FINAL REPORT:
TOPIC MODELING ON LITERARY TEXTS

EMILY EISNER, JOE FUTOMA, AND DAVID RICE

1. INTRODUCTION

Probabilistic topic models are well known unsupervised learning algorithms, primarily used to
uncover the main themes that underly a large corpus of documents. Topic models have also been
applied to other types of data, including finding patterns in genetic data, images, video, and social
networks [1]. However, they are usually used on text data, as the notion of a “topic” is clearly
defined for text data; namely, a “topic” is some probability distribution over a fixed vocabulary of
words, often with some obvious thematic relation between the most probable words.

The problem motivating our project is finding out what happens when topic models are run
on literary texts. Initially, we planned to run topic models on legal texts in an effort to organize
them according to underlying themes, but this data proved too difficult to obtain and preprocess.
However, we obtained access to a subset of the collected texts of the Project Gutenberg corpus,
which is the largest single collection of electronic free books [2]. Topic models are frequently applied
to nonfiction works of text, but much less frequently applied to works of fiction and other literature.
For instance, [3] applied topic models to Wikipedia, the journal Nature, and a large corpus of New
York Times articles, and [4] models articles from the journal PNAS. Such nonfiction works are
natural candidates for topic models because of the obvious information retrieval tasks that journal
(and news) articles present. For instance, it is an important problem to be able to automatically
organize and search massive databases of online scientific articles without the need to manually
tag articles with keywords. This will allow scientists to easily find other articles relating to their
discipline without the need to read many irrelevant articles.

Problems like this are not as well posed for other types of text data, however. For example,
while it is straightforward to label a scientific article by its main topics, organizing fiction in such a
way is not as obvious. One person’s interpretation of a novel may differ dramatically from someone
else’s, and the themes that pervade works of fiction are less concrete and more general than the
topics that exist in nonfiction articles. We want to run topic models on works of fiction, like the
Gutenberg corpus, to see what types of topics exist in works of fiction. As more books become
digitized, the problem of automatically sorting and organizing works of fiction in large databases
becomes more relevant. Finally, although beyond the scope of this work, an interesting problem
would be to model the evolution of literary themes over time, perhaps with a time-dependent topic
model, and to see if this agrees with the trends in literature that literary scholars have observed in
the past.

In this project, we implement and run the simplest topic model, called Latent Dirichlet Allocation
(LDA), in order to analyze the latent thematic structure of the texts in our subset of the Gutenberg
corpus. We first implement batch mean field variational inference for LDA, first introduced in [5],
using synthetic data. However, a problem with this inference algorithm is its inability to scale to
massive data. To remedy this, we implement an online learning algorithm for LDA, as described
in [6]. This inference algorithm can be interpreted as a stochastic natural gradient ascent on the
variational objective, and we will summarize the details below. Finally, since topic models are
unsupervised learning algorithms (since there is no “true” set of topics characterizing a document),
it can be difficult to quantitatively evaluate their performance. However, several methods in the

1

2 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

literature have been proposed to asses the performance of topic models. To this end, we also aim
to implement one or two quantitative evaluation metrics for our topic models, following the work
of [7].

The remainder of our report is structured as follows. In Section 2, we explain in further detail the
generative process underlying LDA. We then highlight the important points from the derivations of
batch mean field variational inference and online variational inference. We conclude Section 2 with
a brief discussion of perplexity, our method of quantitative evaluation, described in work by [7].
In Section 3, we discuss the data we used for our implementations, describe our implementations,
code for preprocessing and consulted external software. Finally in Section 4, we discuss our results
and in Section 5 give a brief conclusion.

2. METHODS

2.1. Latent Dirichlet Allocation. Probabilistic topic models are generative probabilistic models
used to model discrete data, which in the scope of our work is limited to text data. Latent Dirichlet
Allocation, introduced in [5], specifies a simple generative process assumed to have generated the
observed data, and the problem then becomes that of inferring the appropriate parameters for this
process.

First we define some common notation and highlight important assumptions underlying the
model. We assume a fixed vocabulary of V unique words, and consider a corpus of D of documents.
Within each document, LDA assumes exchangeability in the words, so that each document may be
represented as a “bag or words”, meaning that the order of words in the document is not considered.
Additionally, the order of the documents within the corpus is also assumed to be exchangeable.
Note that the assumption of exchangeability allows us to apply de Finetti’s representation theorem
[8]. This asserts that an infinitely exchangeable sequence of random variables are independent
and identically distributed, conditioned on some random parameter, which in this case will be
latent variables in the model. Thus, assuming exchangeability in the words and documents allows
the joint probability distribution of the model to factor nicely into products of .7.d. conditional
distributions.

