
Computational Bracketology

Harrison Hall, John Sigman
Ph.D. Candidates in Engineering

Dartmouth College
{harrison.k.hall.th, john.b.sigman.th}@dartmouth.edu

March 8, 2013

1

harrison.k.hall.th@dartmouth.edu
john.b.sigman.th@dartmouth.edu

Final Project Write Up CS 174 Hall, Sigman

1 Background

The NCAA Men’s Basketball Tournament is a 64-team, single elimination tournament held every year
that determine’s the nation’s national champion. Even with 6.45 million brackets, as in Figure 1, filled
out on ESPN.com last year[1] the winner still failed to predict 12 of the games correctly[2]. While it is
astronomically unlikely that anyone has or will ever picked a perfect bracket, a chance of 1 in 263, it is clear
that the current augmented human predictions are not perfect. While some machine learning algorithms
exists which are competitive with the brackets of professional sports analysts, these algorithms are designed
to take into account only team-level statistics. While single-game, individual player statistics are available[3]
current, published approaches tend to not evaluate the the importance of individual players or potential
player match-ups.

Figure 1: Blank 2012 NCAA Division I Men’s Basketball Tournament bracket. Image courtesy of AP.

2 Dataset

Our dataset was scraped from the ESPN NCAA Men’s Basketball website[3]. The set of information provided
by ESPN can be seen in Table 1. They provide schedule data for all of the Division I teams that field men’s
basketball teams and their full schedules going back to the 2001-2002 season. For each game in those years
ESPN provides game level box scores. In total we were able to scrape data for the 347 teams, excluding
non-D1 opponents, corresponding to 21, 366 games.

ESPN also provides player statistics for every game as well as biographic data about each player. From the
set of games described above we were able to extract 429, 876 player statistics with the fields described in
Table 1b from the four seasons between 2008-2009 and 2011-2012. We were also able to pull biographic data
as shown in Table 1e. However that data is not on a timeline so it is not possible to track variance in player
weight, height, position, etc. across their college basketball careers.

2

http://media.timesfreepress.com/img/photos/2012/03/11/NCAA_Bracket_t618.jpg

Final Project Write Up CS 174 Hall, Sigman

Table 1: Fields provided by ESPN and their respective datatypes.

(a) Game

Field Type
id Integer

Game Time Datetime
Site Arena String
Site City String
Site State String
Site Arena String

Home Team FK(School)
Away Team FK(School)

Home Team First Half Score Integer
Away Team First Half Score Integer

Home Team Second Half Score Integer
Away Team Second Half Score Integer

Home Team Final Score Integer
Away Team Final Score Integer
Number of Overtimes Integer

Home Team Overtime Score Integer
Away Team Overtime Score Integer

Regular Season Boolean
NCAA Tournament Boolean

(b) Player Statline

Field Type
Game FK(Game)
Player FK(Player)
School FK(School)
Starter Boolean
Points Integer

Minutes Integer
Field Goals Integer

Field Goal Attempts Integer
3-Point Goals Integer

3-Point Goal Attempts Integer
Free Throws Integer

Free Throw Attempts Integer
Offensive Rebounds Integer
Defensive Rebounds Integer

Assists Integer
Steals Integer
Blocks Integer

Turn Overs Integer
Personal Fouls Integer

(c) School

Field Type
id Integer

Name String
Mascot String

Conference FK(Conference)

(d) Conference

Field Type
id Integer

Name String

(e) Player Biography

Field Type
id Integer

Name String
Position String
Birthday Date

Hometown String
Home State String

Height (Feet) Integer
Height (Inches) Integer

Weight (Pounds) Integer

This data is organized for ease of scraping from the source. Our model for predicting games in the NCAA
tournament is single game comparisons based on historical data where each game is treated as an independent
event. Thus we format this collected data such that each row contains the data used to characterize the each
team’s historical performance up to the date of the game. Table 2 shows the features that were generated
from the scraped dataset. Note that Tables 2b and 2c were populated for each team.

