
Final Report: Classification

of Plankton Classes
By Tae Ho Kim and Saaid Haseeb Arshad

Table of Contents

1. Project Overview

a. Problem Statement

b. Data

c. Overview of the Two Stages of Implementation

2. The CNN Algorithm

3. Model Optimization

4. Implementation Details

5. Conclusion

1. Project Overview

a. Problem Statement

Our project develops convolutional neural networks (CNN) to automatically classify

plankton images. Given as input images of a single organism, the algorithm would

predict one of 121 plankton classes that it belongs to. Using our algorithm we have

achieved accuracy of 52%.

Our algorithm has the potential to help scientists gauge ocean and ecosystem health more

efficiently and accurately. As planktons are a crucial part of the earth’s ecosystem,

scientists have manually measured and monitored plankton populations. However, the

traditional method was time-consuming and lacked the scope necessary for large-scale

studies. An alternative solution is an automated image classification system based on

machine-learning tools like our algorithm. After training on large data images, the system

can read in many images of planktons and output their species easily and reasonably

accurately.

b. Data

Regarding the data of the project, we use the MNIST dataset, which consists of a set of

60,000 handwritten digits from 0 to 9, for testing of our algorithm in the first stage of

implementation, as well as our plankton image dataset. The data used to classify

planktons come from the Kaggle website. We have a total of about 30,000 labelled

plankton images that we split into 20,000 images for training and 10,000 for testing.

Example images of our plankton training set are shown below:

c. Two Stages of Implementation

We ended up having two main implementations of our convolutional neural network. The

first implementation was based off of the Stanford UFLDL tutorial on CNN
1
. This first

implementation constructs CNN with one convolutional layer. Unfortunately, our initial

implementation was limited in that it was a learning exercise, very well designed to teach

us the basics of the architecture of CNNs, but could not easily extend additional

convolutional and pooling layers. Adding more layers ended up being extremely difficult

in this implementation because the selection of layers and their parameters was not

1 http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork/

modularized, rather, the whole system was hard-coded assuming only a single hidden

layer. A better means of trying a more robust and complex model were needed.

The second implementation utilized the DeepLearnToolbox developed by Rasmus Berg

Palm for MATLAB. We specifically used the commented version and guide provided by

Chris Mccormick
2
. In this second implementation, we were able to design a more

complete CNN with 2 convolutional layers and perform many experiments to find the

final model structure. Our best result comes from this implementation.

2. The CNN Algorithm

a. Forward Propagation

A CNN begins with a certain number of hidden layers, where a single layer is defined as

a convolution layer followed by a pooling or subsampling layer. The first layer is a

convolutional layer followed by mean pooling of the convolved features. The

convolutional layer applies some mapping function (like a sigmoid or rectified linear

unit) to all valid points in the image f(Wxr,c + b) to increase the non-linear properties of

the decision function and the overall network, where W and b are the learned weights

from the input layer to the convolutional layer and x(r,c) is a subset of the image with the

upper left corner at (r, c). The size of the subset corresponds to that of the feature W. The

images obtained from convolution are summarized in the subsequent pooling stage. The

images are divided in disjoint regions to which we apply the mean or max operation get

the pooled convolved features. In our complete model, we add another

convolution/pooling layer that repeats the operation above.

Finally, we pass the images to a single densely connected layer that outputs a probability

matrix consisting of estimated probability for each class given an input example image.

b. Back Propagation and Learning Parameters

For the cost of the network, we used the standard cross entropy between the predicted

probability distribution over the classes for each image and the ground truth distribution:

−
1

n
∑

𝑥

∑[𝑦𝑗ln𝑎𝑗
𝐿 + (1 − 𝑦𝑗) ln(1 − 𝑎𝑗

𝐿)],

𝑗

where j indicates an output neuron, y is the desired value at the output neuron, n is the

total number of example inputs, and a
L

is the actual output value. We also tested using a

second version of the cost function with a weight decay parameter 𝜆, which penalizes

weights that are too large. This effect is amplified as the value of 𝜆 increases:

2 https://chrisjmccormick.wordpress.com/2015/01/10/understanding-the-deeplearntoolbox-cnn-
example/

−
1

n
∑

𝑥

∑[𝑦𝑗ln𝑎𝑗
𝐿 + (1 − 𝑦𝑗) ln(1 − 𝑎𝑗

𝐿)] +
𝜆

2𝑛
𝑗

∑ 𝑤2

𝑤

After deriving the error for the output of the CNN using the cross entropy function, we

propagated the error through all our previous layers and calculated the gradient of the

weights and biases at each layers. Using stochastic gradient descent we optimized our

CNN model.

