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Summary

This “final” paper will  serve as a status report  on a longer-term project than initially planned: the 
implementation  of  an  ambitious  model  (IOHMMs)  to  a  complex  data  set  (biometric  measures  of 
physiological response to local musical features).   An overview of the model and methods will  be 
followed by an examination of some preliminary results and issues encountered during implementation. 
A final discussion will explore next steps.

I. Model

Input-Output Hidden Markov Models were proposed in 
1995 [1] as a means of applying feature-based machine 
learning techniques to sequential data while maintaining 
the advantages of modeling such data  as consisting of 
Markov chains – in other words, capturing the concept 
of  target  observations being influenced by  both input 
features and by its previous “state,” the latter providing 
“context” with which to interpret the input.  

The  term “Input-Output”  refers  to  the  notion that  the 
model  can  be  used  to  translate  input  sequences  into 
output sequences, though two things should be noted: a) 
the input  and output sequences  need not be the same 
length or occur  in  synchrony [3],  and b) the model can 
be used equally well to map input sequences to  single, 
non-sequential outputs  (e.g.  “sequence  tagging” 
classifiers  [5]),  or  map  single input  feature vectors to 
output sequences.  IOHMM's are not the only possible 
means  of  inserting  feature  information  into  sequence 
prediction  (e.g.  Maximum Entropy Markov Models  – 
MEMM's  –  combine feature  input  with  Markovian 
assumptions and have been used successfully for sequence tagging  [6]),  but their  ability to map a 
continuous input sequence to a continuous output sequence, and the flexibility permitted by the model's 
modular  structure  (discussed  in  a  moment), attracted  the  researcher  to  them for  the  present  task: 
correlating a sequence of input feature vectors extracted from music to the sequence(s) of a listener's 
physiological response data, captured by biometric sensors, that the music may have induced in him.

The model can be constructed as follows.  The researcher first chooses a finite number of states that he 
chooses to model as latent in the data.  For example, when an experimental subject is disinterested or 
distracted, he will respond to input data differently than when he is focused – it can be thus be said that 
observations  emitted  while  in  the  “disinterested” state  will  relate  to  the  input  differently  than 
observations  emitted  in  the  “focused”  state.   If  the  researcher  wanted  to  make  only  this  single 
distinction, he might use a model consisting of only two states.

Figure 1 [1].  A comparison of the Bayesian 
dependency structure of HMMs and IOHMMs.  A 
standard HMM (top) models targets (y) as 
influenced only by their current state, which in 
turn is influenced only by its previous state.  The 
IOHMM (bottom) allows for the output to be 
additionally influenced by conditionally 
independent input features (u).



Each state  is  then represented in  the 
performance  of  two  distinct  tasks:  a) 
predicting  the  next state  probability 
distribution  given  the present  state 
probability distribution and the current input 
features, and b) predicting the current output 
given any particular  state.   Each state  will 
thus be provided two “subnetworks,”  one to 
perform  each  of  these  tasks.   The  state 
prediction  task  will  plainly  influence  the 
output prediction task as, essentially, a state 
choosing function in a “mixture of experts” 
model.   More  specifically, at  each time  or 
step  in  the  sequence,  the  output  prediction 

subnetworks each develop their own prediction of the next output distribution given the current input 
feature vector  (for a continuous Gaussian output, this might be the predicted mu and sigma for each 
degree of freedom of output), and the state prediction subnetworks combine their predictions  with a 
variable (ζt  ) representing the combined previous predictions  to form an overall next-state probability 
distribution.   This  distribution then  weights  the  probability distributions  of  the  output  prediction 
subnetworks by the individual probability of their associated states, and sets the overall output of the 
model the expected value of the weighted-sum distribution.  (A trivial alteration to this step in the 
model  might  here  be  proposed: discretely choosing -  based  on  the  expected  value  of  the  state 
probability distribution  - the  single output prediction subnetwork whose prediction will become the 
final predicted output;  this might increase performance for some tasks, though certainly not for all.) 
The probability distribution of the state probability subnetworks is then, of course, used to weight the 
next set of predictions from the subnetworks.

In this way,  the  variable ζt contains what might be said to be the  “memory”  of  the system at time t. 
Because the functioning of this “memory” is critical to the model's ability to emulate systems with 
more complex memory – like humans listening to music – we will consider it closely in section four 
(“Next Steps”).