3

Final Project Write Up CS 174 Hall, Sigman

Table 2: Fields formatted for classification in our algorithms

(a) Game Information

date Date
Game Id Integer

Home Team Id Integer
Away Team Id integer

Home Team Is Winner Boolean
Game at Neutral Site Boolean
Game in Postseason Boolean

Game in NCAA Boolean

(b) Historical Team Outcomes

Conference Integer
RPI Float

Points Scored Integer
Poinst Against Integer

Points +/- Integer
Home Wins Integer
Away Wins Integer

Neutral Site Wins Integer
Home Losses Integer
Away Losses Integer

Neutral Site Losses Integer
Overtime Wins Integer
Overtime Losses Integer

Non-NCAA Postseason Wins Integer
Non-NCAA Postseason Losses Integer

(c) Cumulative Team Statistics

Field Goals Made Integer Number of Players 5’6”-6’ Integer
Field Goals Attempted Integer Number of Players 6’-6’6” Integer

Threes Made Integer Number of Players 6’6”-7’ Integer
Threes Attempted Integer Number of Players 7’-7’6” Integer
Free Throws Made Integer Number of Players 7’6”-8’ Integer

Free Throws Attempted Integer Number of Players Over 8’ Integer
Offensive Rebounds Integer Average Player Weight Float
Defensive Rebound Integer Number of Players under 150 lbs Integer

Assists Integer Number of Players 150-175 lbs Integer
Steals Integer Number of Players 175-200 lbs Integer
Blocks Integer Number of Players 200-225 lbs Integer

Turnovers Integer Number of Players 225-250 lbs Integer
Fouls Integer Number of Players 250-275 lbs Integer

Average Player Points Integer Number of Players 275-300 lbs Integer
Number of Starters Integer Number of Players Over 300 lbs Integer

Average Age of Player Float Number of Centers Integer
Number of Players Under 17 Integer Number of Guards Integer
Number of Players Aged 17 Integer Number of Forwards Integer
Number of Players Aged 18 Integer Number of Utility Players Integer
Number of Players Aged 19 Integer Average Height of Centers Float
Number of Players Aged 20 Integer Average Weight of Centers Float
Number of Players Aged 21 Integer Average Height of Guards Float
Number of Players Aged 22 Integer Average Weight of Guards Float
Number of Players Aged 23 Integer Average Height of Forwards Float
Number of Players Over 24 Integer Average Weight of Forwards Float

Average Height(In) FLoat Average Height of Utility Players Float
Number of Players under 5’ Integer Average Weight of Utility Players Float
Number of Players 5’-5’6” Integer

4

Final Project Write Up CS 174 Hall, Sigman

3 Approach

3.1 RPI

The Ratings Percentage Index (RPI)[6] is an industry-standard statistic that comes from the following
relations:

ti, tj ∈ T = {Team1 . . .Teamm} (1)

n = number of days in the season (2)

k ∈ [1 . . . n] (3)

G = The set of all games played in a season (4)

Oi,k = The set of all teams ti played in the first k − 1 days of the season (5)

gi,j,k ∈ G s.t. the game played between ti and tj is on day k (6)

Hw
i,j,k = Indicator function if gi,j,k exists and i won at home (7)

H l
i,j,k = Indicator function if gi,j,k exists and i won at home (8)

Aw
i,j,k = Indicator function if gi,j,k exists and i won away (9)

Al
i,j,k = Indicator function if gi,j,k exists and i won away (10)

Nw
i,j,k = Indicator function if gi,j,k exists and i won at a neutral site (11)

N l
i,j,k = Indicator function if gi,j,k exists and i won at a neutral site (12)

a = 0.25 (13)

b = 0.5 (14)

c = 0.25 (15)

d, e, f ∈ R[0 . . . 2] (16)

RPIi,k = a ·WPi,k + b ·OWPi,k + c ·OOWPi,k (17)

