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1 Introduction

By using the intrinsic and extrinsic camera parameters, Multi-view Stereo has been
applied to accurately estimate depth maps. Although this can produce impressive re-
sults, the camera parameters(e.g. focal length, disparity and baseline) are necessary
for the estimation. This means that the depth can not be estimated unless we have
prior knowledge about the image’s origin. In addition, two slightly different views of a
particular scene are needed in order to reconstruct its depth map.

As interest grows in deep neural networks and with the introduction of readily
available depth sensors such as Microsoft Kinect, depth estimation from single view
images has become an open and interesting research problem in the computer vision
community.

In this project I trained a convolutional neural network to estimate depth from
a single image. It will be explained later in this report how the Places [5] pretrained
convolutional network will be utilized to solve this problem. Further architectural im-
plementation details will be explained as well.

2 Problem Statement

In this project, I’ve aimed to train a deep convolutional neural network to produce
estimated depth maps of single view images. I used a neural network architecture in-
spired by [1], which I will explain in more detail in the following section. As you can see
from 1, I used features extracted from PlacesCNN[5] (a convolutional network trained
to classify indoor and outdoor scenes) to train the network.
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Figure 1: The architecture of the convolutional network. Input: a single view image;
Output: a depth map.

3 Related Work

In [4] they used depth maps of indoor scenes produced by a Microsoft Kinect to
successfully classify scenes. I used the NYUv2[4] benchmark as a ground truth measure
of depth for training.

Figure 2: RGB images,their corresponding depth images and labeled images taken from
the NYUv2 dataset
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Figure 3: Results from [1]. Top left : input image, top right : ground truth, bottom left
: coarse prediction, bottom right : refined prediction.

From [1] and [4] we concluded that scene information give us a good coarse depth
estimate. Meaning, knowledge of the scene will provide us with global cues about the
image’s spatial structure such as the location of floor and ceiling edges. And by us-
ing image features extracted from the PlacesCNN[5] pool5 layer we can exploit scene
information in estimating our depth map.

[1] also deduced that further local refinements of the global estimate can give us
a high accuracy depth map. As in [1] I will as well attempt to use PlacesCNN[5] as a
coarse estimate. However, I will use a deep neural network to learn the depth dictionary
and transformation T instead of the coupled regression approach presented in the paper.
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4 Method

Figure 4: The architecture of the convolutional network in more detail.

Given a training set comprised of feature vectors extracted from PlacesCNN[5] after
inputting NYUv2[4] single view images, I’ve trained a convolutional neural network to
produce depth estimates using center feature vectors randomly chosen from the training
set.

As previously stated this convolutional neural network architecture is inspired by
[1]’s approach of using RBF kernels in estimating depth. The RBF units in Figure 4 refer
to φj(x) = exp(−||f(x)−f(cj)||2/2σ2) defined in [1]. Both the transformation and bases
have been translated into fully connected convolutional neural net layers, transformation
layer and basis layer respectively.

5 Implementation

5.1 Layer set up

Caffe [2] was used as a skeleton for implementation. The RBF unit (φj(x) =
exp(−||f(x)− f(cj)||2/2σ2)) from [1] was implemented as a caffe ”Blob” or layer, where
the center cj is, as previously mentioned, the fixed feature vector extracted from the
Places CNN.

5.2 Feedforward

The feedforward operation was relatively trivial to implement once the caffe skeleton
code was understood. By overriding the ForwardCPU() method in the Blob with my
implementation of φj(x) here referred to as the function RBF():
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for each center ci do
output[i] = RBF(ci, feature vector)

end
where i ∈ {1, 2, ..., n} and n is the number of centers(feature vectors extracted
from places)

5.3 Backpropogation

Figure 5: Gradient storage in Caffe

In caffe, the gradient for each Blob is computed and stored in bottomdiff. The
contents of bottomdiff are automatically copied to topdiff of the previous later. The
gradient from the next layer (topdiff in the current Blob) is multiplied by the output of
RBF() and added to bottomdiff of the current Blob:

for each center ci ∈ previous Blob do
bottomdiff += RBF(ci, feature vector)*topdiff

end

6 Testing

Unit tests were written to test the layer setup, feedforward and backpropagation.
Layer setup was tested by creating a Blob and verifying its dimensionality. Feedforward
was tested by injecting an input vector of ones and ten center feature vectors of ones as
well. In order for feedforward to produce the correct results each center should output
a value of one. This is because the l2-norm of x = [1, 1, ..., 1] and center ci = [1, 1, ..., 1]
should equal to 0. Because e0 = 1 each center should output one in the feedforward
operation.

As for the backpropogation unit test, caffe provides a GradientChecker utility which
I’ve used to my advantage. Using finite differencing it estimates a gradient and compares
it to the gradient computed by backpropogation. As you can see in Figure 6, the layer
passed all three tests as well as tests conducted by caffe.
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Figure 6: RBF component ThetaLayer passing unit tests

7 Results

7.1 First Experiment

I trained my model using a portion of the NYUV2[4] data set of depths, their
features extracted from PlacesCNN’s pool5 layer[5]. I used both the center crop and
mirrored crop pool5 features, this gave me 1590 training examples.

Figure 7: Left: training using the raw images. The horizontal axis represents the iter-
ation number, and the vertical axis is the RMSE(Root Mean Square Error)
of the validation set; Right: a visualization of the depth produced from a
validation example

You can see from Figure 7 that the training wasn’t going so smoothly. I visualized
the depth estimates of some of the validation examples and they seemed visually similar.
I concluded that the network might be learning the mean depth map instead of individual
depth estimates.
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7.2 After Subtracting the Mean

Figure 8: Training after mean depth subtraction. The horizontal axis represents the
iteration number, and the vertical axis is the RMSE(Root Mean Square Error)
of the validation set; Right: a visualization of the depth produced from a
validation example

As you can see from Figure 8, the training is less jittery. However, the validation
error is still two low.

8 Further Work

After scripting further unit tests to verify the ThetaLayer output, I’ve found that it’s
reading the centers incorrectly. I’m implementing a different strategy to input the centers
which will hopefully improve the training error. I’ve also found a bug lurking in my data
pre-processing step. The mean was not being subtracted from the depths correctly.
The bug has been handled and the preprocessing tested and after the ThetaLayer is
corrected, I will be re-training the model.

The next step after seeing an improvement in the RMSE, would be to merge this
convolutional neural net with Places and start finetuning.
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