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1 Introduction

1.1 Background

Unexploded ordnances, in former war zones or military testing sites, pose a massive en-
vironmental and humanitarian problem worldwide, rendering huge swaths of land unsafe
and unusable for the public. Bombs dropped during warfare or military testing contain a
significant number of duds, and these unexploded bombs lay in dangerous wait for years
on end. In the United States, a country without a major conflict in over a century, an
estimated 11,000,000 acres of land contain a potential unexploded ordnance (UXO) hazard
[1].

The successful cleanup of these zones would allow the safe development of acreage
across the world, as well as the elimination of many deaths associated with setting these
bombs off. Unfortunately, cleanup of these areas is currently very expensive, relying on
simple metal detection to find the bombs. This method results in excavating harmless
metal clutter in addition to the ordnances, amplifying the cost of site cleanup by at least
an order of magnitude.

1.2 Problem Statement

Professor Fridon Shubitidze, an Assistant Professor at Dartmouth’s Thayer School of En-
gineering, has developed an innovative way to discriminate UXOs from harmless metal
clutter. The method measures the time decay of the electromagnetic energy emitted by
the buried bombs. The time decay curves (3 curves for each target of interest) are different
for bombs and clutter, providing a method for classification. This project won the U.S.
Department of Defense’s 2011 Project of the Year [2], a testament to the ingenuity of the
technology.

Currently, classification is performed manually, with a human combing three times
through thousands of objects, sorting clutter and unexploded ordnances. While Professor
Shubitidze’s group has used this method to successfully identify all UXOs across the DoD’s
test sites, a robust algorithm would significantly expedite the classification.

1.3 State of the Art

After a very successful demonstration of the technology, Prof. Shubitidze and his team
received another grant to develop automated sorting algorithms, resulting in a number
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of Ph.D. students working directly on this problem. While human classification identifies
100% of the UXOs and leaves 95% of non-UXO clutter unburied [2], none of the applied
algorithms have achieved anywhere near this level of success.

The published results [3], which used Neural Networks, SVMs, and clustering via Ward
linkage criteria, were only able to classify 100% of UXOs on a training set at the cost of a
large number of false positives. A 3-layer NN returned approximately 500 false positives
(out of 1500 targets of interest), while the SVM performed even worse, with nearly 600
false positives on the same training set. The clustering algorithm missed one anomaly.
These results are revisited later and compared to the results achieved here.

1.4 Challenges

This particular problem poses a number of challenges beyond the simple development of
a machine learning algorithm. Firstly, the algorithm will receive a very small number of
ground truths - at the limit, only one for each type of ordnance. Secondly, success must be
judged by the number of false negatives generated - a successful algorithm should generate
zero, while minimizing the number of false positives. The overall error rate, the typical
measure for an algorithm, will be considered, but secondarily to the false negative rate.

Crucially, cross-site validity must be guaranteed with any developed algorithm. Data
collected from different test sites have large variations in the EMI decay curves, primarily
due to unique soil compositions across the United States (and globally, although no inter-
national sites are considered here). Included below, in Figure 1, are the EMI curves of the
same bomb type from two different test sites, with vastly different footprints. The variation
shown here is indicative of the major challenge of producing a classifier that works well at
all test sites.

Site	
  A	
   Site	
  B	
  

Figure 1: 37-mm targets shown from two test sites, Fort Sill and Spencer Naeva. While these are
the same bomb type, the curves (especially the Z-axis, in green, that conveys the most information)
are largely different, underscoring the difficulty of developing an algorithm that classifies well across
different test sites.

Lastly, there are a number of different target configurations. For a given ‘target’ in the
field, this target may also be associated with one other target, two other targets, or on
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its own. Thus, for any 3 target set, we must consider that each of the 7 possibilities may
reveal the target to be a UXO. Figure 2 shows all of these possibilities, as well as the 7
graphs associated with each possibility.

Figure 2: Three Potential UXOs, shown as black ’X’s. Green circles show the 3 possibilities if
they are considered alone, orange shown the 3 possibilities if they are considered in sets of 2, and
purple circle shows the possibility that the three are actually one target. Graphs on right show these
7 distinct possibilities.

2 Algorithms

2.1 AdaBoost

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire, is a supervised
learning algorithm that combines a weighted sum of weak classifiers to form a strong
classifier [4]. During training, each weak classifier examines a different part of the feature
space and performs classification based on this feature space partition. This classification
is then assigned a weight (αt) according to the error it produced. After completing the
training of these classifiers, they are summed via their weights to form a strong classifier
and a final hypothesis, H(x), where

H(x) = sign

(
t∑

t=1

αtht(x)

)
.

