
Modeling the Induced Physiological Response to Local Musical
Features via Input-Output Hidden Markov Models

David Rector

Summary

This “final” paper will serve as a status report on a longer-term project than initially planned: the
implementation of an ambitious model (IOHMMs) to a complex data set (biometric measures of
physiological response to local musical features). An overview of the model and methods will be
followed by an examination of some preliminary results and issues encountered during implementation.
A final discussion will explore next steps.

I. Model

Input-Output Hidden Markov Models were proposed in
1995 [1] as a means of applying feature-based machine
learning techniques to sequential data while maintaining
the advantages of modeling such data as consisting of
Markov chains – in other words, capturing the concept
of target observations being influenced by both input
features and by its previous “state,” the latter providing
“context” with which to interpret the input.

The term “Input-Output” refers to the notion that the
model can be used to translate input sequences into
output sequences, though two things should be noted: a)
the input and output sequences need not be the same
length or occur in synchrony [3], and b) the model can
be used equally well to map input sequences to single,
non-sequential outputs (e.g. “sequence tagging”
classifiers [5]), or map single input feature vectors to
output sequences. IOHMM's are not the only possible
means of inserting feature information into sequence
prediction (e.g. Maximum Entropy Markov Models –
MEMM's – combine feature input with Markovian
assumptions and have been used successfully for sequence tagging [6]), but their ability to map a
continuous input sequence to a continuous output sequence, and the flexibility permitted by the model's
modular structure (discussed in a moment), attracted the researcher to them for the present task:
correlating a sequence of input feature vectors extracted from music to the sequence(s) of a listener's
physiological response data, captured by biometric sensors, that the music may have induced in him.

The model can be constructed as follows. The researcher first chooses a finite number of states that he
chooses to model as latent in the data. For example, when an experimental subject is disinterested or
distracted, he will respond to input data differently than when he is focused – it can be thus be said that
observations emitted while in the “disinterested” state will relate to the input differently than
observations emitted in the “focused” state. If the researcher wanted to make only this single
distinction, he might use a model consisting of only two states.

Figure 1 [1]. A comparison of the Bayesian
dependency structure of HMMs and IOHMMs. A
standard HMM (top) models targets (y) as
influenced only by their current state, which in
turn is influenced only by its previous state. The
IOHMM (bottom) allows for the output to be
additionally influenced by conditionally
independent input features (u).

Each state is then represented in the
performance of two distinct tasks: a)
predicting the next state probability
distribution given the present state
probability distribution and the current input
features, and b) predicting the current output
given any particular state. Each state will
thus be provided two “subnetworks,” one to
perform each of these tasks. The state
prediction task will plainly influence the
output prediction task as, essentially, a state
choosing function in a “mixture of experts”
model. More specifically, at each time or
step in the sequence, the output prediction

subnetworks each develop their own prediction of the next output distribution given the current input
feature vector (for a continuous Gaussian output, this might be the predicted mu and sigma for each
degree of freedom of output), and the state prediction subnetworks combine their predictions with a
variable (ζt) representing the combined previous predictions to form an overall next-state probability
distribution. This distribution then weights the probability distributions of the output prediction
subnetworks by the individual probability of their associated states, and sets the overall output of the
model the expected value of the weighted-sum distribution. (A trivial alteration to this step in the
model might here be proposed: discretely choosing - based on the expected value of the state
probability distribution - the single output prediction subnetwork whose prediction will become the
final predicted output; this might increase performance for some tasks, though certainly not for all.)
The probability distribution of the state probability subnetworks is then, of course, used to weight the
next set of predictions from the subnetworks.

In this way, the variable ζt contains what might be said to be the “memory” of the system at time t.
Because the functioning of this “memory” is critical to the model's ability to emulate systems with
more complex memory – like humans listening to music – we will consider it closely in section four
(“Next Steps”).

The “modular” structure of IOHMMs alluded to above is this: the state prediction and output prediction
subnetworks need not be mere linear/quadratic/etc. functions of the input features; instead, they can in
and of themselves be any complex machine learning implementation that maps inputs to outputs using
some set of distinct parameters or weights whose values can be learned through training. Bengio and
Frasconi proposed Artifical Neural Networks, and indeed this researcher attempted to implement this
proposal, as noted later. But one can conceive of the potential of inserting different types of modules in
each state's subnetworks, depending on the complexity or nature of the predictions that might be
required in that state.

