpolation along orthogonal
lines to the smoothed medial axis, Fig.6.d-e) and iv)
border regularization, Fig.6.f).

3) Shape normalization - The features used in the com-
parison of chromosomes are grouped into two classes:
a) geometric based and b) pattern based (G-banding).
To compare chromosomes from a band pattern point of
view, geometrical and dimensional differences must be
removed, or at least attenuated. Therefore, a dimensional
scaling is performed before the pattern features is ex-
tracted to make all the chromosome with the same size
and aspect ratio by interpolating the original images, as
shown in Fig.7.a-b).

4) Intensity compensation - The metaphase plaque from
which the chromosomes are extracted does not present a
uniform brightness and contrast. To compensate for this
inhomogeneity the spatially scaled images are histogram
equalized [31] as shown in Figs.7b-c).

(a) (b)

(c) (d)

Fig. 7. Dimension and shape normalization and intensity equalization. a)
Geometrically compensated image, b) Spatial normalization, c) Histogram
equalization and d) Band profile.

B. Feature Extraction
The processed images are used to extract discriminative

features to pair the chromosomes. We are using some of the
most used features in the classification of chromosomes, but
others, such as the centromere location, are not used due the
very poor quality of the images. The extracted features, used to
compute the distance between two chromosomes in the pairing
process according to a metric defined later, are the following:

1) Size/Area - This class of features includes the area in
pixels of each chromosome, its perimeter, bounding box
dimensions and aspect ratio, extracted from the non
normalized shape images.

2) Shape - Normalized area is computed as the ratio
between the perimeter and the area of the normalized
shape images.

3) Pattern - Two classes of features are used to dis-
criminate chromosomes pairs with respect to its pattern
characteristics:

- Band profile - Band profiles, like the one displayed in
Fig.7.d), are computed as the average intensity values
across each line of the shape normalized processed
image, h(n) = (1/N)

∑N
i=1 I(n, i) where N is the

number of columns of the image. To avoid measurement
degradation due to misalignment during the comparison
step, the band profiles of two chromosomes are aligned.
A shift constant τ̂ is estimated by maximizing the cross
correlation function of the two profile vectors, hi(n) and
hj(n),

τ̂ = arg max
τ

φi,j(τ) (1)

where φi,j(τ) = φ(hi(n), hj(n − τ)), is the cross
correlation function [32]. The maximum of this function,
when both profiles are aligned, occurs for τ = 0.
The distance between the chromosomes with respect to
the band profile is the Euclidean distance between one
profile and the other, shifted by τ̂ ,

d(i, j) = ‖hi(n) − hj(n − τ̂)‖2. (2)

-Mutual Information - The Mutual Information (MI) is
proposed in this paper as a new feature for chromosome
pairing that aims at increasing the discriminative power
of the classifier with respect to the band pattern (G-
banding) that characterizes each class of chromosomes.
This measure is widely used in medical image pro-
cessing, namely in medical image registration [26] and
is particularly suitable to compare pattern similarities
based on the histograms of two images [31], such as
chromosome images. This is a valid assumption since
given 2 chromosomes from the same class, the corre-
sponding G-banding will overlap and maximal depen-
dence between the gray value of the images will be
obtained [26].
The MI associated with two chromosome shape normal-
ized images, IA(i, j) and IB(i, j), is defined as follows
[26]:

MI(IA, IB) =
∑

a,b

pAB(a, b) log

[
pAB(a, b)

pA(a)pB(b)

]

(3)

where pA(a) and pA(b) are the histograms of the im-
ages IA and IB respectively and pAB(a, b) is the joint
histogram of both images. Notice that this feature is
not associated with each chromosome individually, as
the previous ones, but is calculated for every pair. This
property is particularly useful in our approach where the
chromosomes are not individually classified.

The features extracted in this step are used to compute
a (44)2 × L matrix of distances, as shown in (8), where
442 is the total number of chromosome pairs in a given
karyogram, excluding the sexual pair and L is the total number
of features. The distance between two chromosomes with
respect to each kth feature, fk, is the absolute difference of
both features when they are scalars, dk(a, b) = |fak−fbk|, an
Euclidean distance when they are vectors (e.g. band profile),
dk(a, b) =

√∑

n (fak(n) − fbk(n))2 and a single scalar in
the case of the Mutual Information.
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2. Calculation of Distance between Chromosomes

	

 As proposed by [5], the distance between two chromosomes i and j with respect to 
the kth feature is,

where w(k) is the weight associated with the kth feature and w represents the weight 
vector.

