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Abstract 
In this course project we address the 

problem of providing personalized song 
recommendations to users. In particular, we are 
able to provide recommendations to users given 
their current playlist. Addressing this problem, 
we put to use some popularly used techniques of 
Collaborative Filtering, Content Filtering and 
Hybrid Filtering. We present our approach in 
detail and discuss the results. 
 
Introduction 
 With ever increasing volume of songs 
becoming available on the Internet, searching for 
songs of interest has become a tedious task in 
itself. Hence a recommender system that caters 
to the personal interests would be of some help 
to the users. This task of personalized 
recommendations gained global attention after 
the advent of social media and thus machine 
learning has been put to good use to exploit the 
personal data available. 
 
Problem Statement 
 Our objective for the project is to 
develop a recommender system that suggests 
songs to a user based on the songs currently in 
his/her playlist. We consider the user's playlist as 
a good indicator of the next song he/she might 
want to listen to. This would mean, given the 
contents of the playlist our recommender system 
should be able to provide suggestions to the 
playlist. 
 
Dataset 
 We are using the freely available 
Million Song Dataset [1], which provides 
listening history of one million unique users. The 
dataset also provides a variety of metadata 
including audio features (like timbre, pitch, beats 
etc) and track information (like album, artist 
name, location etc) of the songs. However, due 

to computational limitations we chose to use 
only a subset of the dataset comprising of 4080 
unique user’s listening history and 1232 unique 
songs’ information. We consider the following 
song features in this project. 
 
Artist Duration Key Loudness 
Mode Tempo Time Signature Year 
 
Evaluation Criteria 
 For evaluating the performance of our 
methods, we partitioned out listening history 
dataset into 3500 training set and 580 testing set. 
Our task was now to look at the first half of the 
listening history available and predict the 
remaining half. While partitioning the dataset, 
we also ensured that our test set contained users 
with atleast two songs in their playlist. We make 
top 10 song recommendations to the user to 
validate our results. We used mAP (mean 
Average Precision) to evaluate our 
recommendations as it gives importance to the 
relative rankings of the recommendations rather 
than just checking if the recommendation is a hit 
or miss. Higher mAP indicates better 
recommendation. 
 
Methodology 
Popularity : In this method we recommend the 
top 10 popular songs in the training set, not in 
the user’s playlist. We consider this as a baseline 
to evaluate our other methods. 
 
Collaborative Filtering (CF) : We implemented 
a version each of both user-user and item-item 
CF methods [3]. For implementing them we built 
a User-Item matrix UI from the listening history 
information, for the training and testing set 
separately.  
 
 
 



The entries of UI matrix are binary, filled as, 
 

𝑈𝐼(𝑖, 𝑗) = 1,   𝑖𝑓  𝑢𝑠𝑒𝑟  𝑖  𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑑  𝑡𝑜  𝑠𝑜𝑛𝑔  𝑗
0, 𝑒𝑙𝑠𝑒    (1)  

 

 
Figure 1 : Representation of UI matrix 

 
User – User CF : In this method, users who 
listen to the same songs are considered to be 
similar and hence songs of similar users are 
recommended. The measure of similarity users 
can vary across domains. In our case, we use the 
cosine similarity, since it is effective when the 
entries of the UI are binary, at the same time 
being easy to compute. Higher the cosine 
similarity coefficient, higher is the similarity 
between users. The cosine coefficient between 
user i and j is computed as, 
 

𝐶 𝑖, 𝑗 =
𝑈!    ∙   𝑈!
𝑈! ∙ 𝑈!

        (2) 

 
The next steps are to find the top-k similar users, 
aggregate their playlists weighted by the cosine 
coefficient and recommend the top 10 songs 
from this aggregated playlist. 
 
Item – Item CF : In this method, songs in the 
same playlist are considered to be similar and 
hence similar songs are recommended. We used 
the cosine similarity metric for the same reasons 
as mentioned earlier. It is computed for songs i 
and j as, 

𝐶 𝑖, 𝑗 =
𝐼!    ∙    𝐼!
𝐼! ∙ 𝐼!

        (3) 

Similarly, as before we prepare the aggregated 
playlist and recommend the top 10 songs. 
 