WPi,k =

∑k−1
x=1

∑m
y=1 d ·Hw

i,y,x + e ·Aw
i,y,x + f ·Nw

i,y,x∑k−1
x=1

∑m
y=1 d ·Hw

i,y,x + e ·Aw
i,y,x + f ·Nw

i,y,x + (2− d) ·H l
i,y,x + (2− e) ·Al

i,y,x + (2− f) ·N l
i,y,x

(18)

OWPi,k =

∑
o∈Oi,k

WPo,k

||Oi,k||
1 (19)

OOWPi,k =

∑
o∈Oi,k

∑
p∈Oo,k

WPp,k∑
o∈Oi,k

||Oo,k||
(20)

RPI is perceived as a good way to rank teams and correct for the strength of an individual teams schedule.
For NCAA Basketball, the wins and losses are weighted so that a win at home counts as d = 0.6, and a win
on the road counts for e = 1.4 wins. Away losses count as 2− e = 0.6 and home losses count as 2− d = 1.4
losses. Neutral site games are counted as away games for both opponents, thus d = f . These weightings are
to compensate for Home-Court Advantage, which we will discuss in our results.

3.2 Decision Trees

Decision trees attempt to reduce the entropy in the set of training examples at each node by selecting
the classifier available that reduces the entropy the most. This requires a binary classifier to determine

1Typically, OWPi,k is calculated by omitting the meetings of team i with all of its opponents, however in this definition it
was omitted for succinctness.

5

Final Project Write Up CS 174 Hall, Sigman

classification. In the case of our project the features used for the branching came from a strictly greater
than comparison of the characteristics of the home versus away team features as listed in Tables 2. This
gave us a binary classification upon which to build the trees. We used the implementation that we built for
Homework 2.

3.3 Random Forests

Random forests build off of the structure of decision trees except there are k trees used and at each node
in the tree a random subset of the available binary features are used for branching. The class that has
the majority vote by the k trees in the forest is selected. We used the implementation that we built for
Homework 2.

3.4 SVM

Our first attempt to generate a large set of weak classifiers to be used in AdaBoost was using Support Vector
Machines. Our data was so noisy, however, that regardless of the slack, we could not get linear separation
of classes, and there were no clear nonlinearities that could have warranted a nonlinear transformation. We
then abandoned SVM in favor of the simpler k-nearest neighbors algorithm.

3.5 AdaBoost

Adaboost (Adaptive Boosting)[4], a meta, supervised learning algorithm that takes a set of trained “weak”
classifiers, ht(x) and selectively weights a subset of them to generate a strong classifier. This subset of T
classifiers is constructed by iteratively selecting the most accurate classifier and reweighting the samples
that are classified incorrectly by the classifier as more important, while decreasing the importance of those
samples correctly classified, for the next iteration. The accuracy of classification is computed as a sum of
the weights of the misclassified points as seen in Equation 21.

εj =
∑
i

= 1mWt(i)(yi == hj(xi)) (21)

At each iteration AdaBoost calculates the weighted error,εj , of each of the T classifiers and selects the one
with the least error. It then calculates αt that is uses to weigth the most accurate classifier of this round
and reweights all of the points in the training set. On initialization all of the weights of the sample points
are set to 1

m .

αt =
1

2
log

1− εt
εt

(22)

Wt+1(i) =
Wt(i)exp(−αtyiht(xi))∑m

k=1Wt(k)exp(−αtykht(xk))
(23)

Upon running T iterations we have a set of T classifiers each with weight α1 . . . αT . To classify a test example
we run the T classifiers on the test example and multiply their output by the corresponding αt and take the
sign of that to be the output class as seen in Equation (24)

H(x) = sign

(T∑
i=1

αihi(x)

)
(24)

6

Final Project Write Up CS 174 Hall, Sigman

3.5.1 kNN

Because of the size and complexity of our data, we opted to use K-Nearest Neighbors as the classifier input
to AdaBoost. Since we have 71 features per team per sample and we wanted to compare the same feature
dimensions across the team we have

∑71
i=1 71choosei possible feature groupings. This set is clearly too large

to enumerate so we took two apporaches to solve this problem: enumeration for classifiers at the ends of the
spectrum and random selection.