A key assumption of LDA is that there exists some fixed number of latent topics underlying the
data, where a topic is defined as a probability distribution over the words in the vocabulary. In the
simple version of LDA we consider, the number of topics is fixed a priori, although relaxing this
assumption leads to more flexible Bayesian nonparametric models, as in [9]. We follow the common
notation used and let K denote the fixed number of topics in the corpus, and let 3) indicates the
k topic, so that 5.k or simply (8 refers to the collection of topics. Additionally, for each document
in the corpus, d € D, we allow the document to exhibit multiple topics in varying proportions.
Hence, all of the documents share the same set of K topics, but each exhibit these topics differently
in unique proportions. For example, a document about computational neuroscience might exhibit
topics related to computation and biology, while a paper about Bayesian statistics might exhibit
topics about computation and inference.

We define for each document a distribution over topics 64 to denote the mixture weights of the
topics for document d. Then, we imagine that each document in the corpus is created by first
choosing a distribution over the topics, 64. Next, for each word in the document, we choose the
topic, zq, that this word came from, given 64, and finally, given that topic, we choose a word,
wq,,. Having defined this generative process then, the goal of LDA is to compute the posterior
distribution via Bayes’ rule, i.e. the distribution of the hidden topics, topic proportions, and topic
indicators that underly the set of documents given the observed data.

FINAL REPORT: TOPIC MODELING ON LITERARY TEXTS 3

- OfO-@ 1O
04 Zd.n Wdn N 5 5}3 .

R

3

FiGURE 1. LDA Graphical Model

The generative process that defines LDA can be expressed mathematically by the following pro-
cess:

(1) Draw topics By ~ Diry(n) for k € {1,..., K}
(2) For each document d € {1,...,D}:
(a) Draw topic proportions 64 ~ Dirg(a)
(b) For each word w € {1,..., Ng}:
(i) Draw topic assignment zq, ~ Mult(64)
(ii) Draw word wgq, ~ Mult(5;,,)

We may also express this process for LDA graphically, in the form of a graphical model. Graphical
models are diagrams that visually depict the conditional dependence between variables in a model.
Observe the graphical model for LDA in Figure 1, from [3].

Note that this may be condensed into a single equation: the joint probability distribution of the
observed data and hidden variables in the model, as follows (note that we overload notation on p):

K D Ny
(1) p(Buk, b0, z1:0, wiple,n) = [[p(Beln) [[p0ale) [| p(zanl0a)p(wanlBzg, s 2an)-
k=1 d=1 n=1
The posterior distribution, which is what we are interested in, can thus be expressed, via Bayes’
rule as:

p(,BLK, ‘91:D7 21:D, wl:D)
p(wlzD)

In most cases, the evidence term p(wy.p)in this equation is difficult to compute, since we can rewrite
it in terms of the joint after integrating and summing out the hidden variables:

(3) p(wi:p) :/6/5ZP(ﬁl:K,GLD,ZLD,wl:D)

Note these integrals and sums are intractable to compute, so we cannot compute the posterior
directly. To address this problem of posterior inference, there are two main classes of inference
algorithms. In Monte Carlo methods, we approximate the posterior by attempting to draw sam-
ples from it, in algorithms such as Markov Chain Monte Carlo (MCMC), importance sampling,
Metropolis-Hastings, or many others. In our work, we instead refer to a class of algorithms known
as variational inference methods.

(2) p(Bi:k,61:p, 21:p|w1.p) =

2.2. Mean Field Batch Variational Inference. The idea behind so-called variational methods
is to posit a simpler “variational” distribution, dependent on certain parameters, and then to
optimize those parameters to be as close to the true posterior as possible. Here closeness between

4 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

distributions is measured in terms of KL Divergence, a non-symmetric metric between probability
distributions.