The modeling potential of the Input-Output Hidden Markov Model is perhaps best illustrated in a 2005
paper using IOHMMs to forecast daily electricity prices in the Spanish market [4]. As seen in Figure 3,
electricity prices offer a good test case for IOHMMs – different market states are plainly
distinguishable; furthermore they may be explained by certain input features, among which the authors
chose past hourly production by various energy-production technology in use, the hourly system
demand, and a variable accounting for different lags of the price. The authors chose to model four
states as an optimum that would offer considerable explanatory power while minimizing computation
time and over-fitting. The model performed ably at forecasting prices, specifically by demonstrating an
ability to distinguish states using complex considerations of the input features:

Figure 2 [1]. The architecture of the IOHMM.

It is important to note that in this context, market
states are not related to price levels but rather to a
functional relationship between the set of input
variables and the marginal price. This fact can be
observed in Fig. 8 [Figure 3 here]. This figure
shows a zoom of price series from April to July.
Although, during May, minimum prices were
around 1.5 c and maximum prices close to 3.5 c
Euros, as in the second period, the series has
already recovered the stability and weekly
rhythm. The model is able to capture this switch,
and therefore, May is classified in the third
period. [4]

The question this researcher considered was how
IOHMMs might perform in the task of classifying
short-scale, high variance sequences that surely
involve complex mappings of the input: predicting
human physiological response to local musical
features.

II. Methods

This researcher has gone into detail regarding his data collection methods in a previous milestone
report; he will briefly summarize them here, then devote considerable space to detailing his modeling
and training methods.

Data collection

The researcher used himself as the sole experimental subject for this preliminary project; he understood
such results would perhaps not be generalizable but he wanted to ensure he could gather data he could
trust. He obtained a Neurosky EEG headset and found its proprietary “Esense” measures to correlate
with own subjective sense of physiological arousal or relaxation. He additionally obtained a light-
based pulse meter, capable of providing data on instantaneous heart rate, pulse volume at the point of
measurement (a fingertip), and heart rate variability. He constructed a rudimentary (though reliable)
skin conductance circuit.

He substantially altered existing Java code created by Eric Blue [7] for the aforementioned EEG
headset to combine Raw EEG (recorded at 500 Hz), the Esense measures mentioned above (output
every second), and pulse and skin conductance information into CSV files. He created a computer-
generated piano performance with high verisimilitude of all 32 of Johann Sebastian Bach's “Goldberg
Variations” using MIDI sequences obtained from the internet [8]. In brief, these were chosen for two
reasons. First, there are relatively few degrees of freedom in musical features that cannot be captured
by analysis of MIDI files – for example, since the Goldberg Variations were written for harpsichord, an
instrument with no dynamic variability, they remain musically interesting when played with a very
limited range of key velocity, as transcribed in this instance – thus reducing the possible confounding
factor of physiological response induced simply by great dynamic variability. Secondly, as a theme and
variations, they permit relatively (though not entirely) controlled comparisons of the effect of certain
musical features – i.e. the chord progression might be identical in the corresponding spots of two
variations, but note density, melodic contour, rhythm, and tempo might be very different.

Figure 3 [4]. Changing market states – one chaotic,
one featuring stable price rhythms – can be discerned
in the Spanish electricity market, and predicted by
IOHMMs.

The researcher extracted MIDI features using the Matlab-based “MIDI Toolbox” [9]. He chose to
represent input features and output sequence synchonously, every one second. Initial features chosen
for analysis included four simple and one complex feature: the melodic range of notes sounding during
the past second, the density of note onsets over the last second, the density of note onsets not occuring
concurrently (within a small threshold), and the average “tonal stability” for note onsets during that
second [10]. He included the possibility to (and in the future will) use various audio features (e.g.
spectral roughness) extracted from the computer-generated WAV file; these will permit consideration of
measures of consonance or dissonance not feasible to capture from MIDI representations. For now he
limited his analysis to these basic MIDI features.

Model construction and training method

He chose to model three states initially, though this will be a parameter in need of adjustment as the
project proceeds. He chose, initially, to simply map input features to a single output sequence – the
listener's heart rate, as he determined after several testing sessions that, for him, change in heart rate
was a relatively repeatable listening phenomenon to a given piece of music.

