Spoken Language Identification with

Artificial Neural Network
CS74 2013W
Professor Torresani

Jing Wei Pan, Chuanqi Sun
March 8, 2013

1. Introduction

1.1 Problem Statement

Spoken Language Identification(SLiD) is the problem in which a system takes a speech audio as input and
identifies the language used in the speech from a selection of possible world languages. (Figure 1)

1 o

* &
. |
o

Figure 1 - Problem Statement

1.2 Motivation

SLiD plays a significant role in the preprocessing of speech for further manipulation. Application includes
the improvement for natural language processing interface such as Siri and online multilingual voice-based
translator such as Google translate, both of which currently require manual selection of the input language.
SLiD can also work with human operators. For instance, NSA agents may efficiently identify the language
spoken by terrorists with SLiD.

2. Background

2.1 Global Methods

We identify two predominant approaches to SLiD from the literature. Zissman preprocesses the signal
with mel-frequency cepstral coefficients (MFCC) and identifies the language with phone recognition
followed by language modeling (PRLM) (Figure 2) [1]. This method achieves a 15% error rate in
identifying 10-second speeches in English, Spanish, and Japanese. More recently, Montavon improves

error rate to 8.8% by preprocessing the signal with spectrogram and learning language features with
time-delay neural network (TDNN) (Figure 3) [2]. Remarkably, Montavon uses 5-second speeches in
English, French, and German, which are linguistically less distinguishable than Zissman’s dataset.

Input speech

'

Conversion to
feature vectors

Y

Y
Japanese-phone I

English-phone Spanish-phone

recognizer recognizer recognizer
..[E][&r]... .[ellil[al... [11[r] [el...
English phones Japanese phones Spanish phones
/ * ‘ f ‘ L , 4 1
Model Model Model Model Model Model Model Model Model
for Farsi Q|for French || for Tamil for Farsi j|for French | for Tamil for Farsi J{for French }| for Tamil
\
Average the
Combine and pick maximum I corresponding
J log likelihoods
Hypothesized language
Figure 2 - Zissman’s Paralle]l PRLM Model
DEEP ARCHITECTURE
o 0 - ™ © — p(y = EN)
Q| 12kemels | R ||| 144 kernels | D <¥ ||| 144 kernels | <
> > > < > ! > ! > p(y = FR)
x %6 X §2x2 X %6 X g2x2 | X||| ~6x6 X||| g1x141
R 1—12 | 12 ~ 12—12 | N 12 © 12512 | o 12
«” = — — p(y = DE)
12 variables
12 frames 12 frames 12 frames 12 frames 12 time series

Figure 3 - Architecture for Montavon’s TDNN

2.2 Limitations and Our Solution

Limitations exist for the aforementioned methods. The PRLM in Zissman’s SLiD system requires prior
knowledge of each language in order to extract the phones and build the language models accordingly.
This method is not applicable to unfamiliar languages whose phones have not been labeled for training.
Montavon’s method, though being self-contained, relies on deep learning, which can be computationally
expensive. It is not applicable in cases where hardware resources are limited. We resolve the limitations
by combining the two methods. By preprocessing signals with MFCC and learning language features with
a shallow Artificial Neural Network (ANN), we hope to solve SLiD problem economically without having
prior knowledge of the languages.

3. Methodology

3.1 Dataset

Speech examples are collected from VoxForge database. We limit our SLiD system to the identification of
English, French, and German. For each language, the collected files are divided into training set and test
set. (table 1)

English | French | German
Training File 800 700 800
Test File 200 150 200
Avg. Length (s)| 5.04 5.51 4.68

table 1 - Dataset

3.2 Preprocessing

Our preprocessing resembles Zissman’s method (Figure 4) with the following exceptions: (1) Instead of
using Speech-activity detection, we remove all silent parts from the original signal, including those within
each sentence. Since rhythmic feature is not considered by our system, this silence removal step is
justified; (2) While Zissman only computes MFCC and AMFCC, we add AAMFCC in hope to capture
more dynamic features and to compensate for the lack of rhythmic analysis. Such practice is justified by
Hosford [3].