The first variational inference algorithm we used, and implemented, is known as batch mean field
variational inference. Batch refers to the fact that one iteration of the algorithm requires iteration
over the entire batch of documents in the corpus, while mean field refers to an assumption we
make on our variational distribution, q. Let ¢(6, z, 8|7, ¢, \) denote our variational distribution in
question, where the 6 depend on variational parameters -, the z depend on ¢ and the 8 depend
on A. The mean field assumption assumes conditional independence between the hidden variables
in the variational distribution. That is, the mean field assumption assumes we can factorize the
variational distribution for the corpus as:

K D N,
(4) 90,2, 87,6, 7) = [[aBelre) [a0alva) [a(zanldan)-
k=1 d=1 n=1

In effect, the mean field assumption has created a simpler distribution that completely factorizes
by removing the coupling that exists in the true model between 6, z, and 5. Note that the
particular distributions we choose for each ¢ in the above equation are chosen to be the same as
the corresponding conditionals specified by LDA, i.e. Dirichlet and Multinomial.

Recall that our goal is to minimize the goal is to minimize the KL Divergence from ¢ to p,
KL(q(0,2,0)||p(0,z, Blw)). It is easily verified, as in [3] that minimizing this KL Divergence is
equivalent to maximizing a lower bound on the log marginal probability of the given observations,
p(w), via an application of Jensen’s Inequality. We call this lower bound the Evidence Lower
BOund (ELBO):

(5) log p(wla,n) > L(W, 9,7, \) = Eyllog p(w, 2,0, Bla,n)] — Eyllog q(z, 0, B|é, v, N)].

Note that the ELBO consists of two terms, an expectation of the log of the joint probability
of the model, with respect to the variational distribution ¢, and an entropy term for ¢q. Using
our factorization of the joint and of the variational distribution, the ELBO may be decomposed
into a summation over the documents of several smaller terms, as detailed explicitly in [6]. This
observation will prove important when we explain the online version of this algorithm in the next
subsection.

In order to optimize the variational parameters, we take the gradient of the ELBO with respect
to each of the variational parameters, set to 0, and solve for the corresponding update equations in
closed form [3, 6]. Omitting the derivation, the closed form updates for the variational parameters
are given by:

(6) Pawk < exp{Eq[log Oai] + Eq[log Brw]}
(7) Vak =+ > Nawbawk
(8) New =0+ Y NGk

d

where ng, is the number of times word w appears in document d. Thus, the only information
we need from the raw data is the word counts in order to implement and run the algorithm.
We optimize the variational parameters via coordinate ascent, fixing all parameters but one and
updating the parameter in question via the equations above. These equations are guaranteed to
converge to a stationary point of the ELBO [6]. Note that the required expectations above can be

FINAL REPORT: TOPIC MODELING ON LITERARY TEXTS 5

computed directly as:

K

9) Eq[log Oak] = W (var) — ‘1’(2 Yai)
5

(10) Eq[log Brw] = ¥ (Akw) — ‘IJ(Z ki)
=1

where U is the digamma function (first derivative of the logarithm of the gamma function). The
derivation for this is in [5] and relies on writing the Dirichlet distribution in its exponential form
and then using a well known fact about exponential families.

2.3. Online Variational Inference. The update equations for batch mean field variational in-
ference for LDA present a clear inefficiency. We must loop over all of the documents in the corpus
and compute the variational parameters v and ¢ before we can update A even once. This process
is costly if the document collection is large, thus motivating the development of an online inference
algorithm for LDA. In practice, we randomly initialize A when we implement the algorithm. Note
that the updates for v and ¢ depend on the choice of A though, so during early iterations of the
algorithm we use values of A far from their optimal values to compute all the document specific ¢
and . However, if we are able to learn something about A from only a subsample of the data, it
may make more sense to re-update A first instead of continuing to optimize every v and ¢ [3].

The solution to the points just raised is to use stochastic optimization. Whereas batch variational
inference relies on the exact gradient of the ELBO, in stochastic or online variational inference, we
use a noisy calculation of the gradient of the objective function, obtained by subsampling the data.
Instead of using the information from the entire corpus to re-update A, we instead take smaller
subsamples of the whole corpus, and use those to noisily update A (and compute a noisy estimate
of the ELBO). If the expectation of the noisy gradient is equal to the gradient and if the step size
of each iteration decreasing according to a specific schedule, then convergence of the stochastic
algorithm to a local optima is guaranteed [10].

We may also premultiply the gradient by a particular positive semidefinite matrix (the inverse
of the Fisher information matrix), transforming the Euclidean gradient into the natural gradient
[3,6]. Whereas the Euclidean gradient gives the direction of steepest ascent in Euclidean space with
respect to the Euclidean distance metric, the natural gradient gives the direction of steepest ascent
in the general Riemannian space where distance is defined by a symmetric version of KL Divergence.
The natural gradient points in a more informative direction than the Euclidean gradient, and its
use leads to better convergence of the algorithm.