He chose to use, in line with Bengio and Frasconi's proposal [2], Artificial Neural Networks as all
output prediction and state prediction subnetworks, each with five layers and trainable using
Levenberg-Marquardt (LM) backpropagation due to this algorithm's relatively high computation speed.
The parameters to be optimized were thus the weighting coefficient matrix of each of the neural
networks – a total quantity of 2 times the number of states, multiplied by the number of layers,
multiplied by the number of features – 2 * 3 * 5 * 5 = 150 parameters. The model, coded in Matlab,
followed closely the broad outline given in [2]. Optimization of the model would be attempted through
a type of generalized expectation maximization – the goal, at each iteration, being the following:

1. ESTIMATION. Given the current parameters, calculate:

a) The predicted state transition probability matrix – that is, a matrix of size
[(numberOfStates) x (numberOfStates) x (sequenceLength)], giving the probability
distribution, as calculated by the state transition prediction subnetworks, at each step
of the input sequence.

b) The expected outputs matrix – that is, a matrix of size [(2 * outputDegreesOf-
Freedom) x (numberOfStates) x (sequenceLength)], for a continuous Gaussian
output, giving the predicted mean and standard deviation of each output prediction
subnetwork at each step of the input sequence.

c) The transition posterior probabilities – that is, the conditional probability, given the
input, of a transition from each possible current state to each possible successor state
at each step of the input sequence.

d) The state posterior probabilites – that is, the conditional probability, given the input,
of being in any particular state at each step of the input sequence – in other words,
the sum of the transition posterior probablities over their current states.

e) The probability of the observed target output given the input features and each
possible state – that is, for a continuous Gaussian output, the distance of the target
vector relative to each output subnetwork's predicted mean and standard deviation.

2. MAXIMIZATION. Adjust the parameters of each subnetwork (and any other parameters) to
maximize the likelihood of the data given the parameters. This was performed as follows:

◦ Maximize relative to the state transition probability matrix:

▪ Compute the partial derivatives at each value of the state transition probability
matrix with respect to each possible parameter of the state transition prediction
subnetworks – that is, change each value of the state transition probability matrix by
a certain step size (chosen as a constant, 0.05, for now, later to be made “greedy” at
first and decreasing in size as likelihood increases); re-normalize so that the
transition probabilities for that particular current state sum to one; train a copy of
each state transition subnetwork using LM back-propagation on the new possible
state transition probability matrix; and calculate how the parameters/weights of each
subnetwork changed with respect to the change of the current value of the state
transition probability matrix. (Note that the transition matrix was initialized as
uniformly 1/3 - all transitions were equally probable at all times.

▪ Use the above partial derivatives and the state transition posterior probabilities (1c
above) to calculate the overall partial derivative of the likelihood of the data given
the parameters with respect to each of the state transition prediction subnetworks' 75
possible parameters. [2]

▪ Update the weights/parameters of the state transition subnetworks by adding these
75 partial derivatives to the current values of those 75 parameters/weights – this will,
in effect, boost the value of parameters whose increase causes an increase in the
likelihood of the data and decrease the value of parameters whose increase would
cause a decrease in the likelihood.

◦ Maximize relative to the expected outputs matrix in a similar fashion:

▪ Compute the partial derivatives of each value of the expected outputs matrix with
respect to each of the 75 possible parameters of the output prediction subnetworks.
(The step size was made to be 1.0 for both the mean and variance in the expected
outputs matrix – again, this will be made adjustable later. Additionaly note that each
output prediction subnetwork was initially trained identically using the full sequence
of input features and the full sequence of output features.)

▪ Additionally compute the partial derivative of the logarithm of the probability of the
observed target output (analogous to 1e above) with respect to the change (i.e. step
size) in expected output.

▪ Use the above two partial derivatives and the state posterior probabilities (1d) to
calculate the overall partial derivative of the likelihood of the data given the
parameters with respect to each of the 75 output prediction subnetwork's
pararmeters. [2]

▪ Add these the weights/parameters to the current values of the output prediction
subnetworks in a similar fashion as above.

3. Having updated the parameters/weights of the subnetworks, check to see if the overall rate of
change of the likelihood given the new set of parameters is greater than a certain very low
threshold, or if the maximum number of iterations has been reached – if so, this will be the final
parameter set; if not, go back to step 1 and start over with the updated parameters.

