
Song	
 Recommendation	
 Based	
 on	
 User’s	
 Playlist	

Srivamshi	
 Pittala	
 Jay	
 Patel	

CS	
 174	
 Machine	
 Learning,	
 Course	
 Project	
 Report	
 –	
 Winter	
 2013	

	

Abstract
In this course project we address the

problem of providing personalized song
recommendations to users. In particular, we are
able to provide recommendations to users given
their current playlist. Addressing this problem,
we put to use some popularly used techniques of
Collaborative Filtering, Content Filtering and
Hybrid Filtering. We present our approach in
detail and discuss the results.

Introduction
 With ever increasing volume of songs
becoming available on the Internet, searching for
songs of interest has become a tedious task in
itself. Hence a recommender system that caters
to the personal interests would be of some help
to the users. This task of personalized
recommendations gained global attention after
the advent of social media and thus machine
learning has been put to good use to exploit the
personal data available.

Problem Statement
 Our objective for the project is to
develop a recommender system that suggests
songs to a user based on the songs currently in
his/her playlist. We consider the user's playlist as
a good indicator of the next song he/she might
want to listen to. This would mean, given the
contents of the playlist our recommender system
should be able to provide suggestions to the
playlist.

Dataset
 We are using the freely available
Million Song Dataset [1], which provides
listening history of one million unique users. The
dataset also provides a variety of metadata
including audio features (like timbre, pitch, beats
etc) and track information (like album, artist
name, location etc) of the songs. However, due

to computational limitations we chose to use
only a subset of the dataset comprising of 4080
unique user’s listening history and 1232 unique
songs’ information. We consider the following
song features in this project.

Artist Duration Key Loudness
Mode Tempo Time Signature Year

Evaluation Criteria
 For evaluating the performance of our
methods, we partitioned out listening history
dataset into 3500 training set and 580 testing set.
Our task was now to look at the first half of the
listening history available and predict the
remaining half. While partitioning the dataset,
we also ensured that our test set contained users
with atleast two songs in their playlist. We make
top 10 song recommendations to the user to
validate our results. We used mAP (mean
Average Precision) to evaluate our
recommendations as it gives importance to the
relative rankings of the recommendations rather
than just checking if the recommendation is a hit
or miss. Higher mAP indicates better
recommendation.

Methodology
Popularity : In this method we recommend the
top 10 popular songs in the training set, not in
the user’s playlist. We consider this as a baseline
to evaluate our other methods.

Collaborative Filtering (CF) : We implemented
a version each of both user-user and item-item
CF methods [3]. For implementing them we built
a User-Item matrix UI from the listening history
information, for the training and testing set
separately.

The entries of UI matrix are binary, filled as,

𝑈𝐼(𝑖, 𝑗) = 1, 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑑 𝑡𝑜 𝑠𝑜𝑛𝑔 𝑗
0, 𝑒𝑙𝑠𝑒 (1)

Figure 1 : Representation of UI matrix

User – User CF : In this method, users who
listen to the same songs are considered to be
similar and hence songs of similar users are
recommended. The measure of similarity users
can vary across domains. In our case, we use the
cosine similarity, since it is effective when the
entries of the UI are binary, at the same time
being easy to compute. Higher the cosine
similarity coefficient, higher is the similarity
between users. The cosine coefficient between
user i and j is computed as,

𝐶 𝑖, 𝑗 =
𝑈! ∙ 𝑈!
𝑈! ∙ 𝑈!

 (2)

The next steps are to find the top-k similar users,
aggregate their playlists weighted by the cosine
coefficient and recommend the top 10 songs
from this aggregated playlist.

Item – Item CF : In this method, songs in the
same playlist are considered to be similar and
hence similar songs are recommended. We used
the cosine similarity metric for the same reasons
as mentioned earlier. It is computed for songs i
and j as,

𝐶 𝑖, 𝑗 =
𝐼! ∙ 𝐼!
𝐼! ∙ 𝐼!

 (3)

Similarly, as before we prepare the aggregated
playlist and recommend the top 10 songs.