The main structure of the online learning algorithm is as follows. First, the step size schedule
is set accordingly, and A is initialized randomly. Then, during each iteration of the algorithm, we
first run a local step, subsampling some small batch of documents. We initialize v randomly for
this batch, then iteratively update v and ¢ for the mini-batch via Equations 6,7 until v converges.
Finally, we update the X\ via the revised updates, where n;s is the sth document in mini-batch ¢:

~ D
(11))\kw =n+ § ;ntsqutskw

~

(12) A= (1= p)A+peA

Equation 11 describes how to incorporate knowledge of the global variables given the information
from our mini-batch, and Equation 12 describes how heavily to weight this new value of A\ from the
previous one. Note that p; is our step size, which we initialize as p; = (79 + ¢)~"; for convergence
we require that x € (0.5,1] and 79 > 0 so that > p; = oo and > p? < co [11]. Finally, we continue

6 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

this procedure indefinitely, until a noisy estimate of the ELBO that we recalculate after all the
updates converges.

In summary, the online or stochastic variational inference algorithm that we implement and use
can be interpreted as stochastic natural gradient descent of the variational objective. It improves on
the naive batch variational inference through its use of the natural gradient and its use of stochastic
optimization to allow it to scale to massive data.

2.4. Quantitative Evaluation Methods. Given the unsupervised nature of topic modeling, it
can be particularly hard to quantitatively evaluate their performance. Unlike in instances of su-
pervised learning, where there is a true label to our data, when applying topic models to real data,
there is no true label. LDA and other topic models are latent variable models intended to model
and discover hidden structure in the data, even when we lack a labeling of any kind. This makes
the task of evaluating topic models especially difficult. One application driven approach is to test
performance on a specific task, like document classification or information retrieval [7].

An alternate method frequently used is based on the idea of estimating the probability of held
out documents given training documents. One common and simple quantitative metric for calcu-
lating this is called perplexity. Defined to be the inverse of the geometric mean per-word likelihood,
perplexity intuitively measures the uncertainty in predicting a single word [4]. Typically we cal-
culate it first by training the topic model and learning the optimal settings for parameters and
latent variables, and then use a held-out test set to evaluate the perplexity of words in held-out
documents. Several other quantitative techniques for evaluating topic models are explored in [7].
Mathematically:

>_alog p(wa) }
>qNa

where we sum over the documents in the test set, and Ny is the number of words in document

d. Other methods also exist for calculating the probability of held out documents given training

documents, including importance sampling, annealed importance sampling, Chib-style estimation,

and the Harmonic mean method [7].

(13) perplexity(Diest) = exp{—

3. DATA, PREPROCESSING, AND IMPLEMENTATIONS

3.1. Synthetic Data. We first analyzed two synthetic data sets. The synthetic data is generated
from simple bars topics, using the generative model described by LDA. We generate synthetic
bars data as in [4]. In this setting, we create a synthetic dataset of D images, where each image
is analogous to a document in a corpus. Each pixel corresponds to a unique word in the fixed
vocabulary, and the intensity of that pixel is the frequency of the word in the document. In this
framework, topics are obvious patterns of pixels. Specifically, we create simple bars topics, where a
single row or column of pixels are active, or used, with the rest inactive. See Figure 2 for a simple
example of the bars topics used to generate fake data, for the case of four topics. Note that we
restrict our images to be square, so that for K topics the size of our vocabulary is K? unique pixels
or words.

We ran experiments on synthetic data sets of two sizes. In the first small example, we created
250 images, each with 50 “words”, from the four bars topics in Figure 2. This was done simply by
applying the generative process of LDA to produce images that exhibit these four topics in varying
proportions. Figure 3 shows a subset of the data used in this experiment. Note as in [4] that we
set a = 1 so that while in some documents it is obvious which topics generated it, in general the
images are noisy and don’t immediately reveal which topics were most active for them.

Our second synthetic dataset was identical except much larger. Figure 4 shows 24 documents
from it. In this case the full data set contained 100,000 documents, drawn from 35 topics (so a
unique fixed vocabulary of 1225 pixels/words), with 1000 words per document.