III. Implementation issues

The researcher's time spent collecting data left him with less time for debugging the complex model he
constructed; thus, optimization has not thus resulted in expected optimum values. More specifically,
the researcher concedes little faith that his implementation of the maximization portion of the EM
algorithm contains no errors, and certainly no faith that it it the fastest possible method, which is the
more critical issue – even with few states and few layers, 100 seconds (i.e. sequence length of 100) of
sequences requires 10-15 minutes on a quad-core Intel Xeon 3.0 GHz processor to compute anything
close to an optimum set of parameters; and worse, the model often fails to correctly converge upon the
optimum. Lastly, the partial derivatives the researcher computes often result in NaNs; the researcher is
uncertain whether this is due to computational underflow correctable by using logarithms or a different
bug altogether. Plainly there remain bugs and the researcher continues to work to correct them. He
welcomes advice on solving these issues.

In addition, there are issues that might be hidden from sight amidst the larger ones. For one, the model
was far more prone to update the expected output matrix than the transition probability matrix, the
latter of which remained at the values at which it was initialized: a constant 1/3 for every value. This
could be the result of two issues (disregarding for the moment possible bugs in the code): first, the
relative step sizes of the output prediction and state transition prediction subnetworks may need
adjustment (or, better yet, made to automatically adjust relative to the overall rate of change of the
likelihood function relative to their half of the set of parameters); second, the limited computation
speed of the algorithm has limited the possible sequence length to such a degree that broad state
transitions are hardly possible even when considering their “true,” latent values, much less when
considering noisy data that may or may not reflect them.

A second, possibly insidious issue: the EM algorithm appears to exhibit some degree of “oscillation”
between maximizing the likelihood
with respect to the state transition
prediction subnetworks' parameters
and the output prediction
subnetworks' parameters. Perhaps,
after correcting some of the current
issues, this would become non-
relevant, and these oscillations would
“dampen” with each iteration to allow
convergence, or disappear altogether.
If not, it may be too “greedy” to
update both the state transition
prediction subnetworks' parameters
and the output prediction
subnetworks' parameters together on
each iteration – there may need to be a
second degree of alternation, in
addition to that between Estimation
and Maximization, between
maximization of each of these two
sets of parameters.

Figure 4. Predicted mu values of each of three output prediction neural
network-based subnetworks, compared to actual heart rate.

Given these issues, and in particular the lack of response of the state transition probability matrix to
parameter changes of the state transition subnetworks, the researcher has not yet implemented the
“memory” function used to determine a final predicted output by choosing or weighting the predictions
of the output prediction subnetworks based on the predictions of the state transition subnetworks.
However, he has some reason for optimism, as a simply glance at the output prediction subnetworks'
predicted outputs shows promise for the model's ability to divide the task of predicting outputs to
different state subnetworks; as one can see in Figure 4, individual subnetworks seem to occasionally be
able to “pick out” spikes in arousal, while being wildy incorrect at other times. Were the state
prediction subnetworks able to correctly choose which state's prediction to use at each time, the model
may have considerable promise. The researcher concedes the possibility of over-fitting or an overly
optimistic analysis of the graph.

IV. Next steps

After correcting the plain algorithmic/computational issues detailed above, the researcher's second
steps involve speculation to address more nuanced, theoretical issues.

First, it will be critical that the researcher implements a means of escaping local maxima in the
likelihood maximization step – a “random restart” implementation is probably the most advisable.
Furthermore, any simplifications that might speed up maximization time – for example, accepting the
first result that results in the slightest maximization of the likelihood, rather than proceeding through
every possibility. The possibility of somehow simplifying the data into a classification problem, so as
to potentially take advantage of a much faster basic EM solution, is also worth considering, if it does
not limit the explanatory power of the model.

The most interesting issue that the researcher has considered involves the memory variable ζt. Under
Markovian assumptions, it is said to contain the entire context/“memory” of all the states of prior to
time t. Theoretically it makes formulae clean; computationally it makes code efficient, and to be sure,
this assumption has indeed proven remarkably accurate and useful in many applications involving
human data (e.g. speech recognition). Can it accurately represent a human's memory as it relates to
music?