The “modular” structure of IOHMMs alluded to above is this: the state prediction and output prediction 
subnetworks need not be mere linear/quadratic/etc. functions of the input features; instead, they can in 
and of themselves be any complex machine learning implementation that maps inputs to outputs using 
some set of distinct parameters or weights whose values can be learned through training.  Bengio and 
Frasconi proposed Artifical Neural Networks, and indeed this researcher attempted to implement this 
proposal, as noted later.  But one can conceive of the potential of inserting different types of modules in 
each state's  subnetworks,  depending on the  complexity  or  nature  of  the  predictions  that  might  be 
required in that state.

The modeling potential of the Input-Output Hidden Markov Model is perhaps best illustrated in a 2005 
paper using IOHMMs to forecast daily electricity prices in the Spanish market [4].  As seen in Figure 3, 
electricity  prices  offer  a  good  test  case  for  IOHMMs  –  different  market  states  are  plainly 
distinguishable;  furthermore they may be explained by certain input features, among which the authors 
chose  past  hourly  production  by  various  energy-production  technology  in  use, the  hourly  system 
demand, and a variable accounting for different lags of the price.  The authors chose to model four 
states as an optimum that would offer considerable explanatory power while minimizing computation 
time and over-fitting.  The model performed ably at forecasting prices, specifically by demonstrating an 
ability to distinguish states using complex considerations of the input features:

Figure 2 [1]. The architecture of the IOHMM.



It is important to note that in this context, market 
states are not related to price levels but rather to a 
functional  relationship  between the  set  of  input 
variables and the marginal price. This fact can be 
observed in  Fig.  8  [Figure 3 here].  This  figure 
shows a zoom of price series from April to July. 
Although,  during  May,  minimum  prices  were 
around 1.5 c and maximum prices close to 3.5 c 
Euros,  as  in  the  second  period,  the  series  has 
already  recovered  the  stability  and  weekly 
rhythm. The model is able to capture this switch, 
and  therefore,  May  is  classified  in  the  third 
period. [4]

The  question  this  researcher  considered  was  how 
IOHMMs might  perform in  the task of  classifying 
short-scale,  high  variance  sequences  that  surely 
involve complex mappings of the input:  predicting 
human  physiological  response  to  local  musical 
features.  

II. Methods

This  researcher  has gone into detail  regarding his data  collection methods in  a previous milestone 
report; he will briefly summarize them here, then devote considerable space to detailing his modeling 
and training methods.

Data collection

The researcher used himself as the sole experimental subject for this preliminary project; he understood 
such results would perhaps not be generalizable but he wanted to ensure he could gather data he could 
trust.  He obtained a Neurosky EEG headset and found its proprietary “Esense” measures to correlate 
with own subjective sense of physiological arousal or relaxation.  He additionally obtained a light-
based pulse meter, capable of providing data on instantaneous heart rate, pulse volume at the point of 
measurement (a fingertip), and heart rate variability.  He constructed a rudimentary (though reliable) 
skin conductance circuit.

He substantially  altered  existing  Java  code  created  by Eric  Blue  [7]  for  the  aforementioned EEG 
headset to combine Raw EEG (recorded at 500 Hz), the Esense measures mentioned above (output 
every second), and pulse and skin conductance information into CSV files.  He created a computer-
generated piano performance with high verisimilitude of all 32 of Johann Sebastian Bach's “Goldberg 
Variations” using MIDI sequences obtained from the internet [8].  In brief, these were chosen for two 
reasons.  First, there are relatively few degrees of freedom in musical features that cannot be captured 
by analysis of MIDI files – for example, since the Goldberg Variations were written for harpsichord, an 
instrument with no dynamic variability,  they remain musically interesting when played with a very 
limited range of key velocity, as transcribed in this instance – thus reducing the possible confounding 
factor of physiological response induced simply by great dynamic variability.  Secondly, as a theme and 
variations, they permit  relatively (though not entirely) controlled comparisons of the effect of certain 
musical features – i.e.  the chord progression might be  identical in the corresponding spots of two 
variations, but note density, melodic contour, rhythm, and tempo might be very different.  

Figure 3 [4].  Changing market states – one chaotic, 
one featuring stable price rhythms – can be discerned 
in the Spanish electricity market, and predicted by 
IOHMMs.