AdaBoost requires that each individual classifier, h(t), classify with at least 50% accuracy.
A more detailed example of the AdaBoost application is shown below, in Figure 3, for a
hypothetical training set containing 4 feature space partitions.
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Figure 3: Example of the AdaBoost algorithm, with 4 distinct parts of the feature space examined.

The critical design decision is the choice of weak classifier, and especially the feature
space partition each weak classifier will consider. Here, a number of different feature space
attributes were considered to feed into Adaboost, and the final results used three separate
weak classifier partitions. The first weak classifier compared each individual test data point
to the same data point in the library and used a Euclidean distance threshold to sort the
samples, producing a weak classifier h(t). The threshold for sorting was chosen as the
one that produced the purest groupings. For 42 data points and 3 vector directions, this
corresponded to 126 weak classifiers. This comparison method is shown below.

Figure 4: Using each data point comparison as a feature space partition for a weak classifier.

Because the data set was hugely skewed toward clutter (by an approximately 20:1 ratio),
this comparison method was then altered to weight the misclassification of UXOs 20 times
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more than the misclassification of clutter objects in the training set.
Lastly, the summed Euclidean difference between the test example and the library

example across the X, Y, and Z-axis vectors were used to sort the test examples, according
to a hyperparameter threshold defined by the user. This resulted in 3 weak classifiers,
which were then summed to obtain the final classifier.

The success of these respective methods is discussed later in the results section.

2.2 Hierarchical Divisive Clustering

Due to the failures of the AdaBoost algorithm in solving this problem, a new unsupervised
learning algorithm, Hierarchical Divisive Clustering, was implemented to better classify
the data. A cluster can be defined as a ”set of similar points that are highly dissimilar
with other points in the dataset”[5]. Clustering algorithms have 3 key stages that must be
selected, as shown in Figure 5, below.

Figure 5: Clustering methodology and parameters selected by the user [6].

For our problem, we have selected the features as the X, Y, and Z-axes of the closest
library case and the current target of interest. The interpattern similarity decision was
made using three separate criteria (discussed below), and there are only three eligible
groups: unclassified targets, UXOs, and Clutter. Because we only care about clustering
the data into two classes, we can largely ignore the implications of cluster merging and
splitting [7]. In this application, only one cluster split is produced. Future work on this
algorithm, however, may include separating types of UXOs, in which a discussion of the
optimal splitting strategy must be revisited. The dendrogram for this particular problem
is shown below in Figure 6.

Unclassified	
  Targets	
  

Clu2er	
   UXOs	
  

Similarity	
  Criterion	
  

Figure 6: The dendrogram applied to this problem, with an arbitrary sorting criterion.
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After the milestone, a number of different sorting decisions were considered in an at-
tempt to improve the extensibility across different testing sites, as discussed in Challenges.

2.2.1 Closest Centroid

This sorting decision is essentially a modified version of the k-means algorithm, imple-
mented as a benchmark for the program. Here, however, the ‘clutter’ centroid is well-
defined from the beginning of the program by automatically assigning all targets to it,
and it thus moves very little from this starting point. This algorithm was implemented as
such due to the uneven distribution of the data and the apriori assumption that any given
target will likely be clutter.

2.2.2 Closest Target Threshold

A maximum Euclidean distance decision point sorts a given target of interest based on
its distance from the closest target in the ‘UXOs’ group. Targets below a set threshold
(optimized on the training set) are added to the ‘UXO’ group, while those above this
threshold are assigned to the ‘Clutter’ cluster.

2.2.3 Centroid Distance Threshold

Here, a threshold for maximum Euclidean distance from the UXO cluster centroid is used
as the sorting criterion. This algorithm was implemented after the milestone, with the
hypothesis that a centroid comparison would increase extensibility across test sites by
dulling the comparison’s sensitivity to outliers.

3 Results

3.1 AdaBoost

The AdaBoost algorithm was implemented, and coded with two different feature space
partitions. Firstly, I used individual data points across all axes, as discussed previously.
During each of these iterations, the error threshold was chosen to maximize the change
in entropy, and this preferred threshold was used to define the classification for the data.
For the 42 features in each axis, with 3 axes, this yielded 126 weak classifiers. Despite
satisfying the necessary threshold of a sub-50% error rate, these classifiers were unable to
form a strong classifier to successfully classify more than 75% of the ordnances correctly.
Additionally, all classifiers exhibited a very high number of false positives. Figure 7 shows
the results for the 126 classifiers.
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Figure 7: Adaboost error, false positives, and UXOs missed for each iteration.

As expected, Adaboost combines these weak classifiers to form a stronger classifier,
with an error rate of 7.24%, with 54 false positives and 90 UXOs missed out of 92 in
the set. Adaboost appears to discount classifying the UXOs. There are nearly 20 times
more clutter samples than UXOs in the training set, and the algorithm appears to find it
acceptable to use the error rate associated with essentially ignoring the classification of the
UXOs.