Content Filtering (CN) : Our initial plan was to
consider this as a binary classification task as

suggested in the literature[11][12]. But we were
in a difficult situation, as the data contained only
what the user liked and no information of
disliked songs. By the time of our project
milestone we implemented a naive method of
recommending songs based on overlap
coefficient[5], which measures number of
common features between two songs i and j as,

𝑂 𝑖, 𝑗 =
𝑛(𝑖 ∩ 𝑗)

min (𝑛 𝑖 , 𝑛(𝑗))

But we believed that we could employ a better
approach and improve our results. There were
two options available at this stage. One, to make
some assumptions about a user and try to learn
what might have been disliked. Second, to use
only the data we have and recommend songs that
are similar to the songs in the playlist. After
consultation with the Professor Torresani, we
chose the second option and implemented
variations of kNN with metric learning.

kNN: The idea for this method is simple. Find
the k nearest neighbors of every song in the
visible playlist, aggregate them by their weight
and recommend the top 10 songs. These 10
songs would be closest to the visible playlist.

kNN with metric learning : The problem with
implementing kNN was that the dimension of
our features was very large (769) and we
believed that this could be reduced as most of the
features were just binary vector representation of
the nominal features. So we decided to
implement dimensionality reduction, which is
the same as unsupervised metric learning[9]. We
applied linear and non-linear variants of metric
learning i.e PCA and Isomap[10]. After these
steps, we implemented the generic kNN as
before, in reduced dimension.

Hybrid Filtering : The key motivation behind
this approach is to leverage the advantages of
both CF and CN. Literature[6] provided many
possible ways in which this can be implemented.
We chose the method called Content Boosted
Collaborative Filtering (CBCF)[7], which

U/I	
 I1	
 I2	
 I3	
 …	
 In	

U1	
 	
 	
 	
 	
 	

U2	
 	
 1	
 	
 	
 	

…	
 	
 	
 	
 …	
 1	

Um	
 	
 	
 	
 	
 0	

seemed to address the problem of data sparseness
in collaborative filtering. Our user item matrix
UI was mostly sparse and hence we chose to
employ this method to see if we can improve our
results. The main idea in this approach is to fill
the vacant elements of the sparse user matrix
with the recommendations from CN. This is
called the pseudo user matrix (PUI), as CN
approximates what the user might have liked. CF
is performed on this new matrix. The entries of
PUI matrix are filled as,

𝑃𝑈𝐼 𝑖, 𝑗 = 𝑈𝐼(𝑖, 𝑗), 𝑖𝑓 𝑈𝐼 𝑖, 𝑗 = 1
𝐶𝑁(𝑖, 𝑗), 𝑒𝑙𝑠𝑒 (4)

Results and Discussion
 In this section we discuss in detail the
results we got by implementing the methods
mentioned in previous section.

For the Popularity method we got a mAP of
0.07. This is our baseline for further comparison.

Collaborative Filtering :
 Implementing the two variants for CF
we got the following results for a varying k.

Figure : Pure user – user CF results

Figure : Pure item – item CF results

The user-user CF technique performed better
with increase in k reaching a maximum mAP of
0.22. This increasing trend suggested a good
collaboration between users. The item-item CF
gave a stable mAP in the range 0.12 - 0.13 with
increase in k.

Content Filtering :
 Implementing CN with the overlap
coefficient as a similarity criterion, we got the
following poor results, where the mAP was 10
times lower than the baseline.

Figure : Pure CN with overlap coefficient

With a goal of improving the previous results,
we implemented variants of k-NN, both with and
without metric learning. The following is the
result from k-NN without metric learning, where
the highest mAP was 0.012 still 6 times lower
than the baseline.

Figure : Pure CN with k-NN
Firstly, we implemented the PCA for
dimensionality reduction, which is a linear
method. The following is the plot for residual
variance across the dimensions.

Figure : Residual variance for PCA
With PCA we were able to reduce the dimension
to 4 where the captured variance was 83.03%
after which there was not any significant gain in
variance per increase in dimension. Applying
k-NN on this reduced dimension gave the
following results similar to the generic k-NN.