In the enumeration approach we used i from the set {1, 2, 70, 71}. Using these features to train AdaBoost
took on the order of a day which was too long for the quick iteration that we needed for this project so
we instead randomly created several thousand classifiers, using different choices of k and i. We ended up
randomly selecting 2000 kNN classifiers with ks ranging from 1 to 21 counting by 4, and between 3 and 5
features selected from each team.

4 Results

Results are grouped into two sections, the optimization of RPI and game prediction using various meth-
ods.

4.1 RPI Optimization

Figure 2: Unoptimized calculation of RPI using the NCAA standard of home wins, away losses, and neutral
site losses being treated as 0.6 games while home losses, away wins, and neutral site wins are treated as 1.4
games.

Figure 2 is a probability density of all the matchups as a function of the difference in RPI score of the home
and away teams before to the game. The x-axis is in order of increasing home team favor towards the right
of the figure. The error rate can be derived from this figure by the ratio of the area under the red curve
(total number of errors) to the area under the blue curve (total number of matchups). The overall error rate
for the four seasons 2009-2012 was 31%.

7

Final Project Write Up CS 174 Hall, Sigman

We proposed to optimize the RPI with respect to predicted errors via batch gradient descent. The first step
was to compute the partial derivatives for RPI. The equations below are the derivatives with respect to one
team. Since the prediction is made by the difference in RPI score, the actual error function gradient is taken
by the difference in these partial derivatives for the home and away teams in the matchup.

RPI(x) = (1−B − C)WP (x) +B ·OWP (x) + C ·OOWP (x) (25)

WP (x) =
d ·Hx

w + e ·Ax
w + f ·Nx

w

d ·Hx
w + e ·Ax

w + f ·Nx
w + (2− d) ·Hx

l + (2− e)Ax
l + (2− f)Nx

l

(26)

WRPI(xi, xj) = RPI(xi)−RPI(xj) (27)

=

(1−B − C)

(
d ·Hxi

w + e ·Axi

w + f ·Nxi

w

2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)

− d ·Hxj

w + e ·Axj

w + f ·Nxj

w

2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)

)
B
(
OWP (xi)−OWP (xj)

)
+B

(
OOWP (xi)−OOWP (xj)

)
(28)

dRPI

dB
= OWP (xi)−WP (xj) (29)

dRPI

dC
= OOWP (xi)−WP (xj) (30)

dRPI

dd
=

(1−B − C)

(
Hxi

w

(
2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)(

2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)2

−
(
d ·Hxi

w + e ·Axi

w + f ·Nxi

w

)
(Hxi

w −Hxi

l)(
2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)2

−
Hxj

w

(
2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)(

2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)2

−
(
d ·Hxj

w + e ·Axj

w + f ·Nxj

w

)
(Hxj

w −Hxj

l)(
2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)2)

(31)

dRPI

de
=

(1−B − C)

(
Axi

w

(
2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)(

2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)2

−
(
d ·Hxi

w + e ·Axi

w + f ·Nxi

w

)
(Axi

w −Axi

l)(
2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)2

−
Axj

w

(
2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)(

2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)2

−
(
d ·Hxj

w + e ·Axj

w + f ·Nxj

w

)
(Axj

w −Axj

l)(
2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)2)

(32)

8

Final Project Write Up CS 174 Hall, Sigman

dRPI

df
=

(1−B − C)

(
Nxi

w

(
2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)(

2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)2

−
(
d ·Hxi

w + e ·Axi

w + f ·Nxi

w

)
(Nxi

w −Nxi

l)(
2(Hxi

l +Axi

l +Nxi

l) + d(Hxi

w −Hxi

l) + e(Axi

w −Axi

l) + f(Nxi

w −Nxi

l)
)2

−
Nxj

w

(
2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)(

2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)2

−
(
d ·Hxj

w + e ·Axj

w + f ·Nxj

w

)
(Nxj

w −Nxj

l)(
2(Hxj

l +Axj

l +Nxj

l) + d(Hxj

w −Hxj

l) + e(Axj

w −Axj

l) + f(Nxj

w −Nxj

l)
)2)

(33)

We carried out the regression across four years, and saw only a marginal improvement in error rate, variables
whileless than one percent.

