
Predicting the Helpfulness of Amazon Reviews

Cristian Caraballo Richard Addo Hanna Kim

Abstract

With the increasing importance of online product reviews in the purchasing

decisions of online shoppers, it has become important for online businesses to present

helpful reviews to prospective buyers. A great majority of these businesses, if not all, use

crowd-sourced “helpfulness” scores that are from binary ratings (helpful or not helpful)

from review readers. Previous studies have used methods such as support vector

regression (SVR) and linear regression to predict this helpfulness score with varied results.

In this study, a Random Forest regression model was used to predict the “helpfulness”

score from a dataset of Amazon reviews. A regularized least squares linear regression

model was also implemented for baseline and comparison purposes. The Random Forest

and linear regression implementation resulted in average errors of 5.22% and 5.5%,

respectively, compared to 5.65% and 7.36% errors of SVR and linear regression

respectively from a previous study using different features [1].

Introduction

Reviews have completely transformed the experience of online shopping. In the

past, there was much risk involved for the consumer because of uncertainties in the

product’s quality, durability, efficiency, and etc. Now, reviews serve as a tool to minimize

the distance between the product and the consumer. In theory, having a public forum on

these shopping websites where previous buyers can enter in text reviews and star-based

ratings should solve the problem. However, such a method does not account for the fact

that undetailed textual reviews do exist and do little to inform the decision making process

of a potential buyer. There have been many modifications made on shopping websites to

work towards this goal of providing a potential buyer with enough information to help

decide whether or not to purchase an item.

Amazon.com, for instance, poses the question, "Was this review helpful to you?

Yes/No" to a potential buyer reading a review, and automatically sorts reviews based on

“helpfulness”. However, not everyone reading a review responds to this question, and

hence inundation of unhelpful reviews still persists.

Some work has been done to study the specific factors that affect helpfulness, while

other work has focused on the prediction of helpfulness scores. It has been found that

review extremity (represented by the reviewer’s star rating of the product) and review

depth (including review length) tend to be taken into account by consumers when

considering the helpfulness of a review [2]. In the 2006 study by Zhang and Varadarajan,

SVR and linear regression were used with a feature set including lexical similarity of the

review to the product specification, part-of-speech tags, and the number of subjective

words.

In this present study, we propose the use of regression Random Forest using word

presence, review length, review extremity, and product price to predict the helpfulness

score of reviews. Random Forest was chosen because they have shown comparable

accuracy to state of the art algorithms such as SVMs [3] while providing additional speed

benefits.

“HELPFULNESS” DEFINITION

For the purposes of this study, “helpfulness” is defined as the following:

DATASET

We successfully obtained links to the entire Amazon reviews dataset compiled by

the Stanford Network Analysis Platform (SNAP) Group as part of the Stanford Large

Network Dataset Collection. The dataset consists of almost 35 million consumer product

reviews from Amazon.com, spanning 18 years. Almost 2.5 million products are reviewed by

over 6.5 million users, and over 50,000 of these users have reviewed more than 50

products.

The original dataset comprises reviews for 28 different consumer product

categories. However, all training and testing so far has been performed on a subset of

reviews for the “Electronics” category.

Each review in the dataset comes with the user’s name and ID, the user’s rating of

the product, the total number of votes on the review with the corresponding number of

“helpful” votes, and other information in addition to the actual review text. Additionally,

the dataset provides a separate file containing descriptions of all the products. Figure 1 is a

snapshot of the format of each review in the dataset [4, 5].

Figure 1: Snapshot of each review in the dataset. Most pertinent to this study are

“review/helpfulness”, “review/score”, and “review/text”.

PRE-PROCESSING & FEATURE EXTRACTION

Preliminary experimentation was done via 5-fold cross-validation to determine

which representation of the review text would produce optimal results. Figure 1 and Table

1 show that the word presence representation outperformed the word frequency

representation with an average error of 5.22% compared to 5.88%. For this reason, all

further experimentation were performed using the word presence representation of the

review text. These preliminary results may be due to the word frequency model not

generalizing as well as the word presence model, especially since the review lengths tend

to be relatively short. Indeed, Zhang and Varadarajan also counted the total occurrences of

words in the list, rather than individual word frequencies [1].

Review Text Representation Average Mean Squared Error

Word frequency 0.0588

Word presence 0.0522

Table 1:​ Average mean squared errors for the two representations of the review text.

Figure 1.​ Comparison of review text representations (word presence vs. word frequency). These

values were obtained by performing multiple runs on solely the training set. In each run, a

fraction of the training set was used for testing and the remaining for training.

Previous studies have shown that the length of a review and the review writer’s

rating of the product correlate with the helpfulness of the review [2]. For this reason, we

included the aforementioned two attributes of a review in the features for each review. For

each review, the feature vector comprises

● a word presence representation of the review text.

● the review writer’s rating of the product.

● the cost of the product.

● the number of words in the review text.

Before extracting features for the reviews, a filter was applied on the dataset. Only

reviews with at least 30 words in the review text and at least 10 votes on the review were

included in training and test sets.

Using of the selected reviews, a vocabulary was built from the subset of the data

selected as the training set. Porter stemming was applied to the review text of each of the

reviews. A mapping of stemmed words to their frequencies in the training set was created

and the ​n ​most frequent words were selected as the vocabulary.

