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Introduction

The human brain effectively filters a torrent of incoming sensory data so as to select and enhance
behaviorally relevant information. In the case of vision, saliency signals based on low-level
properties of the visual input are rapidly and automatically computed in order to pinpoint the most
important elements of complex visual scenes. This mechanism of bottom-up visual attention is
tightly yoked to the motor systems governing eye movement—points in the visual field with high
saliency are rapidly foveated in order to provide higher visual acuity and depth of processing. A
neurally-inspired computational model of this process pioneered by Itti and Koch (2001) and
further developed in Itti and Baldi (2009) has been well-supported by behavioral data; saliency
maps generated by this model predict the direction of human eye gaze, across subjects, at upwards
of 80% accuracy. Nonetheless, the extent to which this model captures computations carried out at
the level of neural systems mediating saliency processing is an open question. The aim of the
current project is to determine which neural substrates, if any, compute visual saliency in a manner
analogous to that implemented by the model.

To link the saliency model to neural data, functional MRI (fMRI) was used to index neural activity
while human subjects were presented with a movie, Indiana Jones - Raiders of the Lost Ark (Haxby
et al, 2011). The saliency model was then applied to the same movie stimulus so as to produce
saliency maps for each time point in the movie. The output of the model was then fit to the neural
data such that for each voxel, the time course of blood oxygenation level-dependent (BOLD)
responses could be predicted as a linear combination of the saliency values computed at each patch
of each frame. Voxels in which the BOLD time course is well-predicted by the model can then be
considered to comprise neural systems that process visual input in a way similar to the model. This
method of model-based decoding has been successfully applied to low-level visual processing
(Nishimoto et al., 2011) and semantic representation (Huth et al., 2012; Mitchell et al., 2008). The
primary advantage of model-based decoding over more conventional neuroimaging approaches is
that the model provides a principled set of a features and their relation to neural activation, thus
allowing for generalization to novel stimuli.

Method and results

Saliency model

The saliency model constructed by Itti and colleagues was implemented via the iLab Neuromorphic
Vision C++ Toolkit (iNVT; http://ilab.usc.edu/toolkit/). For our purposes, the model can be broken
down into two functional components. The first of these consists of several banks of filters intended
to simulate the receptive fields of neurons in early visual cortex (EVC). These filters mimic
antagonistic center-surround receptive fields sensitive to local contrasts in several different feature
spaces. The feature maps used in our implementation were color opponency, flicker, intensity,
motion-energy, and orientation, all computed in a center-surround fashion at four spatial
frequencies. Figure 1 presents a schematic of this model. A similar model (Serre, Wolf, Bileschi,



Riesenhuber, & Poggio, 2007) was used to accurately predict voxel time course in early visual
cortex in response to movie stimuli (Nishimoto et al., 2011).
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Figure 1. Schematic of the saliency model. Feature maps are computed via antagonistic center-

surround filters. A saliency metric is then computed across all feature maps and the maximally salient
point in visual space is selected. The model can be divided into two functional modules—the early
visual component and the saliency component—as illustrated.

The second functional component of the model computes, over each of these features maps, a
saliency metric based on Bayesian surprise (roughly the Kullback-Liebler divergence) from frame
to frame and selects the maximum over all feature maps. This portion of the model is intended to
reflect the selection process of bottom-up visual attention. In addition to the fitting the output of
the final saliency computation to the neural data, we also separately analyzed the output of the EVC
model component as a control. Due to the low temporal resolution of fMRI, the saliency maps were
computed for each frame then collapsed into 2.5 s chunks. The model was applied to the entire
movie, frame by frame, resulting in a time series of saliency values at 33 x 60 patches. For the
purpose of illustration, the output of the early visual component of the model for several frames of
the movie stimulus is presented in Figure 2.



