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1 Brief Overview

The goal of this project is to compute a function that approximates the RMSD (root mean square
deviation) between two protein structures. Traditionally, the RMSD is computed from the 3-D
atomic coordinates of the proteins after superimposing the structures. I want to find a function
that approximates the RMSD from the structures’ BAT (bond-angle-torsion) coordinates instead
(thus circumventing the structural alignment step).

So far I have implemented two approaches: one based on kernel regression and one based on
support vector (SV) regression. Following is a description of the data collection process, the two
methods, their implementation and corresponding results.

2 Data Collection

The data consists of 1000 fragments extracted from a pool of 18,808 protein structures with sequence
similarity less than 30%, downloaded from the Protein Data Bank (PDB). At most one fragment
was extracted from a single structure.

Each fragment consists of 30 Cα atoms from consecutive residues in the protein backbone. The
starting position of the extracted fragment from within the template protein structure was chosen
at random. The first and last 3 residues of the backbone, as well as water molecules and other
molecules bound to the protein were excluded from consideration.

All fragments were stored in PDB format, and used to compute the pair-wise RMSD scores, as
well as each fragment’s BAT coordinates. The BAT coordinates have the form:

pd1, ..., dn�1, γ1, ..., γn�2, φ1, ..., φn�3q

where di is the distance between Cαi and Cαi�1; γi is the angle defined by atoms i through i � 2;
and φi is the dihedral angle defined by atoms i through i � 3. Since each fragment is 30 residues
long, its BAT representation is in R84.

3 Data Representation

Since the goal is to find a function f : RN Ñ R that approximates the RMSD between two
structures, I consider two different representations of the input vector x P RN to the function f .
Let Bi, Bj P R84 be the BAT coordinates of fragments i and j accordingly. The two representations
are as follows:

1. x � Bi �Bj , thus x P R84, and
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2. x � rBT
i BT

j s
T , thus x P R168.

Therefore, my dataD � tpxp1q, yp1qq, pxp2q, yp2qq, ..., pxpmq, ypmqqu consists of m different pxpiq, ypiqq
pairs where xpiq is a vector either in R84 or R168, and ypiq is the corresponding RMSD score of the
two structures encoded in xpiq.

4 Kernel Regression

4.1 Method

The first approach that I tried is based on a metric learning for kernel regression method presented
by K. Weinberger and G. Tesauro in 2007. The goal is to optimize the cumulative leave-one-out
quadratic regression error of the training examples:

L �
¸

i

pypiq � ŷpiqq2 where ŷpiq �

°
j ��i y

pjqkij°
j ��i kij

and kij � kpxpiq, xpjqq ¥ 0 is the Gaussian kernel function but without the constant factor, and
σ � 1. The optimization is performed by learning a matrix A so that the distance between the i-th
and j-th examples used in the kernel function can be expressed as

dpxpiq, xpjqq � ||Apxpiq � xpjqq||2.

The gradient of L with respect to A is then

BL
BA

� 4A
¸

i

pŷpiq � ypiqq
¸

j

pŷpjq � ypjqqkijxijx
T
ij where xij � xpiq � xpjq.

4.2 Implementation

I implemented the method in MATLAB but it failed to produce any results. In all runs that I
did A was converging very fast while the value of L was increasing which didn’t make any sense.
There were numeric problems with the computation of ŷpiq and I added eps to both the numerator
and denominator in the formula. The main problem though, was that since the kernel function in
the model is Gaussian and we fix σ to be 1, each kij came out as a very small number and that
contributed to the fast convergence of A. I tried training the model with σ ¡ 1 which naturally
slowed down the convergence of A but again, L either didn’t change over the iterations or became
larger rather than smaller. This fact makes me think that the complete failure of the method
is more likely to be a result of my misinterpretation of the paper than of the inability of kernel
regression in general to train a model for RMSD approximation.