In order to remedy this problem, I attempted to weight the classification by assigning
them a 20 times greater weight in the error calculation. For the final classifier, this would
give greater weight to the classifiers that classified the UXOs correctly. The results from
this change are included below, in Figure 8.
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Figure 8: Adaboost error, false positives, and UXOs missed for each iteration, with weighting to
classifying UXOs.

Indeed, the weighting curtailed the number of UXOs missed, from 90 down to 62, but
at the expense of 556 false positives and a 31.09% error rate.

After the failure of this weak classifier, a new one was implemented: classification
based on the Euclidean distance between the target of interest and the closest library
sample across all points on a particular axis. This reduced the number of classifiers to only
three, but we expected to get better classification from each, to ultimately form a strong
final classifier. Instead, none of the classifiers were able to reach the requisite sub-50%
error rate on the training data, and the final classifier missed 21 UXOs and classified 1206
false positives, for an overall error rate of 66.75%. This method would have performed
better if the class estimates had merely been reversed.

Table 1 shows a summary of these results, below. None performed well enough on the
training set (Fort Sill) to move to the test sets.
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Table 1: The error rates for the three different weak classifiers implemented with the Adaboost
algorithm, on a site with 1988 targets and 92 UXOs. None performed satisfactorily on the training
set, and thus were not tested.

Adaboost Algorithm Results

Weak Classifier Method Overall Error UXOs Found False Positives

Points Comparison 7.25% 2 out of 92 54

Weighted Points Comparison 31.09% 30 out of 92 556

Axes Comparison 66.75% 71 out of 92 1206

3.2 Hierarchical Clustering

3.2.1 Hyperparameter Selection

A number of hyperparameters must be set by the user for this particular application. In
order to select these values, an end-to-end test data simulation was run across all of the
plausible hyperparameter values, while keeping the other ones fixed. Upon completion of
the simulation, we selected the value that maximized the number of UXOs found while
minimizing the overall error (i.e. minimized the number of false positives).

The error threshold is among the most important hyperparameters to define. As men-
tioned above, we must run the classifier for the 1-target, 2-target, and 3-target cases, and
must define an error threshold for each category. The plots below show the results for
the 1-target error threshold, which clearly show that a threshold of 10 gives the optimal
results, with a high rate of UXO categorization and the ideal place on the ROC curve.
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Figure 9: Curves showing train results while varying the 1-target error threshold. Both plots point
to an ideal threshold of 10.
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Next, the same procedure was performed for the 2- and 3-target error threshold, while
holding the other hyperparameters fixed. Here, the threshold is not so easily defined, as
the error rate has no minimum and the ROC appears to have two plateaus, where one may
trade off 4 identified UXOs for 500 false positives. For the 2-target case, we have selected
the first plateau as the optimum error, with a threshold set at 9.
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Figure 10: Curves showing train results while varying the 2 and 3-target error threshold. An ideal
threshold of 9 was selected, based on the ROC curve’s first plateau.

The same method was run for the 3-target case, with a threshold of 3 chosen. This was
an important iteration from the milestone report, where the 2-target and 3-target thresh-
olds were optimized together. Optimizing these hyperparameters separately significantly
reduced the number of false positives returned with no effect on the UXOs categorized.

Lastly, we defined the ideal time bound, i.e. the range of points for a given curve
that we will accept as data. From mere inspection, we can see that using the entire
available feature set introduces large noise variations, and the training results support
this assumption. With very stringent time restrictions (ostensibly to eliminate the noise),
however, we have not received enough data to correctly differentiate the results and classify
numerous false positives. Using the same method as above, we have chosen an ideal time
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bound of 3900 seconds.
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Figure 11: Curves showing train results while varying the time boundary, keeping the error thresh-
olds fixed. An ideal time bound of 3900 seconds was selected, based on the ROC curve’s plateau.

Other important hyperparameters exist: the number of iterations to run for each target
case (1, 2 and 3), the order through which to approach each target, and the number of
iterations to run through the entire program. I have examined the number of iterations
for each case, with two iterations providing the best results (highest number of UXOs
identified and least number of false positives) in the 1-target case, and 1 iteration each for
the 2-target and 3-target case. The current default order is 1-target to 2-target to 3-target,
and alternating this order in a number of different ways produced worse training set results.

3.2.2 Overall Results

The clustering algorithm has performed very well on the training data, with an error rate
consistently under 5%, the consistent identification of around 90% of the unexploded ord-
nances included, and an acceptably low false positive rate. For the ideal hyperparameters
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outlined above, the Fort Sill data set returns an overall error rate of 3.17%, with 55 false
positives and 8 UXOs missed out of 92 in the set. This was an improvement over the 10
UXOs misclassified at the time of the milestone report.