Figure 2. Output of the early visual component of the model for selected movie frames.

fMRI preprocessing

The BOLD data used in the study were from a single participant who viewed the entire movie over
the course of eight functional runs. The data were preprocessed in AFNI (http://afni.nimh.nih.gov/;
Cox, 1996) according to the standard pipeline. Volumes over all runes were spatially registered to a
single reference volume. Slice-timing alignment corrected for temporal disparities in interleaved
slice acquisition within a single volume. BOLD data were then despiked and bandpassed in order to
minimize the effects of statistical outliers and low frequency drift in the MR signal. Head motion
parameters returned by the initial spatial registration were regressed out of the BOLD time series
to minimize effects of head movement. A 4 mm spatial smoothing kernel was applied to the data in
order to increase signal-to-noise ratio. Fully preprocessed images were then multiplied by a binary
mask tightly conforming to the edges of the brain in order to negate signal in voxels corresponding
to the skull and adjacent non-cortical tissue. Finally, due to computational constraints and the high
dimensionality of fMRI data (2,718 time points x 71,773 voxels for the current participant), signal
values in the volume domain were projected to the surface and spatially down-sampled using
FreeSurfer (Fischl, Sereno, & Dale, 1999) and AFNI's SUMA utility. Effectively, this ignores all voxels
corresponding to subcortical tissue and white matter and projects cortical voxels onto a cortical
sheet in the surface domain. This reduced our data to signal values at 2,562 nodes (the surface
equivalent of voxels) in a single (left) hemisphere. The 2,718 signal values for each 2.5 s time point
at each of 2,562 cortical nodes were the time series to which the output of the saliency model were
fitted. After complete preprocessing, these data were imported into MATLAB where voxel-wise
model fitting was performed.



Voxel-wise model fitting

To characterize the saliency information carried by the brain, we tested for each node whether the
response time course could be estimated by the saliency values corresponding to each time point in
the movie (see Figure 3). The spatial resolution of the saliency maps was 33 x 60 patches per frame,
and the length of the movie was 2,718 time points. The saliency values at these 33 x 60 patches, or
pixels, for each time point comprise the features used in optimization. To account for the lag of the
hemodynamic response (essentially the delay between a neural event and the corresponding blood
oxygenation), we introduced temporal smoothing and a 5 s delay to the time series of saliency maps
without changing the length of the movie. This resulted in a 2,718 (time point) X 1,980
(features/pixels) matrix X for the regression problem Xw’ = y' in which y! is the time series of
activity of one surface node i.
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Figure 3. Schematic of the voxel-wise model fitting procedure. First, the movie is presented to human
subjects while BOLD responses are recorded. The saliency model is then applied to the movie
stimulus to produce a time series of saliency maps. Model parameters of the saliency maps are
optimized so as to best predict single-voxel BOLD time course.

We used smooth support vector regression (SSVR) to find the optimal model weights w' for each
node. In the method proposed by Lee, Hsieh, and Huang (2005;
http://dmlab8.csie.ntust.edu.tw/ssvmtoolbox.html), the e-insensitive SSVR minimizes the following
unconstrained problem by the Newton-Armijo Algorithm

min(w,b)%(wTW + b?) + %Z[Xwi + b —y']?

Parameter C is the tradeoff between the fitting error and the flatness of the weight vector.
Estimated activity can be computed as y = Xw' + b. High correlation between this predicted time
series of activity and actual neural activity indicates that the cortical node carries saliency
information; that is, the cortical node responds to the movie stimulus in a way that is accurately
captured by the saliency model. We repeated this same procedure using only the output of the early
visual component of the model, prior to saliency computation, to provide grounds for comparison.
Results from both the early visual cortex model component and the subsequent saliency component



are presented. These correlation values for each voxel were exported from MATLAB and projected
back onto the cortical surface for the purpose of visualization using SUMA. These topographies are
depicted in Figure 4.
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Figure 4. Cortical nodes with highest correlation between predicted and actual voxel time course for
both the early visual component of the model and the output of saliency computation. Correlation
strength depicted as increasing from yellow to red.

