
Automatic Classification of Unexploded Ordnances Based on

Electromagnetic Induction Data

Grayson Zulauf

1 Introduction

1.1 Background

Unexploded ordnances, in former war zones or military testing sites, pose a massive en-
vironmental and humanitarian problem worldwide, rendering huge swaths of land unsafe
and unusable for the public. Bombs dropped during warfare or military testing contain a
significant number of duds, and these unexploded bombs lay in dangerous wait for years
on end. In the United States, a country without a major conflict in over a century, an
estimated 11,000,000 acres of land contain a potential unexploded ordnance (UXO) hazard
[1].

The successful cleanup of these zones would allow the safe development of acreage
across the world, as well as the elimination of many deaths associated with setting these
bombs off. Unfortunately, cleanup of these areas is currently very expensive, relying on
simple metal detection to find the bombs. This method results in excavating harmless
metal clutter in addition to the ordnances, amplifying the cost of site cleanup by at least
an order of magnitude.

1.2 Problem Statement

Professor Fridon Shubitidze, an Assistant Professor at Dartmouth’s Thayer School of En-
gineering, has developed an innovative way to discriminate UXOs from harmless metal
clutter. The method measures the time decay of the electromagnetic energy emitted by
the buried bombs. The time decay curves (3 curves for each target of interest) differ be-
tween bombs and clutter, allowing for differentiation and classification. This project won
the U.S. Department of Defense’s 2011 Project of the Year[2], a testament to the ingenuity
of the technology.

Currently, classification is performed manually, with a human combing three times
through thousands of objects, sorting clutter and unexploded ordnances. While Professor
Shubitidze’s group has used this method to successfully identify all UXOs across the DoD’s
test sites, a robust algorithm would significantly expedite the classification.

1.3 Challenges

This particular problem poses a number of challenges beyond the simple development of
a machine learning algorithm. Firstly, the algorithm will receive a very small number of
ground truths - at the limit, only one for each type of ordnance. Secondly, success must be
judged by the number of false negatives generated - a successful algorithm should generate

1



zero, while minimizing the number of false positives. The overall error rate, the typical
measure for an algorithm, will be considered, but secondarily to the false negative rate.

Lastly, there are a number of different target configurations. For a given ’target’ in the
field, this target may also be associated with one other target, two other targets, or on
its own. Thus, for any 3 target set, we must consider that each of the 7 possibilities may
reveal the target to be a UXO. Figure 1 shows all of these possibilities, as well as the 7
graphs associated with each possibility.

Figure 1: Three Potential UXOs, shown as black ’X’s. Green circles show the 3 possi-
bilities if they are considered alone, orange shown the 3 possibilities if they are considered
in sets of 2, and purple circle shows the possibility that the three are actually one target.
Graphs on right show these 7 distinct possibilities.

2 Algorithms

2.1 AdaBoost

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire, is a supervised
learning algorithm that combines a weighted sum of weak classifiers to form a strong
classifier [3]. During training, each weak classifier examines a different part of the feature
space and performs classification based on this feature space partition. This classification
is then assigned a weight (αt) according to the error it produced. After completing the
training of these classifiers, they are summed via their weights to form a strong classifier
and a final hypothesis, H(x), where

H(x) = sign

(
t∑

t=1

αtht(x)

)
.

2



AdaBoost requires that each individual classifier, h(t), classify with at least 50% accuracy.
A more detailed example of the AdaBoost application is shown below, in Figure 2, for a
hypothetical training set containing 4 feature space partitions.

Target	  of	  
Interest	  

1	  

‘Feature’	  

2	  

3	  

4	  

>	  k1	  ?	  

Decision	  

>	  k2	  ?	  

>	  k3	  ?	  

>	  k4	  ?	  

α1	  

Error	  

α2	  

α3	  

α4	  

Strong	  
Classifier	  

Figure 2: Example of the AdaBoost algorithm, with 4 distinct parts of the feature space
examined.

A number of different feature space attributes have been considered to feed into Ad-
aboost. The first weak classifier compared each individual test data point to the same data
point in the library and used a Euclidean distance threshold to sort the samples. Each
weak classifier, h(t), considered a different point through all feature points. For 42 data
points and 3 vector directions, this corresponded to 126 weak classifiers. This comparison
method is shown below.