The researcher  extracted MIDI features using the Matlab-based “MIDI Toolbox” [9].  He chose to 
represent input features and output sequence synchonously, every one second.  Initial features chosen 
for analysis included four simple and one complex feature: the melodic range of notes sounding during 
the past second, the density of note onsets over the last second, the density of note onsets not occuring 
concurrently (within a small threshold),  and the average “tonal stability” for note onsets during that 
second [10].  He included the possibility to (and in the future will) use various audio features (e.g. 
spectral roughness) extracted from the computer-generated WAV file; these will permit consideration of 
measures of consonance or dissonance not feasible to capture from MIDI representations.  For now he 
limited his analysis to these basic MIDI features. 

Model construction and training method

He chose to  model three states initially, though this will be a parameter in need of adjustment as the 
project proceeds.  He chose, initially, to simply map input features to a single output sequence – the 
listener's heart rate, as he determined after several testing sessions that, for him, change in heart rate 
was a relatively repeatable listening phenomenon to a given piece of music.

He chose  to use, in line with Bengio and Frasconi's proposal [2], Artificial Neural Networks  as all 
output  prediction  and  state  prediction  subnetworks,  each  with  five  layers  and  trainable  using 
Levenberg-Marquardt (LM) backpropagation due to this algorithm's relatively high computation speed. 
The parameters  to  be  optimized were  thus  the  weighting  coefficient  matrix  of  each  of  the  neural 
networks  –  a  total  quantity  of  2  times  the  number  of  states,  multiplied  by the  number  of  layers, 
multiplied by the number of features – 2 * 3 * 5 * 5 = 150 parameters.  The model, coded in Matlab,  
followed closely the broad outline given in [2].  Optimization of the model would be attempted through 
a type of generalized expectation maximization – the goal, at each iteration, being the following:

1. ESTIMATION.  Given the current parameters, calculate:

a) The  predicted  state  transition  probability  matrix  –  that  is,  a  matrix  of  size 
[(numberOfStates) x (numberOfStates) x (sequenceLength)], giving the probability 
distribution, as calculated by the state transition prediction subnetworks, at each step 
of the input sequence.

b) The  expected  outputs matrix  –  that  is,  a  matrix  of  size  [(2  *  outputDegreesOf-
Freedom)  x  (numberOfStates)  x  (sequenceLength)],  for  a  continuous  Gaussian 
output,  giving the predicted mean and standard deviation of each output prediction 
subnetwork at each step of the input sequence.

c) The transition posterior probabilities – that is, the conditional probability, given the 
input, of a transition from each possible current state to each possible successor state 
at each step of the input sequence.

d) The state posterior probabilites – that is, the conditional probability, given the input, 
of being in any particular state at each step of the input sequence – in other words, 
the sum of the transition posterior probablities over their current states.

e) The  probability  of  the  observed target  output  given  the  input  features  and each 
possible state – that is, for a continuous Gaussian output, the distance of the target 
vector relative to each output subnetwork's predicted mean and standard deviation.

2. MAXIMIZATION.  Adjust the parameters of each subnetwork (and any other parameters) to 
maximize the likelihood of the data given the parameters.  This was performed as follows:

◦ Maximize relative to the state transition probability matrix:



▪ Compute  the  partial  derivatives  at  each  value  of  the  state  transition  probability 
matrix  with  respect  to  each  possible  parameter  of  the  state  transition  prediction 
subnetworks – that is, change each value of the state transition probability matrix by 
a certain step size (chosen as a constant, 0.05, for now, later to be made “greedy” at 
first  and  decreasing  in  size  as  likelihood  increases);  re-normalize  so  that  the 
transition probabilities for that particular current state sum to one; train a copy of 
each state transition subnetwork using LM back-propagation on the  new possible 
state transition probability matrix; and calculate how the parameters/weights of each 
subnetwork changed with respect to  the  change of the current value of the state 
transition  probability  matrix.   (Note  that  the  transition  matrix  was  initialized  as 
uniformly 1/3 - all transitions were equally probable at all times.

▪ Use the above partial derivatives and the state transition posterior probabilities  (1c 
above) to calculate the overall  partial derivative of the likelihood of the data given 
the parameters with respect to each of the state transition prediction subnetworks' 75 
possible parameters. [2]

▪ Update the  weights/parameters of the  state transition subnetworks by adding these 
75 partial derivatives to the current values of those 75 parameters/weights – this will, 
in  effect, boost the value of parameters whose increase causes an increase in the 
likelihood of the data and decrease the value of parameters whose increase would 
cause a decrease in the likelihood.