The weights w are obtained during the training step by a constrained optimization of the 
following objective,

Where V(i) is the set of chromosomes of the ith class and U(i) is the set of chromosomes 
containing no more than one chromosome from the ith class. So each wi is computed by 
minimizing the sum of intraclass distances and maximizing the sum of interclass 
distances. This constrained optimization technique is approached using the method of 
Lagrange multipliers and the cost function E (w) is then,

where 𝛾  is  the  Lagrange  multiplier  and  
ɸr = sum along columns (𝚯r) – sum along columns(θr) 
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C. Distance between chromosomes

The overall distance between two chromosomes involving
all features, given a vector of weights, w, is defined as a
weighted distance computed as follows

D(i, j;w) =
L

∑

k=1

w(k)dk(i, j) (4)

where w(k) is the weight associated with the kth feature and
dk(i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised
classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
weights wr with 1 ≤ r ≤ N = 22 are estimated by using all
possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,

D(i, j) = min
r∈{1,...,22}

D(i, j;wr) (5)

The vectors wr, obtained during the training step, are com-
puted by minimizing an energy function under the constraint
‖w‖ = 1,

wr = arg min
w:‖w‖=1

E(w). (6)

where

E(wi) =
∑

(a,b)∈V (i)

D(a, b;wi)

︸ ︷︷ ︸

intraclass distance

−
∑

(a,b)∈U(i)

D(a, b;wi)

︸ ︷︷ ︸

interclass distance

(7)

where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,

Θr =









d1(1) d1(2) d1(3) ... d1(L)
d2(1) d2(2) d2(3) ... d2(L)
d3(1) d3(2) d3(3) ... d3(L)

... ... ... ... ...
dR(1) dR(2) dR(3) ... dR(L)









. (8)

Θr is a R × L matrix where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr but
now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method the energy function may be
written as follows

E(wr) = Φrwr + γw
T
r wr (9)

where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1

is a column vector of ones and γ is the Lagrange multiplier.
The minimizer of E(wr) is

wr = ΦT
r /

√

ΦrΦT
r = vers(Φr) (10)

where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute

the set of vectors wr, with 1 ≤ r ≤ 22, which are then used in
turn to compute the distance between two chromosomes using
the expression (5).

The distances computed using expression (5) form a sym-
metric matrix of distances D, where each element, D(i, j), is
the distance between the i-th and the j-th chromosomes,

D =







D(1, 1) D(1, 2) D(1, 3) ... D(1, 22)
D(2, 1) D(2, 2) D(2, 3) ... D(2, 22)
D(3, 1) D(3, 2) D(3, 3) ... D(3, 22)

... ... ... ... ...
D(22, 1) D(22, 2) D(22, 3) ... D(22, 22)







.

III. CLASSIFIER

The pairing process is a computationally hard problem
because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
∑

(i,j)∈P

D(i, j), (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
pairing matrix X = {x(i, j)}, where

x(i, j) =

{

1 (i, j) ∈ P or (j, i) ∈ P
0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’

denotes the usual matrix inner product, defined as follows

D · X :=
∑

i

∑

j

D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
this matrix has to satisfy constraints (a) and (b) above, which
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C. Distance between chromosomes

The overall distance between two chromosomes involving
all features, given a vector of weights, w, is defined as a
weighted distance computed as follows

D(i, j;w) =
L

∑

k=1

w(k)dk(i, j) (4)

where w(k) is the weight associated with the kth feature and
dk(i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised
classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
weights wr with 1 ≤ r ≤ N = 22 are estimated by using all
possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,

D(i, j) = min
r∈{1,...,22}

D(i, j;wr) (5)

The vectors wr, obtained during the training step, are com-
puted by minimizing an energy function under the constraint
‖w‖ = 1,

wr = arg min
w:‖w‖=1

E(w). (6)

where

E(wi) =
∑

(a,b)∈V (i)

D(a, b;wi)

︸ ︷︷ ︸

intraclass distance

−
∑

(a,b)∈U(i)

D(a, b;wi)

︸ ︷︷ ︸

interclass distance

(7)

where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,

Θr =









d1(1) d1(2) d1(3) ... d1(L)
d2(1) d2(2) d2(3) ... d2(L)
d3(1) d3(2) d3(3) ... d3(L)

... ... ... ... ...
dR(1) dR(2) dR(3) ... dR(L)









. (8)

Θr is a R × L matrix where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr but
now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method the energy function may be
written as follows

E(wr) = Φrwr + γw
T
r wr (9)

where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1

is a column vector of ones and γ is the Lagrange multiplier.
The minimizer of E(wr) is

wr = ΦT
r /

√

ΦrΦT
r = vers(Φr) (10)

where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute

the set of vectors wr, with 1 ≤ r ≤ 22, which are then used in
turn to compute the distance between two chromosomes using
the expression (5).