FINAL REPORT: TOPIC MODELING ON LITERARY TEXTS 7

FIGURE 2. Synthetic Data Bars Topics, K=4

e=(luat 2Pl HITES
3] 5[T 8] [==}
R

FIGURE 3. 24 Synthetic Documents, W=>50, K=4

3.2. Real Data. Our primary real data set was a subset of Project Gutenberg, an online repository
of literary work freely available. It consists of more than 42,000 electronic works. We took 17,000 of
these, and split them into 225,900 documents of 2,000 words or fewer each, throwing out documents
with fewer than 100 words. This dramatically increases the size of our training set, as each original
document contains many more words than is necessary and would have yielded poor results. Note
that we set aside a random subset of 1,000 documents in the total data as a testing set for model
selection, and trained on the remaining 224,900 documents. In the corpus there are 1.5 million
unique words in total that appear 440 million times, excluding a list of standard stop words (non-
informative words like “and”, “the”, single characters, etc.). We prune this vocabulary down to
15,000 words, via tf-idf (term frequency - inverse document frequency), a popular scheme for word

8 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

L CEER Pl b R SO I

FIGURE 4. 24 Synthetic Documents, W=1000, K=35

pruning, by assigning each unique term a simple score capturing word importance, and retaining
only the top 1 percent of words in this case [12].

The Shakespeare corpus is a small subset of the larger Gutenberg corpus. It was originally 44
distinct works, which we split into 840 documents of 500 words or fewer each. There were 27,000
unique terms that appeared 411,000 times, which we pruned to 5,400 words by retaining the top
20 percent via tf-idf and removing stop words again.

3.3. Implementations. A significant amount of code for this project is unique and written by us.
We wrote unique code to parse the raw text into word counts, and also wrote code to preprocess
the data and remove the majority of uninteresting words, as described previously. We also wrote
the code that stores our data in text files that are loaded in the main LDA implementation.
Additionally, all of the experiment code is our own, including the experiment code for the synthetic
bars, for Shakespeare, and for calculating perplexity in our experiments on the Gutenberg corpus.
Additionally we wrote code to parallelize our experiments for use on a cluster.

Our actual implementations of online LDA and Batch LDA draws heavily from code written by
Matthew Hoffman from [6], although we derived and worked through everything he does in his
code, line by line and wrote it to fit our unique dataset. In our implementation, we utilize several
numerical tricks that Hoffman uses in order to have code that runs efficiently enough to handle data
the size of Gutenberg in a feasible amount of time. In particular, we utilize his trick of implicitly
calculating the ¢ variational parameters, a trick that saves on time and space. We also make use of
the well-known log-sum-exp trick at one point following his idea, to avoid numerical underflow in
one of the calculations. To save on memory, the only values we ever store explicitly are the global
topic parameters A, so after running the algorithms we will need to run a last E-step, using the
optimal A, if we wish to save the values of « for interesting documents. We do this later on using
our own code, to produce output yielding the topic proportions for interesting documents. Finally,
although Hoffman’s code was a starting point, we had to heavily modify parts of his implementation
to handle our specific dataset. His original code was intended to be used in a streaming setting,
whereas we have a fixed, large dataset, so we had to rethink an efficient way to run the learning
algorithm without loading all of our data into memory. Matthew Hoffman’s code can be found
for reference in the folder we turned in labeled “BLEIonlinelda,” along with some other external
software that we used for reference. Implementations were done in Numpy.

FINAL REPORT: TOPIC MODELING ON LITERARY TEXTS 9

-0.5 .5 .3 =5
0.0 .0 - .0 4.0
0.5 51 .5 9.5
1.0 O .0 1.0
15 SF .5 1.5
2.0 0 .0 2.0
2.5 S .5 2.5
3.0 .0 .0 3.0
)] I E——— |5} SE———— 5 5

20(50.5.0.53.2.5.6:5°0(50.5.0.5.2.5.6.5°0050.5.0.2.2.5.6:5-0(50.9.0.3.2.5.6.5

FIGURE 5. Learned topics, batch

4. RESULTS

4.1. Synthetic Data Results. From our first synthetic dataset, we obtained several interesting
results. The first was that both batch and online were able to learn our topics from the generated
synthetic documents, which proves our implementations work and are free of errors. On the small
experiment, (250 documents, 50 words, 4 topics) batch variational inference converged quickly (46
seconds, 79 iterations). We ran the online version at various batch sizes of 125, 50, and 25 which
took 258, 260, and 131 min. and 39,000, 100,000, and 90,000 iterations, respectively. However, our
convergence test was solely for the ELBO to converge within a tiny tolerance. We did not check
earlier on to see if the online versions learned meaningful topics early on but simply bounced around
local optima for a long time until convergence, as the step sizes slowly decreased. It makes sense
that batch, which always takes an exact step in the right direction, converges much quicker for this
example, since it is relatively cheap for it to compute an exact gradient step. Note in Figures 5,6
the learned bars from batch and the 25 mini-batch size for online (50 and 125 were similar).

