CS74 Milestone Report

Spoken Language Identification with Neural Networks

Jing Wei Pan, Chuanqi Sun

Introduction

Spoken language identification (LiD) is the problem of mapping continuous speech to the
language it corresponds to [1]. LiD plays a significant role in the pre-processing of speech for
further manipulation. Application includes the improvement for natural language processing
interface such as Siri and online multilingual voice-based translator such as Google translate,
both of which currently require manual selection of input language. LiD can also work with
human operators. For instance, CIA agents may identify the language spoken by terrorists with
LiD.

The project aims to solve LiD problem with artificial neural networks(ANN). The goal is to build

and train ANN effectively and efficiently to match the performance of other known approaches to
LiD, including support vector machine(SVM) and decision tree.

Methodology

Pre-processing

The preprocessing of the input audio signal is essential to the performance of ANN. Mapping the
audio signal from the time domain to feature vectors both representative of the language identity
and compatible with ANN requires a series of mathematical transformations (Figure 1).

: . Mel
. o Pre-emphasis Hamming : 15
Audio Signal — 0=0.97 > Window DFT — Filter — log — IDFT — MECC "

Bank
'

15

AMFCC

'

15
AAMFCC

Figure 1

The audio signal is pre-emphasized with a=0.97 to improve the overall signal-to-noise ratio.
Then the hamming window is applied for every 250 ms with 40% overlap so that the signal won't
be cut off abruptly at frame boundaries [1]:

2mn
= 0.54 — 0.46
w(n) cos (N — 1)

The first DFT converts the signal from time domain to frequency domain. A Mel-frequency filter
bank is then applied to amplify the human hearing range:

Mel(f) = 25951ogy, (1 + Wf(])

The next log function compresses the dynamic range, and finally, Mel-frequency cepstral
coefficients (MFCCs) are obtained by an inverse DFT. In the meanwhile, we compute the
change and rate of change of MFCCs to capture the dynamic features of the language.

Learning Algorithm

We use per epoch backpropagation for training. The algorithm is summarized as following:

1. Randomize all the weights.

2. For each neuron, propagate forward by computing the inner products of weights and input
vectors and computing the output with a tan-sigmoid transfer function.

3. Compute the error in the output layer.

4. Propagate the error backwards in a way symmetric to step 2

5. Update weights.

Features of our customized backpropagation include:

Sigmoid thresholding as the transfer function: the function introduces non-linearity to the network
and limits the range from 0 to 1.

Conjugate Gradient Descent: the conjugate descent method searches for the steepest descent
direction, determines the optimal distance to move along the direction, then advances the search

in the conjugate direction. This method is more efficient than regular gradient descent.

Validation: A part of the training set is set aside for validation so that overfitting can be controlled.

Network Topology

Figure 2

Our model consists of one input layer, one output layer, and one hidden layer (Figure 2). The
input layer has 45 nodes, sequentially corresponding to 15 MFCCs, 15 AMFCCs, and 15
AAMFCCs. We assign 30 units to the hidden layer by the following process: we build five
networks with the same architecture, but different numbers of hidden units (5, 10, 20, 30 and
40); Each network is trained five times using the same training set, and the average error rates
is collected; Network producing the lowest error rates (Figure 3) is chosen. We make no attempt
to raise the number of hidden units above the number of input nodes since doing so leads to
overfitting.

of Hidden Units vs. Avg Error Rate

35

30 +
25

20

Error
(in percentage) 15 4

10
5 4

0 T T
0 10 20 30 40 50

Figure 3

The output layer has three nodes, each corresponding to one language the network is trained to
identify. Predictions are made based on the neurons with highest output values (Figure 4).

6 7 8

0.1162 0.0298 00872
0.0743 0.0987 10,5381

0.8539 I 0.9086] 0.0921

German German French

Figure 4

Results

Two Languages Comparisons

We first test our network by making predictions between two languages. Performance is
measured by error rate, obtained by computing the percentage of misclassified frames. Notice
that English and German both belong to the Germanic language family while French belongs to
the Latin family.

The highest error rate (27.8%) occurs between English and French (Figure 5). This result is in
accordance with Hosford’s research in which a 25% error rate was obtained when using 13
MFCCs[1].

Test Confusion hatrix

0 1
Target Class

Figure 5

Our test between English and German produces a 18.9% error rate while Hosford showed an
error rate of 15% when using 13 MFCCs [1]. (Figure 6)

Test Confusion kakix

Ouiput Class

] 1
Target Class

Figure 6

Finally, our network scores highest in distinguishing French and German. While we produce
11.8% error rate, Hosford showed an error rate as low as 5% using 13 MFCCs. (Figure 7)
Although our error rates are generally higher, the relative performance between language pairs

are in line with the Hosford’s research.

Tesk Confusion kaix:

0 1
Target Class

Figure 7

Three Languages Comparisons

We expect the network to make more mistakes as the number of options for prediction
increases. However, after running ANN on all three languages, we only obtain a 20% error rate
(Figure 8), which is lower than what is predicted given the 11.8%, 18.9%, and 27.8% error rates
obtained from testing on languages pairs. The cause of this low error rate is still under

investigation.

Test Confusion hiaix:

231 127 11
9.2% 2.5%

2 3
Target Class

Figure 8

File Based Three Languages Comparisons

Correction Rate|English

English

French
German

Figure 9

Finally we accumulate the per-frame predictions for each file and assign the language label to
the neuron with the highest accumulated prediction. The error rates are higher than those of
individual samples. (Figure 9) Since we interpret the output label in a way different from how they
are used for training, the higher error rates are expected. Notice that German is mislabeled as
French more often than it is correctly labeled as German. The high confusion between French
and German has already been shown in the per-frame prediction between two languages.

Future Work

Comparison with SVM and DT

Our current model will be compared with support vector machine and decision tree to justify the
choice of ANN as a good approach to the problem at hand.

Using all data of each file as input

Instead of training and making predictions based on each frame, we will build a deep learning
network that takes all MFCCs (approx. 135000 examples) from each file. The results of the new
architecture with be compared with the old one to determine a better approach.

Larger Training Set

More audio clips will be extracted from Voxforge for all three languages so that at least 600 clips
can be set aside for training and validation, and 400 will remain for testing.

Adjustment of Window Size and Frame Shift

By keeping the training set constant, the window size of each sample and the frame shift of
windows will be reduced to achieve better results. We expect a dramatic increase in training
time.

References

[1] Hosford, Alexander W. “Automatic Language Identification (LiD) Through Machine Learning”
(2011)

[2] Zissman, Marc A. “Comparison of Four Approaches to Automatic Language ldentification of
Telephone Speech” (1996)