Principal component analysis
After fitting the regression model on all the voxels, each voxel can be describe by its estimated
model weights. We define a model weight matrix
wi
M == Wg'-

We applied principal component analysis (PCA) to M. The purpose of this analysis is to reduce the
dimensionality of the model weights returned by the regression. Specifically, we are interested in
the topography of the values for the first several principal components (PCs) when projected back
onto the cortex. The values of ith component is computed as p' = M * e/, in which e/ is the
eigenvector of MTM. The values of the first several PCs are projected onto the cortical surface in
Figure 5. We also performed the same analysis for the output of the early visual model.
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Figure 5. Principle components of model weight matrix for both early visual and saliency model
components projected onto the cortical surface. Positive and negative PC values are distinguished by
hot and cold colors.

[t is worth noting that the values p derived in the PCA above, are equivalent to the eigenvectors of
MTM. The values projected to the cortical surface in Figure 5 depict the nodes that were highly
correlated (or anti-correlated) when each node was represented in terms of its model weights.
Thus, the results displayed in Figure 5 can be viewed as the most important networks involved in
processing the saliency of the movie stimulus. A critical observation is that the cortical topography
of PC values in Figure 5 is distributed and smooth—one network (i.e., topography of PC values) is
distributed across different brain areas, and neighboring nodes tend to have similar values and
constitute local clusters. Future work is needed to quantify the smoothness and clustering of the PC
values.

As a control, we also ran an identical PCA on the BOLD data, without reference to the models or
weights. The purpose of this analysis was to demonstrate that the cortical topographies captured by
model weight PCs in fact differ from the networks inherent to the brain. Results of this analysis are
presented in Figure 6.
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Figure 6. Principle components of BOLD data projected onto cortical surface.

We tested whether the PCs derived from model weight matrix M were similar to the PCs of the time
series of saliency maps X. If this were the case, the patterns of activity would be a simple replica of
the time series of saliency values. We applied PCA to the saliency time series—the X matrix in
SVR—and used the weights to explain the variance in model weight matrix M. The results are
plotted in Figure 7.
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Figure 7. Variance of model weight matrix explained by model weight PCs as compared to unfitted
saliency values for both early visual and saliency model components.

Discussion

In the current project, we examined the brain regions involved in processing two different types of
visual information. The first corresponds to low-level visual information processed by early visual
cortex, while the second includes a downstream saliency computation. The same analysis pipeline
was applied to both representations. We went on to compare the neural systems for which the early
visual model and the saliency model best predict voxel time series. We then applied PCA to the



fitted model weight matrices for both model components and projected these PCs onto the cortical
surface to examine their topography.

In comparing the correlation values between predicted and actual patterns of activation for both
the EVC and saliency models (see Figure 4), we see that the cortical topographies are qualitatively
very similar. This suggests that saliency computation performed by the model does not correspond
to a computation carried out in radically different neural systems than the low-level visual
computations. A possible explanation for this is that the saliency computation truly does not map
onto to separate systems, but is embedded in the early visual systems at the level of neuronal
circuitry. Processes carried out at this fine-grained anatomical scale are largely inaccessible to fMRI
because its spatial resolution averages over thousands of neurons within a single voxel.

Nonetheless, some qualitative differences can be seen between the correlation maps for the two
model components. Notably, the early visual model seems to better capture activity in the cuneus
and lingual gyrus, two of the earliest structures in the visual pathway. This suggests that the EVC
model better captures very rudimentary visual processing and retinotopy better than the saliency
model. Furthermore, activity in inferomedial frontal and medial parietal cortex (i.e., precuneus)
appears to be better predicted by the saliency model. This is a promising result because these areas
are implicated in higher-level task-related processing, and particularly the basal forebrain is
responsible for supplying the acetylcholine driving attentional enhancement effects in sensory
cortices (Sarter, Bruno, & Turchi, 1999). Finally, both models tend to accurately predict activity in
superior temporal sulcus and nearby lateral temporal areas. These areas are responsible for
biological motion processing and likely reflect the brain’s strong sensitivity to the motion energy of
intentional agents prevalent in the film (Thompson, Clarke, Stewart, & Puce, 2005).