Figure 3: Using each data point comparison as a feature space partition for a weak
classifier.

3



Secondly, the summed Euclidean difference between the test example and the library
example across the X, Y, and Z-axis vectors were used to sort the test examples, according
to a hyperparameter threshold defined by the user. This resulted in 3 weak classifiers,
which were then summed to obtain the final classifier.

The success of these respective methods is discussed later in the results section.

2.2 Hierarchical Divisive Clustering

Due to the failures of the AdaBoost algorithm in solving this problem, a new unsupervised
learning algorithm, Hierarchical Divisive Clustering, was implemented to better classify
the data. A cluster can be defined as a ”set of similar points that are highly dissimilar
with other points in the dataset”[4]. Clustering algorithms have 3 key stages that must be
selected, as shown in Figure 4, below.

Figure 4: Clustering methodology and parameters selected by the user[5].

For our problem, we have selected the features as the X, Y, and Z-axes of the closest
library case and the current target of interest. A threshold for maximum Euclidean dis-
tance will be used as the interpattern similarity, and there are only three eligible groups:
unclassified targets, UXOs, and Clutter. Because we only care about clustering the data
into two classes, we can largely ignore the implications of cluster merging and splitting [6].
In this application, only one cluster split is produced. Future work on this algorithm, how-
ever, may include separating types of UXOs, in which a discussion of the optimal splitting
strategy must be revisited. The dendrogram for this particular problem is shown below,
along with the decision pseudo-code.

Unclassified 
Targets

“Clutter” “UXOs”

?	  

for	  Each	  Unclassified	  Target	  
	  Find	  closest	  match	  in	  “UXOs”	  
	  If	  (Euclidean	  distance	  <	  Threshold)	  
	   	  Add	  to	  “UXOs”	  
	  Else	  
	   	  Add	  to	  “Clu@er”	  
	  Move	  to	  next	  unclassified	  target	  

end	  

Figure 5: The pseudo-code for the decision point, as well as the dendrogram applied to
this problem.

4



3 Results

3.1 AdaBoost

The AdaBoost algorithm was implemented, and coded with two different feature space
partitions. Firstly, I used individual data points across all axes, as discussed previously.
During each of these iterations, the error threshold was chosen to maximize the change
in entropy, and this preferred threshold was used to define the classification for the data.
For the 42 features in each axis, with 3 axes, this yielded 126 weak classifiers. Despite
satisfying the necessary threshold of a sub-50% error rate, these classifiers were unable to
form a strong classifier to successfully classify more than 75% of the ordnances correctly.
Additionally, all classifiers exhibited a very high number of false positives. Figure 6 shows
the results for the 126 classifiers.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

Iteration

E
rr

or

0 20 40 60 80 100 120 140
0

200

400

600

800

Iteration

F
al

se
 P

os
iti

ve
s

0 20 40 60 80 100 120 140
60

70

80

90

Iteration

U
X

O
s 

M
is

se
d

Figure 6: Adaboost error, false positives, and UXOs missed for each iteration.

As expected, Adaboost combines these weak classifiers to form a stronger classifier,
with an error rate of 7.24%, with 54 false positives and 90 UXOs missed out of 92 in
the set. Adaboost appears to discount classifying the UXOs. There are nearly 20 times
more clutter samples than UXOs in the training set, and the algorithm appears to find it

5



acceptable to use the error rate associated with essentially ignoring the classification of the
UXOs.

In order to remedy this problem, I attempted to weight the classification by assigning
them a 20 times greater weight in the error calculation. For the final classifier, this would
give greater weight to the classifiers that classified the UXOs correctly. The results from
this change are included below, in Figure 7.

0 20 40 60 80 100 120 140

0.2

0.25

0.3

0.35

0.4

Iteration

E
rr

or

0 20 40 60 80 100 120 140
300

400

500

600

700

800

Iteration

F
al

se
 P

os
iti

ve
s

0 20 40 60 80 100 120 140
60

65

70

75

Iteration

U
X

O
s 

M
is

se
d

Figure 7: Adaboost error, false positives, and UXOs missed for each iteration, with
weighting to classifying UXOs.

Indeed, the weighting curtailed the number of UXOs missed, from 90 down to 62, but
at the expense of 556 false positives and a 31.09% error rate.