◦ Maximize relative to the expected outputs matrix in a similar fashion:

▪ Compute the partial derivatives of each value of the expected outputs matrix with 
respect to each of the 75 possible parameters of the output prediction subnetworks. 
(The step size was made to be 1.0 for both the mean and variance in the expected 
outputs matrix – again, this will be made adjustable later.  Additionaly note that each 
output prediction subnetwork was initially trained identically using the full sequence 
of input features and the full sequence of output features.)

▪ Additionally compute the partial derivative of the logarithm of the probability of the 
observed target output (analogous to 1e above) with respect to the change (i.e. step 
size) in expected output.

▪ Use the above two partial derivatives and the state posterior probabilities (1d) to 
calculate  the  overall  partial  derivative  of  the  likelihood  of  the  data  given  the 
parameters  with  respect  to  each  of  the  75  output  prediction  subnetwork's 
pararmeters. [2]

▪ Add these  the  weights/parameters  to  the  current  values  of  the  output  prediction 
subnetworks in a similar fashion as above.

3. Having updated the parameters/weights of the subnetworks, check to see if the overall rate of 
change of the likelihood given the new set of parameters is greater than a certain  very  low 
threshold, or if the maximum number of iterations has been reached – if so, this will be the final 
parameter set; if not, go back to step 1 and start over with the updated parameters.



III. Implementation issues

The researcher's time spent collecting data left him with less time for debugging the complex model he 
constructed;  thus, optimization has not thus resulted in expected optimum values.  More specifically, 
the researcher concedes little faith that his  implementation of the maximization portion of the  EM 
algorithm contains no errors, and certainly no faith that it it the fastest possible method, which is the  
more critical issue – even with few states and few layers, 100 seconds (i.e. sequence length of 100) of 
sequences requires 10-15 minutes on a quad-core Intel Xeon 3.0 GHz processor to compute anything 
close to an optimum set of parameters; and worse, the model often fails to correctly converge upon the 
optimum.  Lastly, the partial derivatives the researcher computes often result in NaNs; the researcher is 
uncertain whether this is due to computational underflow correctable by using logarithms or a different 
bug altogether.  Plainly there remain bugs and the researcher continues to work to correct them.  He 
welcomes advice on solving these issues.

In addition, there are issues that might be hidden from sight amidst the larger ones.  For one, the model  
was far more prone to update the expected output matrix than the transition probability matrix, the 
latter of which remained at the values at which it was initialized: a constant 1/3 for every value.  This 
could be the result of two issues (disregarding  for the moment possible  bugs in the code): first, the 
relative  step  sizes  of  the  output  prediction  and  state  transition  prediction  subnetworks  may  need 
adjustment (or, better yet, made to automatically adjust relative to the overall rate of change of the 
likelihood function relative to their  half  of the set of parameters);  second, the limited computation 
speed of the algorithm has limited the possible  sequence length to  such a  degree that  broad state 
transitions  are  hardly  possible  even  when considering  their  “true,”  latent  values,  much  less  when 
considering noisy data that may or may not reflect them.

A second, possibly insidious issue: the EM algorithm appears to exhibit some degree of “oscillation” 
between  maximizing  the  likelihood 
with  respect  to  the  state  transition 
prediction  subnetworks'  parameters 
and  the  output  prediction 
subnetworks'  parameters.   Perhaps, 
after  correcting  some  of  the  current 
issues,  this  would  become  non-
relevant, and these oscillations would 
“dampen” with each iteration to allow 
convergence,  or disappear altogether. 
If  not,  it  may  be  too  “greedy”  to 
update  both  the  state  transition 
prediction  subnetworks'  parameters 
and  the  output  prediction 
subnetworks'  parameters  together  on 
each iteration – there may need to be a 
second  degree  of  alternation,  in 
addition  to  that  between  Estimation 
and  Maximization,  between 
maximization  of  each  of  these  two 
sets of parameters.

Figure 4. Predicted mu values of each of three output prediction neural 
network-based subnetworks, compared to actual heart rate.