Content Filtering (CN) : Our initial plan was to 
consider this as a binary classification task as 

suggested in the literature[11][12]. But we were 
in a difficult situation, as the data contained only 
what the user liked and no information of 
disliked songs.  By the time of our project 
milestone we implemented a naive method of 
recommending songs based on overlap 
coefficient[5], which measures number of 
common features between two songs i and j as, 
 

𝑂 𝑖, 𝑗 =
𝑛(𝑖   ∩ 𝑗)

min  (𝑛 𝑖 , 𝑛(𝑗))
 

 
But we believed that we could employ a better 
approach and improve our results. There were 
two options available at this stage. One, to make 
some assumptions about a user and try to learn 
what might have been disliked. Second, to use 
only the data we have and recommend songs that 
are similar to the songs in the playlist. After 
consultation with the Professor Torresani, we 
chose the second option and implemented 
variations of kNN with metric learning. 
 
kNN: The idea for this method is simple. Find 
the k nearest neighbors of every song in the 
visible playlist, aggregate them by their weight 
and recommend the top 10 songs. These 10 
songs would be closest to the visible playlist. 
 
kNN with metric learning : The problem with 
implementing kNN was that the dimension of 
our features was very large (769) and we 
believed that this could be reduced as most of the 
features were just binary vector representation of 
the nominal features. So we decided to 
implement dimensionality reduction, which is 
the same as unsupervised metric learning[9]. We 
applied linear and non-linear variants of metric 
learning i.e PCA and Isomap[10]. After these 
steps, we implemented the generic kNN as 
before, in reduced dimension. 
 
Hybrid Filtering : The key motivation behind 
this approach is to leverage the advantages of 
both CF and CN. Literature[6] provided many 
possible ways in which this can be implemented. 
We chose the method called Content Boosted 
Collaborative Filtering (CBCF)[7], which 
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seemed to address the problem of data sparseness 
in collaborative filtering. Our user item matrix 
UI was mostly sparse and hence we chose to 
employ this method to see if we can improve our 
results. The main idea in this approach is to fill 
the vacant elements of the sparse user matrix 
with the recommendations from CN. This is 
called the pseudo user matrix (PUI), as CN 
approximates what the user might have liked. CF 
is performed on this new matrix. The entries of 
PUI matrix are filled as, 
 

𝑃𝑈𝐼 𝑖, 𝑗 = 𝑈𝐼(𝑖, 𝑗),   𝑖𝑓  𝑈𝐼 𝑖, 𝑗 = 1
𝐶𝑁(𝑖, 𝑗),   𝑒𝑙𝑠𝑒     (4) 

 
Results and Discussion 
 In this section we discuss in detail the 
results we got by implementing the methods 
mentioned in previous section.  
 
For the Popularity method we got a mAP of 
0.07. This is our baseline for further comparison. 
 
Collaborative Filtering :  
 Implementing the two variants for CF 
we got the following results for a varying k. 

 
Figure : Pure user – user CF results 

 

 
Figure : Pure item – item CF results 

 
The user-user CF technique performed better 
with increase in k reaching a maximum mAP of 
0.22. This increasing trend suggested a good 
collaboration between users. The item-item CF 
gave a stable mAP in the range 0.12 - 0.13 with 
increase in k. 
 
Content Filtering : 
 Implementing CN with the overlap 
coefficient as a similarity criterion, we got the 
following poor results, where the mAP was 10 
times lower than the baseline. 

Figure : Pure CN with overlap coefficient 
  
With a goal of improving the previous results, 
we implemented variants of k-NN, both with and 
without metric learning. The following is the 
result from k-NN without metric learning, where 
the highest mAP was 0.012 still 6 times lower 
than the baseline. 



Figure : Pure CN with k-NN 
Firstly, we implemented the PCA for 
dimensionality reduction, which is a linear 
method. The following is the plot for residual 
variance across the dimensions. 

Figure : Residual variance for PCA 
With PCA we were able to reduce the dimension 
to 4 where the captured variance was 83.03% 
after which there was not any significant gain in 
variance per increase in dimension. Applying    
k-NN on this reduced dimension gave the 
following results similar to the generic k-NN. 

Figure : k-NN with PCA 
We also implemented the Isomap, which is a 
non-linear dimensionality reduction method. We 

used the MATLAB dimensionality reduction 
toolbox[8] where the algorithm for Isomap is 
provided by them (We only used the data 
returned by the algorithm Isomap). The Isomap 
implementation gave an embedding in 2 
dimensions and k-NN in this dimension also did 
not improve the results much. 

Figure : k-NN with Isomap 
 
Hybrid Filtering : 
 We implemented the Content Boosted 
Collaborative Filtering method as discussed 
earlier. The recommendations from the Content 
Filtering method failed provide any boosting to 
the CF. Therefore the mAP remained mostly 
unchanged. This can be clearly attributed to the 
poor results from the CN methods. 

Figure : CBCF results 
 
Conclusion 
 In this project, we have implemented 
various filtering methods addressing the problem 
of Song Recommendation. From our results, we 
can conclude that collaborative filtering 
outperformed all other methods. However, the 
low points have been the content filtering 



methods, which failed to meet even the baseline. 
Overall, it has been a great learning experience 
gaining insight into what methods are being 
employed in the real world, which are mostly 
proprietary. 
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