DIGITIZED

TELEPHONE
SPEECH
SPEECH DISCRETE 2
W~ —acTviTy - |Fourier §—=|] | }— |PRE-EMPHASIS| ———
DETECTION TRANSFORM
CEPSTRAL
»~ OBSERVATION
VECTORS
MEL-SCALE INVERSE TIME DELTA-CEPSTRAL
WEIGHTING | | LOG()] ™|COSINE —=|RASTA DIFFERENCING | ~™ OBSERVATION
TRANSFORM VECTORS

Figure 4 - Zissman’s Preprocessing

3.3 The Network

We employ a multilayer feedforward backpropagation network with the cost function shown as below:

m K
1) i i 7
J©) = —— 1> 5 loglhe(@)i + (1~ ;") log(1 — (he (™))
i=1 k=1
L—1 s; Si+1

5o 2> > (60

llzljl

The size of the input layer depends on the number of MFCC generated in preprocessing. The size of the
output layer is three, with each neuron corresponding to one possible language. We experiment with the
number of hidden layers and the size of each layer.

3.4 Prediction

We make prediction on each file by summing up per frame predictions, and selecting the language with the
highest accumulated prediction.

k= arg max Z ﬁ;i)
J -

The longer the input signal, the better the performance we expect.

4. Results and Discussion

4.1 Overall Performance

The best performance is achieved by preprocessing the signals with 40 MFCC, 200 ms window size, 70%
overlap, and training the network with 120:80:80:3 topology, 0.5 learning rate, and 0.01 regularization
coefficient. We are able to obtain an average accuracy of ~65% for English and German files. The
accuracy for French files is significantly lower--the 34% accuracy is no better than random guess. The
overall accuracy is 56.73%. (table 2)

Predicted Label

En Fr De Total | Average
En 137 8 55 200
E 24.90%| 1.45% |10.00%|68.50%
8 61 51 38 150
— | F 56.739
S ' 11.10%] 9.27% | 6.91% |34.00% 7
< 55 21 124 200
De
10% | 3.82% [22.55%|62.00%

table 2 - Performance Summary

4.2 MFCC

The number of MFCC proves to be a deciding factor for performance. Accuracy grows as more MFCC
are employed (Figure 5). This makes intuitive sense since additional MFCC extract more information from
the raw audio files. We commit to this trend by using 40 MFCC, the largest set we can afford.

0.55 /

0.5

s=jm=5 MFCC
==15 MFCC
045 -
=25 MFCC
A —e=40 MFCC
&8

0.4

Per File Confusion Performance

035

1 2 3
of Hidden Layers

Figure 5 - Performance vs MFCC and Hidden Layers

4.3 Window Size and Overlap

Performance of the ANN model varies across different combinations of window size and overlap
between windows. Keeping the number of MFCC constant, we use the same set of audio files to generate
a collection of training sets. The performance of the ANN on each of these training sets is plotted, and a
ridge is observed between 50 ms windows and 200 ms windows (Figure 7).

cmpser—ﬂl}yfmm“:e / -
0.46 / \,(\

0.44 \ = . N\

042 1

04 e) — N

60% overlap
0.34 40% overlap

0.32 20% overlap

Window Size (ms)

03 .. 0% overlap

15 20 25 50 100 200 300 400 500
Figure 7 - Performance vs Window Size and Overlap

There exists a correlation between performance and overlap. Across all window sizes, training sets with
20% overlap and 70% overlap produce better models than the rest. Performance is not linearly related to
the amount of overlap given the observed deep valley at 50% overlap (Figure 8). Taking the behavior of

both parameters into account, we optimally pick a window size of 200 ms and an overlap of 70%, the
combination that has peak performance in Figure 7.
0.405 |
04 -
0.305 1
039 |

0.385 -

Avg Per File Performance

0.38 7

0.375

037 -
0% overlap 10% overlap 20% overlap 30% overlap 40% overlap 50% overlap 60% overlap 70% overlap