The first PC returned by the PCA corresponds to very similar cortical topographies when compared
across the EVC and saliency model outputs. This suggests that the PC accounting for the most
variance in the model weight space is largely identical between the models. This is unsurprising,
given that the cortical topography of this PC reflects almost the entire secondary visual system,
capturing both dorsal and ventral visual pathways (Mishkin, Ungerleider, & Macko, 1983). As can
be seen in the ventral view of the first PC topography, the fusiform face area (FFA) is very well-
predicted by both models. This likely reflects the fact that much of the movie consists of faces
presented in the center of the display. The second PC maps onto lateral temporal cortex for both
models, and as above likely reflects the processing of biological motion.

Interestingly, after the first two PCs, the model weight spaces appear to diverge. While PC3 of the
EVC model is not easily interpretable, PC3 of the saliency model cleanly captures both the
postcentral gyrus and the entire superior parietal lobule (SPL), and the frontal eye fields (FEF). This
particularly notable because these regions comprise the putative fronto-parietal attention network
(Corbetta & Shulman, 2002). FEF controls eye movements and is likely better approximated by the
model’s winner-take-all saliency component; that is, the saliency model predicts eye gaze, which is
largely driven by FEF. Furthermore, the identified parietal areas are thought to represent
coordinate maps of the visual field anchored to different origins (e.g., the head, an effector), which
may be better captured by the saliency model’s more localized output (Sereno, Pitzalis, & Martinez,
2001).

Finally, Figure 4 demonstrates that PCs for both models capture early visual activity, but that this
occurs for PC5 for the EVC model and PC4 for the saliency model. The fact that PCs of roughly
similar cortical topography are returned in different orders demonstrates that the weight spaces
for each fitted model differ significantly. Importantly, the control PCA applied to the BOLD data



revealed that, although the first two PCs are highly consistent and likely general to inherent brain
function, the other PCs are qualitatively divergent. This suggests that the weight space for both
models does not simply replicate inherent brain networks, but that in fact both models capture
different neural systems.

As a sanity check, we also examined the amount of variance of the weight space for both EVC and
saliency models accounted for by the model weight PCs as compared to the unfitted maps output by
both model components. The fact that the fitted model weight PCs capture radically more variance
in the weight space simply proves that the fitted model weights are not simply a replication of the
actual unfitted maps.

In future work, we hope to introduce statistical tests to compare the sets of parameters estimated
for the two model components. Such a difference analysis will point out more specifically the brain
regions that diverge according to the two model components. Statistical testing of the correlation
between predicted and actual BOLD time series can be accomplished by bootstrapping for each
voxel. By permuting the actual time series of activation for y‘, we can simulate the distribution of
the correlation between y' and §. The simulated distribution would enable us determine at which
voxels the two model outputs perform differently in predicting actual BOLD time series. We
implemented this analysis in MATLAB, but were unsuccessful in mapping it onto the cortical
surface in an interpretable way.

Within a single subject, it is difficult to use bootstrapping to test the parameters estimated by PCA
because the decomposition of MTM is time consuming. However, it is possible to validate the
principle component in a held-out validation dataset for each subject. In the future, by including
more subjects in the analysis and functionally aligning their brains into a common space (Haxby et
al, 2011), we should be able perform these analyses across subjects and determine in what ways
subjects differ in terms of the correlation of between predicted and actual neural data and the
cortical topographies of the model weight PCs.

External codes and material:

1. We used SSVR script developed by Yuh-]Jye Lee, Wen-Feng Hsieh and Chien-Ming Huang (2005)
(modified by S.Y. Huang based on original authors' SSVR_M code )

http://dmlab1.csie.ntust.edu.tw

2. We used the iLab Neuromorphic Vision C++ Toolkit to process the movie, and generate the
outputs of early visual model and saliency model.
http://ilab.usc.edu/toolkit/downloads-virtualbox.shtml

fMRI data was pre-processed by Python codes developed in Jim Haxby’s lab, and two set of
neuroimaging toolbox:

AFNI: http://afni.nimh.nih.gov/afni

SUMA: http://afni.nimh.nih.gov/afni/suma

These fMRI processing are run under Python

*important command for iLab Neuromorphic Vision C++ Toolkit, AFNI and SUMA are listed in
pre_processing.m
*see final_code.zip file and the README file for more information
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