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1. Introduction  

Writing down the score while listening to the music can be done by very experienced musicians. 

However, it is time consuming and a painful task. 

Our aim is to convert piano music recording to MusicXML [1] files. The music recording file contains 

all the information about audio signals that can be used to extract audio features directly. We transcript 

the wave files into MusicXML file which has simple representation of music information such as pitch, 

duration, rhythm, and dynamics.  This work has many applications such as score following, interactive 

performance. There are many research has been done to solve this problem. People used Non-Negative 

Matrix Factorization [2],PCA [3],HMM [4], and reached promising results. There are competitions of 

MIREX every year judging which new method can acquire the best accuracy. 

 

2. Proposed Solution 

We proposed to use Extreme Learning Machine [5][6] (as the learning model)model to do the note 

determination . And we compared the result with Naïve Bayes classification and K means cluster. Out 

proposed solution is described below.  

First, we read wave files that are recorded by playing the electronic piano and we did time 

segmentation to get the start time of each note. Second, we extracted audio feature such as Harmonic 

feature [7] and Chroma feature [8] from each note. Third, we used our features to train the Extreme 

Learning Machine model. Fourth, we predicted the note from out test data. Finally, we parse the 

MusicXML files to show the score of our predicted notes. The wave files we used are monophonic 

piano music recorded by playing the electronic piano. Out training data contains a 60 pieces and our 

test data contains about 10 pieces. The total number of note is 2760.  

 

3. Approach  

Time Segmentation (Onset detection)  

We have run the onset detection algorithm [9] [10] to get the starting point of each note in each piece. 

The algorithm uses the edge detecting filter, doing fast convolution and finding where exactly the peak 
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occurs. For several pieces, the note overlap too much and cannot be segmented well, we remove those 

pieces.  

Figure1 shows the result: 

 

Figure 1. Time segmentation of training data #18 

Feature extraction  

In each segment, we’ve extracted audio features. We’ve chosen two features and decide to test on them 

separately.   

Harmonic feature:  

We framed on each segment first. In each frame, we have computed the energy. If the energy is lower 

than a threshold then we regard this frame as non-note frame and throw this frame away [4]. Then we 

have computed each point through frequency axis and got the result of the position of harmonics. If 

there is harmonic in one point then the value of this point will be 1, if not. Then the value will be 0. 

Therefore the harmonic feature is a binary feature. The feature vector will then be         . We 

assumed that the components of the vector are conditionally independent.       are harmonic 

features.[4][7].  As for harmonic feature, each frame is a training data. We have chosen window size 

to be 2048. Therefore, we have a really large dataset the number of samples in which is 162104.  

Chroma Feature: 

Chroma features consist of a twelve-element vector with each dimension representing the intensity 

associated with a particular semitone, regardless of octave [8]. In this case, we also compute 10 values 

of Chroma in each semitone; therefore we have 120 dimensions Chroma features. Chroma feature is 

continuous feature. We extracted Chroma feature on each note there, therefore, we have a smaller 

dataset the number of samples in which is 2700. 

 

Extreme Learning Machine 



We used Extreme Learning Machine [5] to do note determinations. Extreme Learning Machine model 

has been used for signal processing a lot. It’s an improvement of Singular Hidden Layer Feedforward 

Neural Network.   

The traditional feedforward neural network has several disadvantages. First, it takes long because 

gradient descent method takes many time iterations to get the appropriate weight value and bias. 

Second, we have to tune parameters of the networks iteratively. Third, the result might be local 

minimum but not global minimum [5] [6]. 

The Extreme Learning Machine is faster and is able to acquire global minimum. The parameter of 

hidden nodes is independent of each other and is independent of training data. In this model, (the model) 

we could generate parameter of hidden layer nodes before input the training data.  

The Algorithm of Extreme Learning Machine model [5] [6].  

 

Figure 2. Neural network[5] 

The figure of conventional neural network is like Figure 2.[5] [6].  

For training set with N different data,   {       |       }, in this Z,                      , 
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, the jth column in   is 

the output of            of jth hidden node. 

Then we can get: 
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4. Result and Analysis 

Average Error Rate by using Harmonic Feature 

Model Extreme Learning Machine Naïve Bayes 

Average Error Rate (%) 22.1 12.3 

Table 1. 

Average Error Rate by using Chroma Feature 

Model Extreme Learning Machine K means 

Average Error Rate (%) 17.9 69.4 

Table 2. 

Table1 and Table2 show the results of using different models on different features. As for harmonic 

feature which is a binary feature. We used 150000 data as training data and 12104 data as test data. The 

Extreme learning Machine model has gotten the average error rate of 22.1% while the Naïve Bayes 

model get better result of 12.3%. In harmonic feature, we computed each point through frequency axis 

and got the result of the position of harmonics. Harmonic feature is suitable for the independent 

assumption of Naïve Bayes Model.  

Apart from that,  

The Harmonic Feature has a large training dataset. We have 150,000 training samples. According to 

the EML theory, when the number of hidden layer node approximates the number of samples, the 

model would produce very good result. However, limited by the computer, we can only set up to 300 

hidden layer nodes. After testing, we found that 100 nodes have not much difference with the result of 

300 nodes. Compare to the huge sample number, the node number is quiet small, which produced a bad 

result.  

 



When using Chroma feature, we compare the result of Extreme Learning Machine Mode with K means 

cluster. The dataset of Chrome feature is smaller and we used 2760 training samples and 368 testing 

samples. We choose the number of nodes in hidden layer to be 700 and reach a promising result. The 

Kmeans cluster is working but gets lower accuracy due to the fact of unsupervising model and less 

training data.   