For most algorithms, this small error and 10% miss rate would likely be considered a
success. As discussed previously, however, we must return zero false negatives, and have
not reached that critical point while minimizing the number of false positives. For small
timebounds, all of the UXOs are identified, but at the expense of over 600 false positives.

This number of false positives is comparable to the state of the art research in the field.
Figure 12, below, shows 4 different training set results set against the results from this
method.

SVM	
  

NN1	
   NN2	
  

Clustering	
  

Figure 12: Four ROC curves from the state of the art research in the field [3], with the text
showing the type of classifier used. The bottom curve is the ROC curve (for varying the timebound)
for the training set used in this project, with 617 false positives for 100% UXO classification. This
project achieved parity with the state of the art research.

The state of the art training set, however, had only 1464 targets, while our training
set had 1988 targets of interest. Thus, this method classifies all UXOs with 31% of the
non-UXOs misclassified. This actually improves upon the best published results for this
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application. Table 2 compares the results in more depth.

Table 2: A comparison between the results from our clustering algorithm and the state of the art
research in the field [3]. All false positive values taken at the point in the ROC curves where all
UXOs are identified.

A comparison between the state of the art and our clustering method

Algorithm Implemented

Error Measure NN 3-node NN 10-node SVM Cluster Our Cluster

% UXOs Identified 100% 100% 80% 99% 100%

% False Positives 33.7% 41.2% 20.6% 55.0% 31.0%

After using the training set to define the hyperparameters, the algorithm was tested on
2 other DoD training sites, Spencer Naeva and Camp Bealle. On the Spencer Naeva test
site, the algorithm identified 64 out of 73 UXOS, with 715 false positives and an overall
error rate of 36.99%. The final test site used for the milestone report was Camp Bealle,
with a total of 81 unexploded ordnances to be identified. Here, the algorithm returned 53
out of 81 UXOs with 181 false positives and an overall error rate of 10.51%.

As the test results show, there is significant improvement needed in the algorithm
to ensure its extensibility across all test sites without requiring the redefinition of the
hyperparameters. We thus implemented the centroid distance threshold for the decision
point, with the hypothesis that it would reduce the sensitivity to outliers in the clustering
algorithm.

As expected, the centroid distance comparison maintained its error and UXO classi-
fication rates over the training and test sites better than the closest target comparison.
Although the centroid distance comparison did not perform as well on the training or test
data, it appears to hold promise as a more extensible application. Table 3 shows the final
performance of these two unsupervised classifiers over all of the sites.

Table 3: A comparison between the results from the closest target threshold and the centroid
distance threshold. The closest target performs better on the task of classifying UXOs, but the
centroid distance threshold appears to be more extensible across sites. False Positive rates (False
Positives/Number of Targets) are denoted as % FP, with the percentage of UXOs found denoted as
% UXOs.

A comparison between two different clustering decision criterion.

Site

Ft. Sill Spencer Naeva Camp Bealle

Criterion % UXOs % FP % UXOs % FP % UXOs % FP

Closest Target 91.3% 2.7% 87.6% 42.9% 65.5% 10.5%

Centroid 78.2% 5.7% 73.9% 6.8% 55.5% 2.8%
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4 Future Work

Firstly, this algorithm produced positive results, indicating a step forward from the current
state of the art in a real-life, humanitarian problem to which machine learning can signifi-
cantly incentivize cleanup of these areas. I hope to be working with Professor Shubitidze
towards the publication of these results during spring term, after refining the algorithm
and testing its application across more DoD test sites.

In this training set, we attempted to identify two types of unexploded ordnances: 37-
mm and small pipes. They have been considered together in this paper but may also
be considered separately. If considered separately, only 1 of the 37-mm targets is missed
(with 37 false positives), and only 2 of the small pipes are missed (with 39 false positives).
This is a significant improvement over the 8 combined UXOs missed when considered
together. The potential separation of the targets, either through further clustering or
multiple iterations, is a topic that should be explored further.

Additionally, the centroid comparison algorithm was implemented after the milestone
in an effort to improve extensibility across the different test sites. Based on the promise
shown here, I will be refining this algorithm and spending more time attempting to improve
its classification of UXOs.

Lastly, for the eventual real-life applications of this algorithm, it should have a prob-
abilistic (or confidence) component. Ideally, those targets with a low confidence could be
flagged and examined by a human expert. A large, but addressable, shortcoming of this
algorithm is the strictly binary classification with no confidence measure.

5 External Code

No external software was used for this project. Professor Shubitidze provided the code for
loading in the data correctly and was crucial in decoding the format of the .mat files. After
receiving guidance in getting the data loaded correctly, the algorithms were independently
written.
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