Figure 3: RPI after regression has been performed using the derivatives calculated in Equations25-33

To discover why we couldnt improve the rate, we plotted several cross-sections of the error space as seen in
Figure 4

It is important to note that in Figure 4 the error rate never falls below about 32% in the range. The local
minimum is very wide and flat, except at the boundaries. For example, along the line B + C = 1, the error
rate increases because, along this line, the RPI component for win percentage (WP) is null. These surface
plots tell us that there is a very wide space of nearly optimal configurations in RPI, so there is not a strong
justification for changing these weights. Because the NCAA has changed the coefficients in the past, we
posit that they were similarly unjustified.

4.2 Game Prediction

4.2.1 Crossvalidation Studies

The crossvalidation studies were done to understand how the classifiers performed against the regular season
training data. Figures 5 and 6 show the results of the crossvalidation study. Decision trees and AdaBoost

9

Final Project Write Up CS 174 Hall, Sigman

(a) Error vs d and e. (b) Error vs B and C.

Figure 4: Plot of the error when using RPI to calculate the outcome of games in the regular season for while
varying 2 variables and holding the others to NCAA standards.

(a) Decision Tree (b) Random Forest: forest size=11, pool size=5

Figure 5: Plots of the decison tree and random forest crossvalidation training error for different single seasons
as a training set over the remaining three years as a test set.

10

Final Project Write Up CS 174 Hall, Sigman

Figure 6: The crossvalidation training error when using AdaBoost predictions for different single seasons as a
training set over various numbers of iterations of Adaboost classifier selection. There is a strictly decreasing
error rate as the number of weak classifiers included in AdaBoost increases.

showed excellent fit even when using one season of data and crossvalidating against the other three. Oddly
random forests performed more poorly than decision trees in the cross validation study.

We chose this scheme for crossvalidation because crossvalidating past seasons with future seasons seemed
like epistomological failing. Back and forward projecting a single season without knowledge of the others
seemed a more reasonable approach.

4.2.2 NCAA Tournament Predictions

Using the same system for predicting game-by-game expectation, we simulated NCAA tournaments for the
years 2009-2012, taking the first-round 64 participants and evolving the tournament. Because the games
played later in the tournament are wholly dependent on earlier matches, predictions made by chance will
yield extremely low scores. This forward propagation of errors makes any error rate higher than 33.85%
better than chance as calculated using Equations 34-40. After simulating the full tournament, we compared

11

Final Project Write Up CS 174 Hall, Sigman

it to our ground truth historical tournament.

N : random variable of number games predicted correctly in a Tournament (34)

G :
random variable that a particular team will win a game in a particular

round assuming all teams are equally strong, i.e. unbiased coin flip
(35)

E[N] =

6∑
r=1

2r−1∑
g=1

P (G) (36)

=

6∑
r=1

2r−1∑
g=1

(
1

2
)7−r (37)

= 21.328 (38)

error rate =
E[N]

63
(39)

= 0.3385416 (40)

(a) Decision Tree (b) Random Forest: forest size=11, pool size=5

Figure 7: Plots of the same-year tournament errors when using decision tree predictions for different single
seasons as a training set over various numbers of iterations. There is significant overfit of the classifier against
the Tournament test sets.

All of the algorithms tested showed signs of overfit when tested against the tournament data. This can most
clearly be seen in Figure 8 where the error rate of each AdaBoosted classifier set grows when utilizing more
than one classifier. In retrospect this makes sense due to our large input classifier space. We have essentially
found a set of classifiers, from a very large set of classifiers that fit the training set very, very well. Another
approach to this would be to train the weak classifiers and AdaBoost on different training sets so as to
remove overfit, however

It is also reasonable that tournament play is significantly different from the regular season. In Division I
play there are 347 teams only 63 of which make the tournament. We included all teams in the trainin set
which now seems like a poor choice. In the future we would remove matchups that did not include selected
teams, though retain all of the cumulative data related to those teams, as our training set.