After the failure of this weak classifier, a new one was implemented: classification
based on the Euclidean distance between the target of interest and the closest library
sample across all points on a particular axis. This reduced the number of classifiers to only
three, but we expected to get better classification from each, to ultimately form a strong

6



final classifier. Instead, none of the classifiers were able to reach the requisite sub-50%
error rate on the training data, and the final classifier missed 21 UXOs and classified 1206
false positives, for an overall error rate of 66.75%. This method would have performed
better if the class estimates had merely been reversed.

3.2 Hierarchical Clustering

3.2.1 Hyperparameter Selection

A number of hyperparameters must be set by the user for this particular application. In
order to select these values, an end-to-end test data simulation was run across all of the
plausible hyperparameter values, while keeping the other ones fixed. Upon completion of
the simulation, we selected the value that maximized the number of UXOs found while
minimizing the overall error (i.e. minimized the number of false positives).

The error threshold is among the most important hyperparameters to define. As men-
tioned above, we must run the classifier for the 1-target, 2-target, and 3-target cases, and
must define an error threshold for each category. The plots below show the results for
the 1-target error threshold, which clearly show that a threshold of 10 gives the optimal
results, with a high rate of UXO categorization and the ideal place on the ROC curve.

0 5 10 15
0

5

10

15

Error Threshold for 1−Target Case

O
ve

ra
ll 

Pe
rc

en
t E

rro
r

0 5 10 15
0

10

20

30

40

50

60

Error Threshold for 1−Target Case

U
XO

s 
M

is
se

d

0 5 10 15
0

50

100

150

200

250

300

Error Threshold for 1−Target Case

Fa
ls

e 
Po

si
tiv

es

0 50 100 150 200 250 300
30

40

50

60

70

80

90

False Positives

U
XO

s 
Id

en
tif

ie
d

Figure 8: Curves showing train results while varying the 1-target error threshold. All
four plots point to an ideal threshold of 10.

7



Next, the same procedure was performed for the 2- and 3-target error threshold, while
holding the other hyperparameters fixed (for simplicity, these were set to be the same -
this constraint will be lifted in future work). Here, the threshold is not so easily defined,
as the error rate has no minimum and the ROC appears to have two plateaus, where one
may trade off 4 identified UXOs for 500 false positives. Currently, we have selected the
first plateau as the optimum error, with a threshold set at 9.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Error Threshold for 2 and 3−Target Case

O
ve

ra
ll 

P
er

ce
nt

 E
rr

or

0 5 10 15 20 25 30
10

11

12

13

14

15

Error Threshold for 2 and 3−Target Case
U

X
O

s 
M

is
se

d

0 5 10 15 20 25 30
0

100

200

300

400

500

600

Error Threshold for 2 and 3−Target Case

F
al

se
 P

os
iti

ve
s

0 100 200 300 400 500 600
77

78

79

80

81

82

False Positives

U
X

O
s 

Id
en

tif
ie

d

Figure 9: Curves showing train results while varying the 2 and 3-target error threshold.
An ideal threshold of 9 was selected, based on the ROC curve’s first plateau.

Lastly, we defined the ideal time bound, i.e. the range of points for a given curve
that we will accept as data. From mere inspection, we can see that using the entire
available feature set introduces large noise variations, and the training results support
this assumption. With very stringent time restrictions (ostensibly to eliminate the noise),
however, we have not received enough data to correctly differentiate the results and classify
numerous false positives. Using the same method as above, we have chosen an ideal time
bound of 3900 seconds.

8



0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

Timebound

O
ve

ra
ll 

P
er

ce
nt

 E
rr

or

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

Timebound

U
X

O
s 

M
is

se
d

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

Timebound

F
al

se
 P

os
iti

ve
s

0 100 200 300 400 500 600 700 800
50

55

60

65

70

75

80

85

90

95

False Positives

U
X

O
s 

Id
en

tif
ie

d

Figure 10: Curves showing train results while varying the time boundary, keeping the
error thresholds fixed. An ideal time bound of 3900 seconds was selected, based on the
ROC curve’s plateau.