Finally, features were extracted for each of the training and test set examples. The

same Porter stemmer was applied on each word in the review. A check for the presence of

the vocab words in the stemmed review words was done to obtain the word presence

representation of the review text. The product rating (discrete values from 1-5), product

cost, and review length were then added to the created feature vector.

RANDOM FOREST IMPLEMENTATION

The Random Forest comprises a set of regression trees. Each tree is built using

CART methodology and allowed to grow to the maximum depth without any pruning.

Additionally, two layers of randomness are employed in the Random Forest

implementation:

● Bagging​: A random sample of the training data is selected (with replacement) and

used to build each tree in the forest.

● Random features​: To split a node, a random sample of the features are selected and

evaluated with different thresholds to identify the best feature and threshold to split

on at that node.

These two layers of randomness were employed because they have been shown to produce

high levels of accuracy [3].

Termination Criteria

In the current implementation, the only termination criterion is the size of the node.

In the code, a variable ​minSplittableNodeSize​ is preset, and during the building of a

tree, any node that has fewer than ​minSplittableNodeSize​ examples is not split any

further. For testing, ​minSplittableNodeSize​ ​= 50​.

Prediction

The final predicted helpfulness score for the given review is the mean of values

predicted by the regression trees in the forest.

RESULTS & DISCUSSION

Figure 2:​ Cross-validation results of varying the minimum number of examples a node must have

before splitting.

Figure 2 shows the effects of varying the initialization of the variable

minSplittableNodeSize ​on the overall performance of the random forest. By varying

the size of ​minSplittableNodeSize​, what is being affected is the minimum number of

examples a node must have before it can be split further. Shown on the graph above (Figure

2), as the minimum number of examples increases, the mean squared error (MSE)

decreases, albeit almost negligibly, for both testing and cross-validation.

Figure 3​: Cross-validation results of varying the number of candidates randomly selected and

considered for the best split

Figure 3 shows how much varying the number of candidates selected and

considered for best split affects the overall performance of the random forest. As shown on

the graph, there is not much fluctuation in the results with randomly sampling the features

for best split. The MSE of the cross validation stays between 0.052 and a 0.054, while for

the test, the MSE lies between 0.063 and 0.064.

In summary, Figures 2 and 3 show that for both cross validation and testing, varying

either parameter negligibly impacted performance of the random forest. However, this is

expected for random forests [6].

Figure 4:​ Random Forest performance vs. regularized least squares linear regression baseline.

Figure 4 shows the comparison between the random forest algorithm and our

baseline, regularized least squares linear regression. The random forest model

outperformed the baseline on an average basis with the first iteration being a difference of

almost 1%. Although this difference does not seem particularly significant, it is similar to

that of previous studies. Zhang and Varadarajan reported ~2% difference between their

SVR and linear regression model results.

CONCLUSION

As discussed, the obtained results from a word-presence regression model of

Random Forests are comparable to, and in some cases better than, previous studies using

SVR and linear regression. With the added benefits of speed and ease of use, we hope for

further exploration of the use of Random Forests in tackling the problem of predicting

helpfulness of online reviews.

IMPLEMENTATION DETAILS

All code used in this project can be found in the submitted ​AutoRateReviews​ directory.

This directory contains 5 main subdirectories.

● CommonFuncsAndScripts​ - This directory contains functions and scripts that are

used in both learning methods that were implemented (i.e. Random Forest and

Regularized Least Squares Regression)

● Data​ - This directory houses the dataset used in the project. The submitted version

comes with a subset of the Electronics category reviews.

● Baseline​ - This directory contains all functions and scripts that are used in the

regularized least squares baseline.

● RandomForest​ - This directory contains all major scripts and functions used in the

Random Forest implementation

● External​ - This directory contains all third party source code that was used in the

project.

○ porterStemmer.m​ - This implementation of the Porter stemming algorithm

was used in the preprocessing step. The function was obtained from the

MatlabNLP library: http://faridani.github.com/MATLABNLP

○ reviewStopWords.stop​ - This file contains the words used as stop words in

the preprocessing and feature extraction stage. This file is a modified version

of english.stop available at : http://faridani.github.com/MATLABNLP

○ SanitizeComment​ - This function strips a review text of any punctuations. The

function was obtained from the MatlabNLP library:

http://faridani.github.com/MATLABNLP

REFERENCES

[1] Z. Zhang and B. Varadarajan. Utility Scoring of Product Reviews. ​Proceedings of the 15th ACM

 international Conference on Information and Knowledge Management (CIKM ',06)​. pp. 51-57,

 2006.

[2] Susan M. Mudambi and David Schuff. What Makes a Helpful Online Review? A Study of

Customer Reviews on Amazon.com. ​MIS Quarterly, ​Vol. 34, No. 1. (2010), pp. 185-200

[3]. Andy Liaw and Matthew Wiener. Classification and Regression by randomForest. ​R News​, Vol.

 2, No. 3. (2002), pp. 18-22.

[4] http://snap.stanford.edu/data/web-Amazon.html.

[5] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating

 dimensions with review text. ACM Recommender Systems conference (RecSys), 2013.

[6] Leo Breiman and Adele Cutler. Random Forests.

 https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

