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Background

TLD is a long-term, real-time tracker designed to be robust to partial and complete occlusions
as well as changes in perspective and scale [4]. The algorithm is of interest to my research
in object tracking using machine vision on a quadrotor micro air vehicle (MAV). Currently
the TLD algorithm needs to be initiated by the user selecting a region of interest (ROI) in
a frame of the video sequence. This prevents the algorithm from being used in completely
autonomous tracking applications, or in applications where the operator cannot provide the
necessary ROI input to the algorithm. For a full description of the TLD algorithm, please
see Appendix A.

Figure 1: Example of TLD Object Tracking

Project Scope and Goals

The scope of this project has changed significantly since the proposal. I originally proposed
to implement a Matlab version of the TLD tracker and then implement a separate object de-
tector in Matlab to initialize the TLD. Following the recommendation of Professor Torresani,
I have since scaled back my project to concentrate on the object detector implementation
in Matlab and integrating it into the open-source, C++-based TLD code available on-line.
Consequently, the formal goal of my project is now to write a Matlab implementation of the
Adaboost learning algorithm based on Haar-like features to automatically recognize a car
from the side in a video sequence and initialize the bounding box required by TLD so that
it may then track the car.
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Figure 2: Project Goals

Algorithm Implementation

Haar-like Features

There are many different image features that can be used to characterize an object in an
image so as to create an object classifier. These include local binary patterns[5], edge orienta-
tion histograms[8], and Haar-like (or just Haar) features[9]. For the purpose of fast detection
of relatively simple, geometric objects (like cars), I decided Haar features were a good choice.

Haar features are based on Haar wavelets and represent intensity differences between ad-
jacent local regions, approximating image features like derivatives, border detectors, line
detectors etc. To evaluate a Haar feature one simply sums the intensities of the pixels in the
black region and subtracts the sum of the pixel intensities in the white regions (see Figure
3). This can be done extremely inexpensively using integral images|[5].
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Figure 3: Calculating Haar Features

As can be seen in Figure [d] there are many different types of Haar features that can
be considered. For the purposes of this project, I decided that the set of the 5 “Haar-like”



features should be sufficient, and if not the set could be expanded on in the future.
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Figure 4: Haar Feature Types
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Basic Haar set

The complete set of Haar features for a given image size consists of every scale, position,
and aspect ratio of each feature type being used. Depending on the size of the image or
subimage under consideration, this ends up being on the order of 100000 features. Example
code from an on-line implementation of a Haar-based face detector was referenced for the
implementation of this section of code[7].

Adaboost

Adaboost (Adaptive Boosting) is a type of boosting algorithm, a supervised machine learning
technique that uses a weighted set of “weak learners”, or learners that aren’t very accurate,
to comprise a one final, strong learner. Adaboost iteratively builds a set of T" weak learners
from a much larger set of learners, by choosing the learners that minimize the weighted error

function.
e; = Y wilh(x:) — yil

In each iteration, Adaboost considers every possible learner, evaluates their effectiveness
according to this error function and chooses the learner with the smallest error to add to
the set. The “adaptive” part of Adaboost is due to the fact that the weights w; applied
to each training sample are changed after each iteration so as to increase the weight given
to training examples that were misclassified and decrease the weight of examples that were
classified correctly.
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and e; = 0 if data example z; is classified correctly or e; = 1 otherwise.

In this way, the algorithm is able to “adapt” and concentrate on the difficult examples
so as to create a robust set of weak classifiers that can comprise an effective strong learner.
After the set of T learners is found, this strong classifier is given by:

h(z) = L Y auh() > 350
0 otherwise

This description is largely derived from the code outlined by Viola, which can be seen in
Figure [5]

o Given example images (21,71),...,(Zn,Yn) where
i; = 1,1 for negative and positive examples respec-
tively.

o Initialize weights wy ; = — — for y; = 0, 1 respec-
tively, where i and [ are the number of negatives and
positives respectively.

