Chemistry Reaction among NBA Players

Xianan Hao, Ruixiuan Hou, Weijia Mao
COSC 174 - Machine Learning and Statistical Data
Winter 2013

1. Introduction

How to choose the best five players to win the game? This interesting problem is
essentially finding an optimal subset of items that maximizes the utility defined
over these items. There exist two methods to solve the optimal subset problem.
The first one is assuming a completely known preference function, given
preference function parameters. The parameters can be learned from historical
data. However, to our knowledge, it's hard to define and parameterize the
preference function for NBA player problem. The second method is to maximize
the set similarity between the selected subset and the labeled optimal subset,
without assuming preference function. We use the second method in this project.

2. Dataset

In order to evaluate the relationship between dataset and learning algorithms,
we used two different datasets of players.

The first dataset (referred as Dataset 1 in section 4) is downloaded from
BasketballValue.com, which provides data for advanced statistical analysis of the
players in NBA [1]. This dataset contains 30 features that describe the player’s
overall efficiency and effects on court in depth. Features in this data set include
accumulative values, for example, the total points of one player over the whole
season and the plus-minus stats that represent the overall points win/lose by the
team when a particular player is on court. In a word, this data set is quite
informative in a way that the good players differ much from the so-so players.

In contrast, the second dataset [2] (referred as Dataset 2 in section 4) records
the efficiency of players. It contains 18 features and all features represent
players’ performance per unit time, for example, the average points of one player
per 36 minutes. This dataset is less informative because many players’ stats are
much alike. For example, the field goal percentage of best 5 players is only a little

higher than the remaining ones.

3. Model and Methods

Choosing 5 players that cooperate to provide the best performance is a problem
of choosing the optimal subset of a ground set. By milestone, we implemented

the algorithm in [3] to choose the optimal subset of a team of players as the
predicted best 5 of this team. However, our model before milestone was too
simple and failed to take into consideration the interactions between pairs of
players. So we changed our model and the new model is described in this part.

3.1 Final model

We use the following model as the score of 5-player combination
performance:

T(x,y;) = Q"¢(x,y)

where x is the ground set of feature vectors of all players in a particular
team and y is a possible 5-player subset. To model the individual player’s
performance as well as the pairwise interactions between players, our
feature map ¢(x,y) is defined as follows:

d(x,y) = w1 (x,y) + 207, (y)
¢1(x,y) = zv—zv

VEY veEy
() =) vec(ii")
iLjey

where v,i,j are all real valued vectors in x representing the feature vector
for each player; w,0 are weight vectors corresponding to each individual
player and each pair of players, respectively; A is a scalar to tune to give
appropriate weights to individuals and pairs. Consistently, our overall weight
vector Q is defined as follows:

0= [wy cowy A0y ... AByn]”

where n is the number of features in the feature vector of a player. As is
illustrated above, for a certain possible subset, the way we model the
individual player’s performance is to add w™v to the performance score
when v is selected in y, and otherwise subtract wTv from the performance
score. Moreover, the way we model the pairwise interactions between
players is to compute the outer product of each pair in a possible y (5
choose 2, so there are 10 possible pairs), vectorize these outer products as
(n*n) =1 vectors, sum them up and then concatenate them with the n * 1
vector of individual players to form the final feature map for a possible
subset.

With the weight vector @ and feature map ¢ defined, the rest of the
problem is to solve Q.

3.2 Optimization problem

Our problem falls in to the regime of structured learning and it can be solved
using structural SVM. The following is the formulation:

, I
mmw,giaoillﬂll t—) l‘fi
1=

stVl<i<nVyeS()
QT (¢, 9) —p(xi, ¥:)) — & < =A@, y)

where m is the number of teams; y; is the labeled optimal subset of the ith

~

team; y is a possible subsetand A(¥,y;) is the loss function defined by:
19 Nyl
|yil
This loss function captures the difference between a possible subset and the
labeled true optimal subset.