The distances computed using expression (5) form a sym-
metric matrix of distances D, where each element, D(i, j), is
the distance between the i-th and the j-th chromosomes,

D =






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... ... ... ... ...
D(22, 1) D(22, 2) D(22, 3) ... D(22, 22)







.

III. CLASSIFIER

The pairing process is a computationally hard problem
because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
said to be total if and only if, for any i = 1, . . . , n, there
is exactly one pair (r, s) in the set such that either i = r or
i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
∑

(i,j)∈P

D(i, j), (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a
matrix inner product between the distance matrix D and a
pairing matrix X = {x(i, j)}, where

x(i, j) =

{

1 (i, j) ∈ P or (j, i) ∈ P
0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’

denotes the usual matrix inner product, defined as follows

D · X :=
∑

i

∑

j

D(i, j)x(i, j) (13)

The cost function becomes then linear with the pairing matrix
X. The entries of this matrix are the parameters with respect
to which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
this matrix has to satisfy constraints (a) and (b) above, which
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optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
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Here each element di(k) is the distance between the ith pair of chromosomes from training 
set associated with the kth feature such that all pairs belong to class r. 𝚯r thus represents 

intraclass distances. θr has a similar structure but involves all pairs from training set 
containing not more than one chromosome of class r. wr is now the unit vector along the 
direction of ɸr [5],

Once all wr ∀ r ∈ [1, 22] are obtained, distance between chromosomes i and j is,

3. Nearest Neighbor Classification and Pairing

	

 For a given chromosome i the distances 𝒟(i, j), where j represents all 
chromosomes from the training set, are calculated. The chromosome is classified into the 
class of the chromosome from the test set to which it is nearest. Chromosomes of the test 
karyogram are paired in this way.

Milestone Achievements

The feature vectors associated with each chromosome have been obtained and 
preliminary pairing results are available, by the method described above. The accuracy of 
pairing by selecting karyogram 1 as the training set and testing on karyograms 2 and 3 
averages to 30%. This low pairing accuracy may be due to various reasons – low quality 
of the Lisbon-K1 dataset, insufficient features or poor quality of feature extraction, naive 
classification.

Future Work

The following directions will be explored before the final presentation.
• Test the above method over all 33 karyograms. 
• Increase the size of the training set.
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all features, given a vector of weights, w, is defined as a
weighted distance computed as follows
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where w(k) is the weight associated with the kth feature and
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classifier, previously trained with manually paired images
provided by experts. During the training step, a set of vector
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possible pairs of the training set.

The distance between two chromosomes is assumed to be
the smallest one among all weight vectors wr,
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The vectors wr, obtained during the training step, are com-
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where V (i) is the set of all pairs of chromosomes of the
ith class and U(i) is the set of all chromosomes where at
most one chromosome in each pair belongs to the ith class.
Each weight vector wr is computed by minimizing the sum of
intraclass distances (between chromosomes of the same class)
and maximizing the sum of interclass distances (between
chromosomes where at most one of them belongs to that class).

Let us consider the following matrix where each element,
di(k), is the distance associated with the kth feature of the
ith pair of chromosomes in the karyogram,
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Θr is a R × L matrix where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr but
now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method the energy function may be
written as follows
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where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1

is a column vector of ones and γ is the Lagrange multiplier.
The minimizer of E(wr) is

wr = ΦT
r /

√

ΦrΦT
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where vers(Φr) is the unit length vector aligned with Φr.
The equation (10) is used in the training step to compute
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because the optimal pairing must minimize the overall dis-
tance, that is, the solution is the global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem. Moreover, it can be formulated as an
integer programming problem, thus allowing for very efficient
optimization methods. To do so, the cost function, as well as
the constraints, have to be expressed by linear functions of the
variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that
(a) i %= j holds for any pair and (b) any given index i appears
in no more than one pair of the set. A pairing assignment is
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i = s. The sum of distances implied by a pairing P can be
written as

C(P) =
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Note that the cost function (11) can be reformulated as a
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0 otherwise

(12)

Thus, (11) can be re-written as C(P) = 1
2 D · X where ‘·’
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• Improve quality of the feature set to improve pairing results
• Classification by a more sophisticated algorithm, possibly multiclass SVM.
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