1. Normalize the weights,
W i

Y weg

so that w; 15 a probability distribution.

we ;4

2. For each feature. j. train a classifier fi; which
1s restricted to using a single feature. The
error 15 evaluated with respect to w:. ¢; =
S hgie) — .

3. Choose the classifier. fi;. with the lowest errore¢.

4. Update the weights:
Wi = we; g

where ¢; = U if example x; 1s classified cor-

rectly. ¢; = 1 otherwise. and 3; = ~

o The final strong classifier 1s:
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0 otherwise

Figure 5: Adaboost Code Outline

In the context of this project, each learner corresponds to a single Haar feature. Thus, our
initial pool of learners is on the order of 100,000. Each learner in this case has to try and
find a threshold that best differentiates positive and negative examples based on (1xM) set
of values corresponding to the value of that Haar feature when evaluated on the M training
examples. To find this optimal threshold, I decided to maximize the decrease in entropy



given by the equation.
i(r) = — Z PMlogP(™)
ceC
This was accomplished by iterating through possible threshold values (given by the set
of feature values), calculating the decrease in entropy for each case, and then finding the
threshold value that yielded the maximum decrease.

Results

Preliminary results testing the algorithm on the training set indicate that the classifier is
working. The training set was used simply as an fast, easy preliminary test (true testing will
require k-fold cross-validation and then sliding window object detection). The algorithm is
able to correctly identify images from the training set with an accuracy ranging between
80% for T'= 1 and 95% for T' = 20. Again, these numbers are not representative of the true
accuracy of the classifier as they were found by testing the classifier on the same image set
that it was trained on, but they do indicate that the algorithm is working. A plot showing
the decrease in misclassifications as the the number of features used increases can be seen in

Figure [6]
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Figure 6: Different Haar Features

Figure 7| provides some insight into the inner-workings of the final classifier. This
flowchart represents three of T = 20 weak classifiers and their true values throughout that
Adaboost process when used on one of the positive training images. This includes repre-
sentations of the exact Haar-features chosen by the algorithm, their respective values, the



threshold used by the entropy-reducing binary weak learner, the weights «, as well as the
final output class.
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Figure 7: Boosting Pipeline
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Future Work

There are several steps that still need to be taken for the successful completion of this project:

1. Test the single-scale classifier effectiveness and find optimal number of Haar-features
using k-fold cross-validation.

2. Implement the sliding-window searching algorithm to enable object detection at dif-
ferent scales[10].

3. Compile and run the TLD object tracker using open source code[11]
4. Integrate the Adaboost output into TLD bounding box input.

5. Test the integrated algorithm on several youtube videos containing sideviews of cars
moving in the video sequence[12][13].
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APPENDIX

A TLD Tracker Description

The TLD object tracker was developed by Z. Kalal, J. Matas and K. Mikolajczyk at the
University of Surrey and Czech Technical Institute. It is called TLD because it utilizes three
components in parallel to accomplish the task of long-term tracking, tracking, learning and
detection [4].

Tracking

The tracker used is a median-shift tracker based on Lucas-Kanade optical flow algorithm.
The tracker provides an estimation of the trajectory of the object based solely on the frame-
to-frame movement of key points, and independent of the system’s object model.

Detection

The detector is a random forest classifier based on a collection of 2-bit binary patterns.These
binary patterns are discretizations of the gradients across randomly sized and located pixel
patches (called groups) within the region of interest. Fach group yields its own decision tree
within the random forest, the leafs of which represent different positive representations the
detector has found within that pixel patch.

Learning

The learning that takes place is a semi-supervised process that fuses results from the ob-
ject detector and tracker to iteratively improve the object model. False negatives close to
the tracked trajectory extend the decision trees (grow the forest) by positively labelling the
tracked patch and retraining the model. False positives far from the tracked trajectory prune
the forest by removing leaves that led to the false identification. The tracker is initiated by
the user bounding the object of interest with a box in a single frame. The initial random for-
est model is trained with 100 different affine transformations of this single labelled example

[1][21[3][4].
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