A(y;yl) =1-

3.3 Prediction

Once the weight vector Q is optimized , we compute the performance score
for each possible subset and choose the one with the highest score as our
predicted optimal subset:

Vpreda = arg yrgsfg)f (x,y; Q)

3.4 Different approaches

3.4.1 Brute Force

Since our problem now is 10 choose 5 (i.e. 252), which is a quite small
number, enumerating all the possible subsets of a 10-player team is feasible.
So we tried brute force approach using a quite efficient convex programming
package called CVX [4]. We arrange all feature maps and constraints in large
matrices and input them into the CVX optimization part. We get good results
using this approach.

However, if we want to use our model for another similar problem, for
example, choosing the best 11-player subset from 30 players for a soccer
team, the number of all possible subsets would be 30 choose 11 which is a
way too large number for enumeration. So we need to find a way to make our
method faster.

3.4.2 SSVM software with cutting plane algorithm

The cutting-plane algorithm [5] enables us to reduce our constraint size and
therefore accelerate our method. The basic idea of the cutting plane
algorithm is that it only uses the most violated constraints in the

optimization step. In each iteration, it picks the most violated constraint and
puts it into the constraint set. As the number of constraints increases, the
accuracy will become more and more closer to the brute force method.

In order to make use of the cutting-plane algorithm, we choose the
svm-struct software for Matlab created by Thorsten Joachims [6]. To use the
software, we defined three call back functions based on our problem
description. The first call back function is the loss function that models the
difference between the optimal subset and a possible subset. The second is
the feature map function, which models our input as a vector. The last one is
the constraint generation function, which identifies what is the most
incorrect output y that the current model considers to be compatible with the
input x and therefore find the most violated constraint. With these three vital
functions defined and implemented, the software can solve our optimization
problem successfully.

4. Experiments and Analysis

We used the data of NBA 2010 - 2011 season to test our method. As mentioned
in section 2, we used two different datasets and we will discuss the results
separately.

4.1 Results on Dataset1

Dataset 1 is a quite informative dataset since the data of good players differs
much from that of average players. There are 30 teams in all and we used 20
teams as training set and 10 teams as validation set. We tuned the
parameters € and A in our model and with C equal to 1 and A equal to
30/900 (which is reasonable since there are 30 features in individual player
vector and 900 features in pairs of players vector), we get an average
accuracy of 97.3% through 3-fold cross validation.

Compared to our results obtained by milestone, we get an accuracy
improvement of over 30%:

accuracy

BF

milestone

We can see that our final model fits the data very well and produces very
good results. However, dataset 1 is very informative and we want to add
some difficulty to our model and see what happens. Let’s move on to the
results on dataset 2.

4.2 Results on Dataset 2

4.2.1 Results of Brute Force approach

Dataset 2 is a less informative dataset and moreover, we deliberately added
some mislabels of the optimal subset players to the last 10 teams. We also
did 3-fold cross validation with 20 teams as training set and 10 teams as
validation set. Following is the result:

05} m

ACCUracy

04t -

0.3} -

1
01 2 3

fold numbe

We can see that when the 10 teams containing mislabels are used as training
teams, the results are still good: we get accuracy of 94% for one fold and 84%
for another fold. However, when the 10 teams containing mislabels are used
as testing set, the result gets very bad. This is reasonable because when we
use the 10 with mislabels as training teams, there are still 10 training teams
that are well labeled, so it is still possible for our method to learn a relatively
good weight vector and produce good results on the validation set that is
also well labeled. On the other hand, when the 10 teams with mislabels are
used as validation teams, the weight vector is trained over 20 well labeled
teams. Thus, this well-trained weight vector would certainly fail on a
validation set that is incorrectly labeled. This result also shows that our
model can tolerate some errors in labels. One important thing to mention is
that we get the above result by tuning C to be 0.005. This change
contributes to the tolerance of false labels because it makes the margins
more “slack”.