Figure : k-NN with PCA
We also implemented the Isomap, which is a
non-linear dimensionality reduction method. We

used the MATLAB dimensionality reduction
toolbox[8] where the algorithm for Isomap is
provided by them (We only used the data
returned by the algorithm Isomap). The Isomap
implementation gave an embedding in 2
dimensions and k-NN in this dimension also did
not improve the results much.

Figure : k-NN with Isomap

Hybrid Filtering :
 We implemented the Content Boosted
Collaborative Filtering method as discussed
earlier. The recommendations from the Content
Filtering method failed provide any boosting to
the CF. Therefore the mAP remained mostly
unchanged. This can be clearly attributed to the
poor results from the CN methods.

Figure : CBCF results

Conclusion
 In this project, we have implemented
various filtering methods addressing the problem
of Song Recommendation. From our results, we
can conclude that collaborative filtering
outperformed all other methods. However, the
low points have been the content filtering

methods, which failed to meet even the baseline.
Overall, it has been a great learning experience
gaining insight into what methods are being
employed in the real world, which are mostly
proprietary.

References
[1] T. Bertin-Mahieux, D. Ellis, B. Whitman,
and P. Lamere. “The million song dataset”. In
Proceedings of the 11th International Society for
Music Information Retrieval Conference (ISMIR
2011).

[2] Brian McFee, Thierry Bertin-Mahieux,
Daniel P.W. Ellis, and Gert R.G. Lanckriet, “The
million song dataset challenge”, in Proceedings
of the 21st international conference companion
on World Wide Web, WWW '12 Companion, pp.
909–916, New York, NY, USA, (2012). ACM

[3] Mukund Deshpande and George Karypis,
“Item-based top-n recommendation algorithms”,
ACM Trans. Inf. Syst., 22(1), 143–177, (2004).

[4] Tianye Lu, Jing Xiong, Xiaoye Liu, “Music
Recommender System Utilizing Users’ Listening
History and SocialNetwork Information”,
Machine Learning Project Report, Stanford
University.

[5] Claypool M, Gokhale A, and Miranda T,
“Combining Content-based and Collaborative
filters in an online newspaper”. In Proceedings
of the SIGIR-99 Workshop on Recommender
Systems: Algorithms and Evaluation.

[6] Robin Burke. 2002. Hybrid Recommender
Systems: Survey and Experiments. User
Modeling and User-Adapted Interaction 12, 4
(November 2002), 331-370

[7] Prem Melville and Raymond J. Mooney,
Ramadass Nagarajan,“Content-Boosted
Collaborative Filtering for Improved
Recommendations”. In Proceedings of the
Eighteenth National Conference on Artificial
Intelligence(AAAI-2002), pp. 187-192,
Edmonton, Canada, July 2002

[8]http://homepage.tudelft.nl/19j49/Matlab_Tool
box_for_Dimensionality_Reduction.html

[9]L. Yang, “An overview of distance metric
learning”. Technical report, Carnegie Mellon

University, 2007.

[10] Joshua B. Tenenbaum, Vin de Silva, John
C. Langford, “A Global Geometric Framework
for Nonlinear Dimensionality Reduction”,
SCIENCE Vol 290, 22 December 2000

[11] Meteren, R.V. & Someren, M.V. Using
content-based filtering for recommendation.
Structure 184, 47-56 (2000).

[12] Michael J. Pazzani and Daniel Billsus.
2007. Content-based recommendation systems.
In The adaptive web, Peter Brusilovsky, Alfred
Kobsa, and Wolfgang Nejdl (Eds.). Lecture
Notes In Computer Science, Vol. 4321.
Springer-Verlag, Berlin, Heidelberg 325-341.

[13] F. Aiolli. "A preliminary study on a
recommender system for the million songs
dataset challenge". In Proceedings of the ECAI
Workshop on Preference Learning: Problems
and Application in AI, Montpellier, France, 2012