Given these issues,  and in  particular the lack of response of the state transition probability matrix to 
parameter  changes  of  the state  transition subnetworks,  the researcher  has  not  yet  implemented the 
“memory” function used to determine a final predicted output by choosing or weighting the predictions 
of  the output  prediction  subnetworks  based on the  predictions of  the state  transition subnetworks. 
However, he has some reason for optimism, as a simply glance at the output prediction subnetworks' 
predicted outputs shows promise for the model's  ability to divide the task of predicting outputs to 
different state subnetworks; as one can see in Figure 4, individual subnetworks seem to occasionally be 
able  to  “pick  out”  spikes  in  arousal,  while  being  wildy  incorrect  at  other  times.   Were  the  state 
prediction subnetworks able to correctly choose which state's prediction to use at each time, the model 
may have considerable promise.  The researcher concedes the possibility of over-fitting or an overly 
optimistic analysis of the graph.

IV. Next steps

After correcting  the  plain  algorithmic/computational  issues  detailed  above,  the  researcher's  second 
steps involve speculation to address more nuanced, theoretical issues.

First,  it  will  be  critical  that  the  researcher  implements  a  means  of  escaping  local  maxima in  the 
likelihood maximization step – a  “random restart”  implementation is  probably the most  advisable. 
Furthermore, any simplifications that might speed up maximization time – for example, accepting the 
first result that results in the slightest maximization of the likelihood, rather than proceeding through 
every possibility.  The possibility of somehow simplifying the data into a classification problem, so as 
to potentially take advantage of a much faster basic EM solution, is also worth considering, if it does 
not limit the explanatory power of the model.

The most interesting issue that the researcher has considered involves the memory variable ζt.  Under 
Markovian assumptions, it is said to contain the entire context/“memory” of all  the states of prior to 
time t.  Theoretically it makes formulae clean; computationally it makes code efficient, and to be sure, 
this  assumption has  indeed proven remarkably accurate  and useful  in  many applications  involving 
human data (e.g. speech recognition).  Can it accurately represent a human's memory as it relates to 
music?

The Goldberg variations shall provide the perfect test case when the researcher can get the algorithm 
working properly.  The famous “Aria” begins the  work.  The motivic material  of the  Aria is  then 
transformed in every conceivable way into thirty variations that evoke states ranging from ecstasy to 
deep contemplation.  Then, finally, the “Aria da capo” - the  return of the Aria; identical notes, but  
somehow, a profoundly different character.  Joseph Campbell  describes in “The Hero's Journey” the 
universal  human  mythology  of  the  hero  who  ventures  away from home,  encounters  dangers  and 
exploits  that  test  his  character,  and  returns  a  different  person,  having  attained  not  quite  what  he 
expected, but nothing less.  It is in this sense that a listener perceives the Aria da Capo – it is a different  
Aria than that which began the piece.  Can ζt, the memory vector, giving simply the current probability 
distribution of the listener's latent “states” given merely the current input features and ζt-1, capture this 
changed relationship of the listener to the input features?

Obviously this is absurd; this kind of complex relationship-based “memory” is not what Markovian 
assumptions intend to model.  However, the researcher wonders if  alterations that could bring this 
variable more in line with human memory function are not so far fetched.  Consider first the present 
formulation: training the model on simply the biometric data obtained while listening to the first Aria 
and then, sixty minutes later, the Aria da Capo, will simply “confuse” it – it will receive identical input 
features but far different output targets (or rather, far different predicted “states”); the model will thus 



interpret the Aria's input features as simply producing very high variance, and will predict this high 
variance for both the beginning Aria and the Aria da Capo.  Certainly one could hazard that the burden 
of properly distinguishing the two inputs must be placed more on the input feature  set than on this 
memory variable; that this variable cannot in fact contain any truly complex “memory”  in the sense 
humans perceive it,  that  some of  this  memory must  be submitted via  a music theoretical  analysis 
provided in the input features.  But consider if, simplistically, an accounting for repetition  of input 
features (and, perhaps, of state  probability  distributions?)  could be included  in the calculation of the 
memory vector, or if more distant dependencies of ζt  than ζt-1 could be included; a careful construction 
of such dependencies may well bring this variable more into line with human memory function.  What's 
more, given the current complexity of the model, introducing additional dependencies into ζt  wouldn't 
seem to affect computational speed to the extent that other factors currently affect it.  The researcher 
will continue to ponder the problem.
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