Other important hyperparameters exist: the number of iterations to run for each target
case (1, 2 and 3), the order through which to approach each target, and the number of
iterations to run through the entire program. I have examined the number of iterations
for each case, with two iterations providing the best results (highest number of UXOs
identified and least number of false positives) in the 1-target case, and 1 iteration each
for the 2-target and 3-target case. To this point, the ideal number of iterations for the
clustering algorithm has not been identified, and a default of 1 has been used. The current
default order is 1-target to 2-target to 3-target, but the selection of these will be explored
before the final presentation.

9



3.2.2 Overall Results

The clustering algorithm has performed very well on the training data, with an error rate
consistently under 5%, the consistent identification of around 90% of the unexploded ord-
nances included, and an acceptably low false positive rate. For the ideal hyperparameters
outlined above, the Fort Sill data set returns an overall error rate of 1.28%, with 15 false
positives and 10 UXOs missed out of 92 in the set.

For most algorithms, this small error and 10% miss rate would likely be considered a
success. As discussed previously, however, we must return zero false negatives, and have
not reached that critical point while minimizing the number of false positives. For small
timebounds, all of the UXOs are identified, but at the expense of over 600 false positives.

In this training set, we are attempting to identify two types of unexploded ordnances:
37-mm and small pipes. They have been considered together in all previous parts of this
paper but may also be considered separately. If considered separately, only 1 of the 37-mm
targets is missed (with 37 false positives), and only 2 of the small pipes are missed (with
39 false positives). This is a significant improvement over the 10 combined UXOs missed
when considered together. The potential separation of the targets, either through further
clustering or multiple iterations, is a topic that will be explored in the coming weeks.

After using the training set to define the hyperparameters, the algorithm was tested
on 2 other DoD training sites, Spencer Naeva and Camp Bealle. On the Spencer Naeva
test site, the algorithm identified 111 out of 121 UXOS, with 616 false positives and an
overall error rate of 31.99%. When the 37-mm and small pipe categories were considered
separately, the algorithm returned 111 UXOs, 650 false positives, and a 33.72% error
rate.

The final test site used for the milestone report was Camp Bealle, with a total of 40
unexploded ordnances to be identified. Here, the algorithm returned 49 out of 81 UXOs
with 62 false positives and an overall error rate of 4.73%. When the UXO types were
considered separately, the algorithm returned 50 UXOs, with 107 false positives and an
error rate of 6.94%.

As the test results show, there is significant improvement needed in the algorithm
to ensure its extensibility across all test sites without requiring the redefinition of the
hyperparameters. This will be the focus of the work conducted in the last few weeks of the
term.

4 Future Work

The checkpoints for the milestone have been completed (code completed and initial results
returned), and the project is on pace to be completed for the end of the term. I plan
to refine the Hierarchical Clustering method code for efficiency gains, ideal selection of
hyperparameters, and the expansion of the number of sets upon which the algorithm is
tested. The Adaboost algorithm appears ill-suited to this problem, and I will likely cease

10



to pursue it, with one exception.
Depending on the results of the hyperparameter selection, I may choose to incorporate

the AdaBoost algorithm into the clustering code. While the clustering code does not
appear to be a weak classifier (under 5% error rate), I would like to explore feeding different
hyperparameter values into the Adaboost algorithm and allowing it to generate weights for
the results. For example, a number of different clusters could be generated based on the
error threshold, and Adaboost could weight these results on a training class.

11



References

[1] Fridon Shubitidze Dartmouth College, Thayer School of Engineering
http://engineering.dartmouth.edu/emsg/

[2] Thayer School News November 30, 2011 ’Dartmouth Engineering Professor earns
DoD Project-of-the-Year Award’ http://engineering.dartmouth.edu/news/dartmouth-
engineering-professor-earns-dod-project-of-the-year-award/

[3] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of online
learning and an application to boosting. Computational Learning Theory: Second Eu-
ropean Conference, EuroCOLT 95, pages 2337, Springer-Verlag, 1995.

[4] S. Vadapalli, S. Valluri, and K. Karlapalem. A simple yet effective data clustering
algorithm. Center for Data Engineering, IIIT, Hyderabad, India, 2006.

[5] A.K. Jain, M.N. Murty, and P.J. Flynn. Data Clustering: A Review. ACM Computing
Surveys, Vol. 31, No. 3, September 1999.

[6] C. Ding and X. He. Cluster merging and splitting in hierarchical clustering algorithms.
NERSC Division, Lawrence Berkeley National Laboratory, 2002.

12