4.2.2 Comparison of Brute Force and SSVM software with cutting plane
algorithm

As we mentioned in section 3.4, besides enumerating all possible subsets, we
also implemented a faster version of our approach with the help of the SSVM
software. We compared the results of SSVM with cutting plane algorithm

with that of the brute force approach. This time, we used the 11th to 20th
team as the test set (this test set is the same set as the validation set of fold 2
in the above figure, which produces an accuracy of 94% with BF approach).

Following is the result:

1 T T T T T T T
el M e i . a4 —-
/
ﬂ/ Brute Force
0.8}] - SS5vM -
8)
; H
S 0.7} h -
8)
-,E [
0.6} ..f -
]
{
{
05k) al
!
0'40 2l 4 Bl fl; Il[l 112 ll4 16

Structural SYMiteration number

As we can see, as the number of iteration increases, the accuracy of the SSVM
with cutting plane algorithm grows closer and closer to that of the brute
force approach, which we set as a baseline here. This is reasonable because
as the iteration increases, the cutting plane algorithm puts more most
violated constraints into its constraint set and thus the training process
becomes more accurate. But since it considers only the most violated
constraints while the brute force approach considers all the constraints, at
the end its accuracy stays a little lower than that of the brute force approach.

We mentioned that the SSVM with cutting plane algorithm approach can
reduce the training time greatly and the following figure proves this claim:

Running Time Comparison

I BF
Il ssvMm

0 20 40 60 80

Seconds

We can see that, while it takes brute force approach around 70 seconds to
train the model, it only takes SSVM with cutting plane algorithm around 7
seconds. Therefore, using SSVM with cutting plane algorithm, we think our
proposed model can also make good predictions for larger sports teams.

4.2.3 Comparison of our methods with randomly selected 5-player
teams

We compared our predictions with randomly selected 5-player teams with
respect to several real player statistics such as field goal percentage, average
rebounds and average points per 36 minutes. The following is the result:

16 T

I r=ndom
I brutal force
14 [B3

12

10

0

1 2 3
field goal percentage avergaerebound average points

We can see that the statistics of the predictions of brute force and SSVM with
cutting plane algorithm approaches are quite similar and they are both
better than randomly selected players. Since we used a less informative
dataset, this amount of difference can be considered as a distinction between
optimal subsets and average subsets.

4.3 Another choice of loss function

Our loss function described in section 3 captures the difference between the
optimal subset and a possible subset, however, it doesn’t capture to what
degree is a possible different from the optimal subset. We modified our loss

function as follows:
An . x.”\ — x., .
N <1_ 9 yl|>* 19 (xi, §) — pCxi, Yol
il d(xi, yi)

This loss function takes into consideration the extent of difference between
two subsets. However, in our problem, this loss function produces the same
prediction accuracy as our original loss function.

5. External Software and Self-written code

In the code of our project, we used to external software:
1. CVX convex programming package: http://cvxr.com/cvx/
2. Structual SVM software: http://svmlight.joachims.org/svm_struct.html

The following files are written by ourselves:

1. In the Brute Force document: trainAndTest CVX.m and
generate_3_folds.m

2. In the SSVM with cutting plane algorithm: nba_player_pair.m and
cross_validation.m

6. Conclusions

In this project, we proposed a method to make predictions of the best 5
players for a particular NBA team and obtained fairly good results. We
learned a lot about machine learning by working on this project and had a lot
of fun. Thanks to Professor Torresani and teaching assistant Du Tran for their
patient and generous help.

References

1] www.basketballvalue.com

2] www.basketball-reference.com

[3] Y Guo, C Gomes, Learning Optimal Subsets with Implicit User Preferences,
Proceedings of the 21st International Joint Conference, 2009

[4] http://cvxr.com/cvx/

[5] T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural
SVMs, Machine Learning Journal, 2009

[6] http://svmlight.joachims.org/svm_struct.html

[7] http://www.vifeat.org/~vedaldi/code/svm-struct-matlab.html

[
[