Figure 8 - Performance vs Overlap

4.4 Topology

The result suggests no direct correlation between performance and the number of hidden layers across
different MFCC sets(Figure 5), thus we choose the two-layer topology that optimizes performance when
the MFCC set size is 40. Using the same method employed to optimize window size and time shift, we
find that setting each of the two hidden layers to be two thirds the size of the input layer produces the best
performance. (Figure 6)

Hidden 1 Hidden 2 Output
Input Output
2 wi o— wh P
120 b B b 3
80 80 3

Figure 6 - Network Topology

4.5 Comparison with Support Vector Machine (SVM) and Decision Tree (DT)

In order to understand the relative performance of ANN, we implement SVM and DT to solve SLiD
problem given the same preprocessing. Unfortunately, SVM works only after we reduce the data set to 10

examples per language. For larger data sets, SVM crashes the system without returning any result. DT, on

the other hand, returns promising results. (Figure 9)

0.7
Per File Performance

s=g==Decision Tree

== Artificial Neural Network

” M
yo-— &5

055 / v TN ™

Niaa AN . /a}\
{\/_Vu\&g&iiﬁ

0.5

0.35 1

0.3

window size_frame shift_# of MFCC

@@5’@?@@?@@@'@'@6?N""f’@'{”'\‘;’x"’i”'@\‘,”@'\‘?\i”
cjf};/ ,\'\./ ,»b; QC};/ ,& er/ hQ/ ")Q ‘OQ/ ,\Q/ $Q/ C'JQ',@Q/QS’ Q-;Q/ (OQ/ ‘OQI QQ/ oqu,.{'\,Q/,{'JQ/,&Q,.—L'\?/,‘ID‘QI,}:\Q/%QQI
RN IR SRR SRR S SRR AR S A N S S L\ LR DN A WA WA D D R P

N R S WA AP RSP P

Figure 9 - Comparison between Decision Tree and Artificial Neural Network

With regularization term C=0.01, DT outperforms ANN for every combination of parameters used for
preprocessing. Even without much tuning, the average performance of DT is better than the fine-tuned
ANN. We contribute the poor performance of ANN to the premature training (see 5.1). Using MATLAB
Neural Network Toolbox, we achieve 60.38% accuracy, which is the same as the best performance
achieved by DT. Remarkably, DT and ANN suffers from the same problem in which French is confused
with the other two languages. The problem is therefore very likely a result of problematic preprocessing.

4.6 Comparison between Per Frame and Per File Prediction

If treating each frame as an example with the same label as the file it comes from, we obtain an average
error rate of 63.2%. By making accumulative prediction based on each file, we decrease the error rate to
61.2%. The expected improvement in performance by using accumulative prediction is marginal. Besides,
no correlation is found between per frame error rate and per file error rate. (Figure 10)

0.68 Error Rate @===="Per Frame Error Rate"

@mw»"Per File Error Rate"

0.66

0.64

0.62

0.6

0.58

0.56

0.54

Parameter Set

0.52 -
135 7 91113151719212325272931333537394143454749515355575961

Figure 10 - Comparison between Per Frame and Per File Error Rate

One possible explanation is that MFCC may contain a considerable amount of speaker information along
with language information. Since many test examples share speakers with training examples, the prediction
may be heavily influenced by the speaker’s individual voice features. The accumulated language evidence
is therefore marginalized by the accumulated speaker evidence, which varies little between frames within
each file.

4.7 Linguistic Perspective

The failure to distinguish French from English and German may seem bizarre from a linguist’s point of
view. While both English and German are derived from the Germanic language family, French is from the
Latin family (Figure 11). The greater linguistic distance between French and the other two languages
doesn’t result in higher resolution of French for SLiD, but rather more confusion. This implies that the
language distances captured by MFCC is largely different from the linguistic distances. Not surprisingly,
MFCC captures phones for each language while linguists also considers grammar, rhythm, vocabulary,
cadency, etc. Another explanation is the same as in 4.6, in which language identities may have been

overridden by speaker identities.