The Goldberg variations shall provide the perfect test case when the researcher can get the algorithm
working properly. The famous “Aria” begins the work. The motivic material of the Aria is then
transformed in every conceivable way into thirty variations that evoke states ranging from ecstasy to
deep contemplation. Then, finally, the “Aria da capo” - the return of the Aria; identical notes, but
somehow, a profoundly different character. Joseph Campbell describes in “The Hero's Journey” the
universal human mythology of the hero who ventures away from home, encounters dangers and
exploits that test his character, and returns a different person, having attained not quite what he
expected, but nothing less. It is in this sense that a listener perceives the Aria da Capo – it is a different
Aria than that which began the piece. Can ζt, the memory vector, giving simply the current probability
distribution of the listener's latent “states” given merely the current input features and ζt-1, capture this
changed relationship of the listener to the input features?

Obviously this is absurd; this kind of complex relationship-based “memory” is not what Markovian
assumptions intend to model. However, the researcher wonders if alterations that could bring this
variable more in line with human memory function are not so far fetched. Consider first the present
formulation: training the model on simply the biometric data obtained while listening to the first Aria
and then, sixty minutes later, the Aria da Capo, will simply “confuse” it – it will receive identical input
features but far different output targets (or rather, far different predicted “states”); the model will thus

interpret the Aria's input features as simply producing very high variance, and will predict this high
variance for both the beginning Aria and the Aria da Capo. Certainly one could hazard that the burden
of properly distinguishing the two inputs must be placed more on the input feature set than on this
memory variable; that this variable cannot in fact contain any truly complex “memory” in the sense
humans perceive it, that some of this memory must be submitted via a music theoretical analysis
provided in the input features. But consider if, simplistically, an accounting for repetition of input
features (and, perhaps, of state probability distributions?) could be included in the calculation of the
memory vector, or if more distant dependencies of ζt than ζt-1 could be included; a careful construction
of such dependencies may well bring this variable more into line with human memory function. What's
more, given the current complexity of the model, introducing additional dependencies into ζt wouldn't
seem to affect computational speed to the extent that other factors currently affect it. The researcher
will continue to ponder the problem.

References

[1] Bengio, Yoshua, and Paolo Frasconi. "An input output HMM architecture." Advances in neural
information processing systems (1995): 427-434.

[2] Bengio, Yoshua, and Paolo Frasconi. "Input-output HMMs for sequence processing." Neural
Networks, IEEE Transactions on 7.5 (1996): 1231-1249.

[3] Bengio, Samy, and Yoshua Bengio. "An EM algorithm for asynchronous input/output hidden
Markov models." International Conference On Neural Information Processing. Hong-Kong,
1996.

[4] González, Alicia Mateo, A. M. S. Roque, and Javier García-González. "Modeling and forecasting
electricity prices with input/output hidden Markov models." Power Systems, IEEE Transactions
on 20.1 (2005): 13-24.

[5] Marcel, Sebastien, et al. "Hand gesture recognition using input-output hidden Markov models."
Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International
Conference on. IEEE, 2000.

[6] McCallum, Andrew; Freitag, Dayne; Pereira, Fernando (2000). "Maximum Entropy Markov
Models for Information Extraction and Segmentation". Proc. ICML 2000. pp. 591–598.

[7] Blue, Eric. (2011) Neurosky EEG Data Streamer [Computer program]. Available at http://eric-
blue.com/2011/07/24/mindstream-neurosky-eeg-data-streamer/.

[8] Goldberg Variations. Bach, J.S. MIDI Sequences by Bruno De Giusti. Available at
http://www.kunstderfuge.com/ bach/harpsi.htm#Arias%20and%20Variations

[9] Toiviainen, Petri and Eerola, Tuomas. (2006) Midi Toolbox [Matlab functions]. Available at
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox.

[10] Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University
Press.

http://eric-blue.com/2011/07/24/mindstream-neurosky-eeg-data-streamer/
http://eric-blue.com/2011/07/24/mindstream-neurosky-eeg-data-streamer/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox
http://www.kunstderfuge.com/bach/harpsi.htm#Arias%20and%20Variations
http://www.kunstderfuge.com/

	Modeling the Induced Physiological Response to Local Musical Features via Input-Output Hidden Markov Models
	Summary
	I. Model
	II. Methods
	Data collection
	Model construction and training method

	III. Implementation issues
	IV. Next steps
	References