For the larger experiment (100,000 documents, 1000 words per document, 35 topics) the batch
inference algorithm could not finish a single iteration after 6 hours, while the online version, with
a batch size of 1000, only finished 250. While this was not close to convergence, it does indicate
some learning, and shows that online is more efficient for large data. However, we did not want
to run it for much longer on our personal laptops. For our larger experiments later on Gutenberg,
we used a 4-core, 8-GB RAM desktop computer, since the Anthill computing cluster was out of
operation for unexpected maintenance. Although not as long as later experiments, this experiment
on a large set of synthetic data is still useful in that it shows online clearly outperforms batch for
large data, on the same rough scale (though still a bit smaller) than Gutenberg.

4.2. Shakespeare Results. We first ran both Batch and Online on our Shakespeare corpus, which
was able to generate some interesting topics. See Table 1 below for a few examples. Although the
results were not great and are rather unsurprising, they make sense and are a good indication that
our implementation is working properly. First, the typical list of stop word didn’t include common
antiquated words in Shakespeare’s works like thy, thee, and thou, etc, and several topics consisted
entirely of these words. Also, a number of topics were just the names of all of the characters from
a single play. While these topics are not interesting, they make sense since at the beginning of each

10 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

-0.5 .5 .3 =5 T
0.0f .0 .0 4.0
051 .5 .5 9.5
1.0r .0 .0 1.0
15f .5 .5 1.5
2.0 .0 .0 2.0
251 .5 .5 2.5
3.0 .0 .0 3.0
35l |7 —— 5 5

20(50.5.0.52.2.5.6:5°0(50.5.0.5.2.5.6.5°0(50.5.0.2.2.5.6:5-0(50.9.0.3.2.5.6.5

FIGURE 6. Learned topics, online (S=25)

line in a play is the character name, so the character names are bound to be the most strongly
co-occurring words in the entire corpus. Also, note the funny topic about Project Gutenberg; this
arises because the beginning of every raw text file is a header with info about Project Gutenberg.
This was not an issue on the full Gutenberg corpus that we ran, as there are many more works in
that to balance out some of these issues.

eyes project love
dead Gutenberg | Doth
hubert Tm Fair
death Works Hath
blood Lord Heart
SOITOW King Eye
doth Electronic | Eyes
grief Keeper Mine
Tears Sir Night
hand ye true

TABLE 1. Top 10 words for three Shakespeare topics

4.3. Gutenberg Results. Running LDA on the Gutenberg Corpus required the use of the online
inference algorithm to be able to get results within a feasible amount of time. We ran each of our
experiments of LDA for 48 hours on a 4-core, 8-GB-RAM desktop computer. Although we had
originally hoped to run our data on the anthill cluster for a longer period of time, the cluster was
down for a long period of maintenance that forced us to alter our plans. Although we would have
achieved identical results on anthill, it likely would have run much faster as each job would have
had its own node. Instead, using a desktop with only 4 cores for 12 jobs running in parallel caused
everything to run slower than it should have on a true cluster.

Our results include both quantitative and qualitative measures, due to the nature of the project.
Our quantitative analysis tested the performance of different models. We controlled to test the
performance using different numbers of fixed topics, K, and to test the performance using different
batch sizes, S. As described previously, we used perplexity, defined to be the inverse of the geometric
mean per-word likelihood, to measure the fit of each model. Recall that lower perplexity scores are
better.

FINAL REPORT: TOPIC MODELING ON LITERARY TEXTS 11

14600 ‘perplexllty Vs K.

4400

42001

4000

perplexity

38001

3600

3400, S0 100 150 200 250 300 350 400

K
FIGURE 7. Perplexity vs K (S=4096)

We first looked at how K, the number of topics (which is fixed a priori), affected the perplexity
of the model on the test data. To perform this analysis, we held all other variables fixed to the
optimal or default values in [6] and ran the algorithm using six different values of K, ranging
from 10 to 400. We kept the batch size, S, equal to 4096 for each of these runs, as it was found
to be the optimal value of S in [6]. Our results showed that K = 200 was the optimum value,
giving the lowest perplexity. Further, our analysis exhibited the common U-shaped curve in model
selection, in Figure 7. The overly complex model (largest K) and overly simple model (smallest K)
were outperformed by an appropriate medium choice for K, since they tend to overfit and underfit,
respectively.