5 Future Work

The most interesting advancement may come from the selection of features. The group of Shu Michelle,
Gediminas Bertasius, and Jason Wardy[5] showed excellent results with significantly fewer features by in-

12

Final Project Write Up CS 174 Hall, Sigman

Figure 8: The same-year tournament errors when using AdaBoost predictions for different single seasons
as a training set over various numbers of iterations. There is significant overfit of the classifier against the
Tournament test sets.

cluding statistics about the opponents of the teams of interest. We would like to see if altering our feature
set had similar performance increases.

6 Outside Resources

We used several outside resources broken down into the categories of acquiring our data and processing our
data. The rest was completed in entirety by John Sigman and Harrison Hall.

6.1 Scraping Data

To scrape the data from ESPN we used the following packages:

• Django v1.4.3

• Unipath v0.2.1

• beautifulsoup4 v4.1.3

• distribute v0.6.19

• html5lib v0.95

• psycopg2 v2.4.6

• python-dateutil v1.5

• requests v1.1.0

• wsgiref v0.1.2

13

Final Project Write Up CS 174 Hall, Sigman

• yolk v0.4.3

6.2 Machine Learning Analysis

A function, mfcsvread.m, for reading .csv files into a matlab struct was taken from the Mathworks file server.
The boilerplate source code for decision trees and random forests was provided by the CS 174 staff.

14

Final Project Write Up CS 174 Hall, Sigman

References

[1] K. Chong-Adler. (2012, Mar.) Espns tournament challenge sets bracket record
with 6.45 million entries. [Online]. Available: http://frontrow.espn.go.com/2012/03/
espns-tournament-challenge-sets-bracket-record-with-6-45-million-entries/

[2] CincyFan007. 1. [Online]. Available: http://games.espn.go.com/tournament-challenge-bracket/en/
entry?entryID=970323

[3] ESPN. Ncaa-mens college basketball. [Online]. Available: http://espn.go.com/mens-college-basketball/

[4] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application
to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, Aug. 1997.

[5] S. Michelle, G. Bertasius, and J. Wardy. Predictive applications of ensemble methods: Nba betting. [On-
line]. Available: http://www.cs.dartmouth.edu/∼lorenzo/teaching/cs174/Projects/FinalizedWriteups/
/michelle.w.shu.html

[6] B. T. West, “A simple and flexible rating method for predicting success in the ncaa basketball tournament:
Updated results from 2007,” Journal of Quantitative Analysis in Sports, vol. 4, no. 2, Apr. 2008.

15

http://frontrow.espn.go.com/2012/03/espns-tournament-challenge-sets-bracket-record-with-6-45-million-entries/
http://frontrow.espn.go.com/2012/03/espns-tournament-challenge-sets-bracket-record-with-6-45-million-entries/
http://games.espn.go.com/tournament-challenge-bracket/en/entry?entryID=970323
http://games.espn.go.com/tournament-challenge-bracket/en/entry?entryID=970323
http://espn.go.com/mens-college-basketball/
http://www.cs.dartmouth.edu/~lorenzo/teaching/cs174/Projects/FinalizedWriteups//michelle.w.shu.html
http://www.cs.dartmouth.edu/~lorenzo/teaching/cs174/Projects/FinalizedWriteups//michelle.w.shu.html

	Background
	Dataset
	Approach
	RPI
	Decision Trees
	Random Forests
	SVM
	AdaBoost
	kNN

	Results
	RPI Optimization
	Game Prediction
	Crossvalidation Studies
	NCAA Tournament Predictions

	Future Work
	Outside Resources
	Scraping Data
	Machine Learning Analysis