    

Figure 3. ELM test Error Rate of all test data     Figure 4. ELM test Error Rate of #63 run 100 times  

We have tested 10 pieces of music recordings. The Figure3 shows that error rate of #71 and #72 test 

data are quite high. We found these two test sets having some notes overlapped which becomes a 

polyphonic problem. Figure 4 shows the result of run ELM on 63# for 100 times.   

 

Figure 5. The Cluster situation of #63  

Figure 5 is the detail cluster situation of piece #63. Every time run the EML will have different results 

but all in all, the results seem promising. 



 

Figure 6. The Error rate of test file #70        Figure 7. Error rate of all the test data 

 

We have parsed the MusicXML files and inputted the predicted note information. Then we loaded the 

MusicXML file into software “Muse Score” and get the result as below  

    

Figure 8.Original Score of #63                Figure 9. #63 predicted by ELM Model                                

    

Figure 10.Original Score of #66                Figure 11. #66 predicted by ELM Model 

 

5. Compare with baseline 

There are 55 different notes in our training data, Therefore the accurate rate of random guess is 1.818%, 

our models work well on this problem. Apart from that, we have compared our result with commercial 

software ‘IntelliScore [11]’. The result is: 10.9% 
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Code:  (Readme) 

1. In the “ feature” file:  

The main_harmonic and main_chroma is written by us.  

(Because our wave files are so many and very large. we put one wav file ‘fantase1.wav’here to show 

how it works) 

The main_harmonic.m could extract harmonic feature from wav file.  

The main_chroma.m could extract Chroma feature from wav file.  

The variable “feature” is the feature we get 

 

The chromagram.m is from  

http://www.cs.northwestern.edu/~pardo/courses/old_courses/eecs352/mpm06/useful_files/chromagram

.m 

Others are from http://cnx.org/content/m14196/latest/ 

 

2. In the “Extreme learning machine” file: 

  

dataMessage is written by us we used the value of error rate of each test data and index of test data to 

plot the figure of errorate of each test data. 

file1: The file “ELM1” using the harmonic feature.  

http://www.cs.northwestern.edu/~pardo/courses/old_courses/eecs352/mpm06/useful_files/chromagram.m
http://www.cs.northwestern.edu/~pardo/courses/old_courses/eecs352/mpm06/useful_files/chromagram.m
http://cnx.org/content/m14196/latest/


main.m is written by us. 

ELM_Training.m is written by us (line 31-line 49 cited from Mathwork) 

ELM_Testing.m is written by us  

ELM_Training.m train the ELM model  

ELM_Testing.m test the ELM model and show the error rate  

The feature.mat is the harmonic feature data . It contains the data after removing non-note frames. It 

contains 162104 data. From 1 – 150000 is training data. From 150001:162104 is test data.  

 

The state.mat is the labels of all the data. From 1-150000 is the label of training data. From 

150001-162104 is the label of test data.  

 

file2: The file “ELM1” using the Chroma feature. 

main.m is written by us. 

ELM_Training.m is written by us (line 31-line 49 cited from Mathwork) 

ELM_Testing.m is written by us  

ELM_Training.m train the ELM model  

ELM_Testing.m test the ELM model and show the error rate  

TrainsetX.mat contains Chroma feature data of training data, trainsetY.mat contains label of training 

data. f61-f74.mat contains Chroma feature data of test data. (We found that we can’t do time 

segmentation on some pieces, so we removed those pieces such as 65 68 69). s61-s74.mat are label of 

test data. 

 

3. In the “Naïve Bayese” file: 

bayes_main.m is written by us.  

Run bayes_main.m will train the model, do prediction and count the error rate.  

The feature.mat is the harmonic feature data . It contains the data after removing non-note frames. It 

contains 162104 data. From 1 – 150000 is training data. From 150001:162104 is test data.  

 

The state.mat is the labels of all the data. From 1-150000 is the label of training data. From 

150001-162104 is the label of test data.  



 

4. In the “K Means” file:  

test_120.m, train_120.m, x_kmeans.m are written by us.  

train_120.m train the k-means model, and count the error rate of training set.   

test_120.m  test the model, compute the error rate  

x_kmeans.m is the function for k-means clustering.  

trainsetX.mat contain Chroma feature data of 2760 training data 

trainsetY.mat contain label of all the training data.  

f61-f74.mat contains Chroma feature data of test data (We found that we can’t do time segmentation on 

some pieces, so we removed those pieces such as 65 68 69) 

s61-s74.mat contains label of test data. 

 

5. In the “parseMusicXML” file: the code is Java  

Createsongwithnewnote.java is written by us.  

This code reads the note information from txt file which contain predicted note information; reads the 

original MusicXML; replace the note from original MusicXML file with the note that we predicted,  

 

file1: The file “original note testdata” contains the original note information of test data  

file2: The file”predicted note testdata” contains the predicted note information of test data  

file3: The file “original MusicXML of testdata” contains the original MusicXML of test data 

file4: The file “new MusicXML with predicted note” contains the new MusicXML with predicted note 

information of test data 

 

Step1: In line 82 you need to put the txtfile in a certain directory. The textfile contain the note 

information. If you load a txtfile from file1, after these three steps, you will get the same original 

MusicXML, if you load a txtfile from file2, after these three steps, you will get the new MusicXML file 

with predicted note.  

Step2: In line 136 line you put an original MusicXML file from file3 in certain directory. The 

MusicXML should correspond to the txtfile.  

Step3: In line 773 you should set a certain directory to contain new MusicXML file that are generated 

by this code.  



To see the score, you need to have software “MuseScore”which is really easy to be downloaded. Any 

music software that can read MusicXML is fine. ` 