We also varied batch size, S, over six values ranging from 16 to 16384, keeping all other values
held constant. We held the number of topics as K = 100 for these runs, as it was found to be
the optimal value of K by [6], even though we ultimately found slightly better performance with
K = 200. The results of these runs showed a similar trend to the results of varying K. Smaller and
larger values of S were found to give less good fits to the data, as demonstrated by the standard
U-shaped curve seen in Figure 8. The optimal value, according to our results was found to be
S = 1024, a different result from [6]. However, ideally our experiments would have been run on a
cluster where they would have more resources and more time to run. Not all of our experiments
were able to be run to convergence due to time constraints and the inability to use anthill, so we
had to truncate our jobs at 48 hours. Some of the plots might have looked different if run in better
circumstances.

Finally, we looked at perplexity vs. the logarithm of the number of iterations run (the logarithm
simply to bring values that vary exponentially from 16 to 16384 on a more uniform scale). This
plot is interesting and gives some sense for how quickly the different runs with varying mini-batch
sizes converged. Ideally the independent variable in the plots would be time and not iteration
number, but since our jobs were run simultaneously on a desktop with limited resources, much of
the time might have been due to computational limits and not the true speed of the algorithms.
As expected, smaller batch sizes take more iterations to converge, while larger batches converge in
fewer iterations (although each iteration takes considerably longer).

4.3.1. Qualitative Results. For our qualitative analysis, we chose to look exclusively at the topics
found using the values K = 200 and S = 4096, as this was the run resulting in the lowest perplexity

12 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

perplexity vs log(S)

4100 T T T T
4000 1
3900 1
=
3
a 38001 1
g
37001 1
3600 1
33005 3 a 5 6 7 8 9 10
log(S)
FIGURE 8. Perplexity vs log(S) (K=100)
10000 perplemty vs IGg(lFers), for various S ‘
— S=16
9000} — =64
— S=256
— 5=1024
8000 — 5=4096
S=16384
2> 7000k
5
=
& 6000F
5000
4000
30003 1 2 3 1 5 6 7 8

log(iters)

FIGURE 9. Perplexity vs log(tier), various S

of all our runs. The topics that we found revealed that LDA did work on our data, but the topics
were varied with respective to how informative they were of the works in the corpus. Further,
many of the topics seemed to be strongly related. In particular, topics about god and religion, as
well as topics about war, were prevalent. However, within these categories, the topics did show
subtle, yet important differences regarding their context. For example, though each topic in Table
2 clearly relates to god, religions and Christianity, the topic in column 4 is clearly demonstrative
of the more academic and historical work related to religion. Similarly, though all of the topics in
Table 3 relate to war and battles, the topic in the second column is clearly related to the civil war
in particular. It is possible that perhaps the model with K = 200 was not actually the best model,

FINAL REPORT: TOPIC MODELING ON LITERARY TEXTS 13

even though the perplexity scores indicated it was; a smaller value of K may have combined some
of these redundant topics together.

heart god god god

love lord heart religion
god son love history
father israel jesus religious
ming things things christian
poor jesus say greek

say earth Christ ancient
hope heaven soul gods

soul king faith christianity
death children think form

TABLE 2. Top 10 words for four topics relating to God, Religion and Christianity
found in Gutenberg, K=200, S=4096

enemy general major
general army officer
troops grant soldiers
army colonel officers
force war soldiers
battle president colonel
attack confederate | captain
line sherman sergeant
war railroad left

guns union regiment

TABLE 3. Top 10 words for three topics relating to war and armies, found in Guten-
berg, K=200, S=4096

The prevalence of topics for which the most probable words were character names revealed some
of the shortcomings of LDA on literary works. It was expected that many character-name topics
would arise given the frequency of character names within most fictional literature. Despite many
informative and specific topics found by running LDA on our corpus, a large number of the topics
placed high probability on character-names. The top ten words for four of these topics can be seen
in Table 4. Clearly these topics do not provide much useful information to a user hoping to utilize
the learned topics for a specific information retrieval task. It would have been nice to have observed
topics that picked up on actual hidden themes or symbols in fiction (e.g. coming of age, good vs.
evil, the American Dream, etc.). However, topic models only pick up on the pure co-occurrences
of words, as the algorithm has no knowledge of word meanings, so it is understandable that such
desirable topics are not learned.