5 SV Regression

5.1 Method

The second approach that I tried is based on ε-SV regression as described in the tutorial by A.
Smola and B. Sch:olkopf published in 2003. The goal is to find a function fpxpiqq that has at most
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ε deviation from the given target ypiq for all examples in the training set. The dual representation
of the problem is as follows:

maximize: �
1
2

m̧

i,j�1

pαi � α�i qpαj � α�j q   xpiq, xpjq ¡�
m̧

i�1

ypiqpαi � α�i q � εpαi � α�i q

where: w �
m̧

i�1

pαi � α�i qx
piq

subject to:
m̧

i�1

pαi � α�i q � 0 , αp�q P r0, Cs

As discussed in the paper, C � 1{pλmq where λ is a regularization constant. After solving the
quadratic program and finding the optimal α and α� vectors, b is computed as follows:

b � min
i
p�ε� ypiq�   w, xpiq ¡q.

5.2 Implementation

I solved the quadratic program in MATLAB by using a trial version of CPLEX. In particu-
lar, I used the function cplexqp(H,f,A,b,Aeq,beq,lb,ub). However, since this was a trial version,
I was able to train my model with up to only 150 examples. I used 6 different values of λ:
t10�12, 10�6, 10�3, 10�1, 10, 102u and computed the 10-fold cross-validation scores in each of the 6
cases. I repeated the procedure for 3 different values of ε: t0.05, 0.5, 1u and for each of the two
different representations of the input data. The corresponding tests were performed on a set of 150
test cases with similar distribution of the RMSD values (Figure 5).

5.3 Results

Representation 1, xpiq P R84 Figure 1 shows the corresponding cross validation scores. In all
three cases there is a very small variation in the mean squared error. Looking across the plots,
the error increases as ε increases, which is expected since ε defines the error tolerance margins.
However, the error still looks pretty large.

Figure 2 shows a comparison of the performance of the learned model over the training and test
examples. I am not sure how to interpret this. The model has the same behavior with the training
and test examples but the all-similar error values seem to indicate that I need to probably sample
more λs in order to be able to evaluate how good the model is.

Representation 2, xpiq P R168 Figure 3 shows the corresponding cross validation scores. Again,
in all three cases there is a very small variation in the mean squared error. Overall, the error
is slightly smaller than the one from the corresponding plots in Figure 1 which may be a mere
consequence of the increased dimension of the input vectors.

Figure 4 shows a comparison of the performance of the learned model over the training and test
examples. These plots are almost identical to the ones in Figure 2 which indicates that the quality
of the learned model is not affected by the particular representation of the input vectors.
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(a) ε � 0.05 (b) ε � 0.5

(c) ε � 1

Figure 1: Representation 1: x-axis is log pλq, y-axis is square root of the cross validation score

6 Discussion

The results so far are quite unsatisfactory. The errors produced by the trained models are very
large and cannot be used to approximate RMSD within an acceptable error-tolerance range. I am
curious to see if the quality of the model would change if I train it on a much larger training set.
The full version of CPLEX should be able to handle that and it may be possible to obtain a free
academic license. In addition, the model I implemented uses simply the dot product of the input
vectors but it would be interesting to see what happens if a kernel function is used instead.

In general though, one such function wouldn’t really yield an Euclidean metric for structure
comparison that could be used for efficient nearest neighbor searches for instance. Consequently, an
alternative direction for the project would be to design a model that produces a ranking of protein
structures that corresponds to the ranking obtained by the structures’ pair-wise RMSD scores. As
of right now this seems like a more appropriate and feasible next direction than pursuing a better
regression model.
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(a) ε � 0.05 (b) ε � 0.5

(c) ε � 1

Figure 2: Representation 1: Testing the model on the training and test examples

(a) ε � 0.05 (b) ε � 0.5

(c) ε � 1

Figure 3: Representation 2: x-axis is log pλq, y-axis is square root of the cross validation score
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(a) ε � 0.05 (b) ε � 0.5

(c) ε � 1

Figure 4: Representation 2: Testing the model on the training and test examples

(a) training examples (b) test examples

Figure 5: Distribution of the RMSD values for the training and test examples. (y-axis is RMSD)
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