10

Indo-European

Languages

Germanic Latin Balto-
Slavic
T R — I
ltalo-
Waest Western Eastern
Germanic Westem Slavic Slavic
Romance

High Ar_wg]cr Low . Prqt0< Western Czech Russian
German Frisian Franconian Italian Romance
R — O — —— N — —X
| German I English Dutch HGa\Io- Ibero-
omance Romance
; "

I Italian I French Spanish

Figure 11 - The Indo-European language tree [4]

5. Future Work

5.1 Learning Rate and Regularization

Tuning our network with low learning rate and loose regularization takes more than 12 hours. To obtain
enough data for analysis, we have to terminate training prematurely by enforcing strict regularization and
using a high learning rate. Experiments with more combinations of learning rates and regularization terms
may yield better performance.

5.2 Pitch Contours and Speech Rhythm

Our SLiD system doesn’t utilize the relational information between frames, which might explain the overall

11

poor performance. We propose that in addition to MFCC, pitch contours and speech rhythm can be used
to greatly enhance the performance. Hosford shows a 6% improvement in error rate when adding pitch
contour to MFCC-only prediction [3].

6. External Resources

Local Directory: ./slid/mfecc/

Discription: Computes mel frequency cepstral coefficient (MFCC) features from a given speech signal.
The speech signal is first preemphasised using a first order FIR filter with preemphasis coefficient. The
preemphasised speech signal is subjected to the short-time Fourier transform analysis with a specified
frame duration, frame shift and analysis window function. This is followed by magnitude spectrum
computation, followed by filterbank design with M triangular filters uniformly spaced on the mel scale
between lower and upper frequency limits. The filterbank is applied to the magnitude spectrum values to
produce filterbank energies (FBEs). Log-compressed FBEs are then decorrelated using the discrete
cosine transform to produce cepstral coefficients. Final step applies sinusoidal lifter to produce liftered
MFCC that closely match those produced by HTK. Demo scripts are included.

Link: http://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-matlab

Local Directory: ./slid/vad/

Discription: This is a simple method for silence removal and segmentation of audio streams that contain
speech. The method is based in two simple audio features (signal energy and spectral centroid). As long
as the feature sequences are extracted, as thresholding approach is applied on those sequence, in order to
detect the speech segments.

Link: http://www.mathworks.com/matlabcentral/fileexchange/28826-silence-removal-in-speech-signals

Local Directory: ./slid/voicebox/

Discription: VOICEBOX is a speech processing toolbox consists of MATLAB routines that are
maintained by and mostly written by Mike Brookes, Department of Electrical & Electronic Engineering,
Imperial College, Exhibition Road, London SW7 2BT, UK. Several of the routines require MATLAB V6.5
or above and require (normally slight) modification to work with earlier veresions.

Link: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

12

http://www.google.com/url?q=http%3A%2F%2Fwww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F32849-htk-mfcc-matlab&sa=D&sntz=1&usg=AFQjCNEGBsP2EYUbQR28ls5jroXxg-ye8g
http://www.google.com/url?q=http%3A%2F%2Fwww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F28826-silence-removal-in-speech-signals&sa=D&sntz=1&usg=AFQjCNE3BTS0hlbFIjsrUkz6wxUNBi1GvA
http://www.google.com/url?q=http%3A%2F%2Fwww.ee.ic.ac.uk%2Fhp%2Fstaff%2Fdmb%2Fvoicebox%2Fvoicebox.html&sa=D&sntz=1&usg=AFQjCNGeH_Jmh2NrXhv0Jq-f9hpUICb8_Q

7. References

[1] Zissman, Marc A. “Comparison of Four Approaches to Automatic Language Identification of
Telephone Speech”, 1996.

[2] Montavon, Gregoire. "Deep learning for spoken language identification." NIPS Workshop on Deep
Learning for Speech Recognition and Related Applications, 2009.

[3] Hosford, Alexander W. “Automatic Language Identification (LiD) Through Machine Learning”, 2011
[4] Ramat, Paolo.The Indo-European languages. Routledge, 1998.

13