A final interesting qualitative result is examining the most used topics for hand-selected famous
books. To determine these topics, we ran a final E-step of the online inference algorithm, using the
final optimal A values from our experiments (we used K = 200, S = 4096), until convergence of the
~ variational parameters specific for these sub-documents. Recall that we split up the original text
files in the corpus into smaller sub-documents, each with 2000 words or less (but more than 100).
Examination of the largest values of v across the sub-documents that make up one original text file
yield interesting results. Tables 5, 6, and 7 show three of the top topics, with top ten words, for the

14 EMILY EISNER, JOE FUTOMA, AND DAVID RICE

books Narrative of the Life of Frederick Douglass, The Red Badge of Courage, and The Adventures
of Tom Sawyer. The remainder of the 200 topics found on the Gutenberg Corpus, using the
parameters K = 200 and S = 4096, can be found in our code submission. It is recommended that
one look at these to understand the quality and variety of topics found.

george nelly catherine elsie
anthony addison beauchamp | hilda
georges pepper terence molly
roberts putnam cecilia jessie
adrian steele marianne angela
edgar nell isabella dexter
brian compound | miss sophy
dinah theodora house balzac
olivia ellen think melissa
enid cadets mrs lisle

TABLE 4. Top 10 words for four topics that give high probability to character names
found in Gutenberg, K=200, S=4096

slavery heart dat
slave love dey
slaves god house
negro father white
free mind master
negros poor say
labor say folks
south hope ernest
states soul wid
property death bout

TABLE 5. Top 10 words for the three top topics from Narrative of the Life of
Frederick Douglass

major eyes eyes
officer hand face
soldiers face looked
officers head voice
soldier saw room
colonel turned hand
captain feet moment
sergeant stood door
left moment night
regiment looked thought

TABLE 6. Top 10 words for the three top topics from The Red Badge of Courage

FINAL REPORT:

TOPIC MODELING ON LITERARY TEXTS

tom mother eyes
frank girls face

ned boy looked
boys school voice
going home room
think mrs hand

ill girl moment
asked boys door
say children night
want mary thought

15

TABLE 7. Top 10 words for the three top topics from The Adventures of Tom Sawyer

5. CONCLUSION

Our quantitative analysis showed that for the Gutenberg corpus, the optimal values of S and K

were S=1024 and K=200. Note however that a few of the experiments for the largest K and S did
not completely converge, due to computational resources. Jobs were truncated at 48 hours.

Our qualitative analysis revealed that LDA worked as expected, discovering interesting latent

topics within a large corpus of texts. However, many of the discovered topics were not very
informative of the content of the works, and in particular were not thematically meaningful. Many
topics consisted primarily of names, presumably found throughout the works. It does not appear
that such topics would be of much use in organizing large collections of literature in the same way

they have been used for information retrieval tasks in scientific articles.

6. REFERENCES

(1) D. Blei. Probabilistic Topic Models. Communications of the ACM, 55(4):7784, 2012.
(2) http://www.gutenberg.org/wiki/Gutenberg: About
(3) M. Hoffman, D. Blei, J. Paisley, C. Wang. Stochastic Variational Inference. arXiv 1206.7051,
2012.
(4) T. Griffiths, M. Steyvers. Finding scientific topics. PNAS 101 (Suppl 1): 522835, 2004.
(5) D. Blei, A. Ng, M. Jordan. Latent Dirichlet Allocation. JMLR, 2003.
(6) M. Hoffman, D. Blei, F. Bach. Online Learning for Latent Dirichlet Allocation. NIPS,
2010.
(7) H. Wallach, I. Murray, R. Salakhutdinov, D. Mimmo. Evaluation Methods for Topic Models.
ICML, 2009.
(8) B. de Finetti. Theory of probability. Vol. 1-2. John Wiley & Sons Ltd., Chichester, 1990.
Reprint of the 1975 translation.
(9) Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. Journal of the
American Statistical Association, 2006. 101[476]:1566-1581.
(10) S. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2): 251276,
1998.
(11) H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathemat-
ical Statistics, 22(3):400407, 1951.
(12) G. Salton and M. McGill, editors. Introduction to Modern Information Retrieval. McGraw-
Hill, 1983.