Diagram 1. Simple graphic illustration of forward and backward propagation

In summary, the algorithm can be described as follows:

1. Given an input image or set of images, convolve each one using x filters to get x

feature maps for a single image.

2. Subsample each feature map using pooling (mean or max); repeat steps 1 and 2 a

desired number of times.

3. Using some non-linear function on the resulting activations from step 2.

4. Implement a standard feed-forward neural network and forward propagate to get

results and back-propagate using the errors calculated from the results and the

expected labeled values.

5. Repeat forward and back-propagation through all layers until best results are

obtained.

3. Model Optimization

Our process began with our first implementation CNN that has one convolutional layer

using the UFLDL tutorial. We present the results using the MNIST data and the plankton

data. In our second implementation, we use DeepLearn Toolbox to have a more complete

CNN with two convolutional layers. We discuss experiments we ran to optimize our

models of both implementations in turn.

As we mentioned in our milestone, a basic metric of accuracy was determined to gauge

the performance of the algorithm as three main factors that determine how the algorithm

runs were varied:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 1{𝑦𝑖 == 𝑦�̂�}

𝑛
𝑖=1

𝑛

where n is the total number of examples, i is the index of the i-th example, 𝑦𝑖 is the “real”

test value and 𝑦�̂� is the predicted value that is output from our algorithm.

Implementation 1 (1 Convolutional Layer: UFLDL Tutorial)

We were pleased to observe very high rates of accuracy on the MNIST data set, as

reflected in Table 1. Since we were using starter code specifically catered towards this

dataset, this was a good test to ensure our initial understanding and implementation of our

convolutional neural network was sound. Training and testing on the plankton data set

yielded much lower accuracy, peaking at 21% as shown in Table 2. Tables 1 and 2 show

various accuracy results on the MNIST and the plankton data that we obtained as we

changed model parameters. Below we illustrate our experiments in more detail with

figures.

MNIST

Dataset
 Epochs Batch Alpha Mom Weight Dec ImageDim numClasses FilterDim numFilters poolDim Accuracy

3 100 0.1 0.95 0 28 121 9 20 2 0.9789

3 256 0.1 0.95 0 28 121 9 20 2 0.987

3 256 0.1 0.95 0.00001 28 121 9 20 2 0.9668

3 256 0.1 0.95 0.0001 28 121 9 20 2 0.8959

3 256 0.1 0.95 0.1 28 121 9 20 2 0.3446

3 256 0.1 0.95 1000 28 121 9 20 2 0.1135

3 500 0.1 0.95 0 28 121 9 20 2 0.9577

3 1000 0.1 0.95 0 28 121 9 20 2 0.9331

3 2000 0.1 0.95 0 28 121 9 20 2 0.9077

3 5000 0.1 0.95 0 28 121 9 20 2 0.8017

Table 1. Results for the MNIST data

Plankton
Dataset

 Epochs Batch Alpha Mom Weight Dec ImageDim numClasses FilterDim numFilters poolDim Accuracy
3 100 0.1 0.95 0 28 121 9 20 2 0.029371

3 500 0.1 0.95 0 28 121 9 20 2 0.123022

3 500 0.1 0.95 0 34 121 9 20 2 0.131207

3 500 0.1 0.95 0 40 121 9 20 2 0.214205

3 500 0.1 0.95 0.00001 40 121 9 20 2 0.014969

3 500 0.1 0.95 0.001 40 121 9 20 2 0.061629

3 500 0.1 0.95 0.1 40 121 9 20 2 0.029421

3 500 0.1 0.95 1000 40 121 9 20 2 0.029421

3 500 0.1 0.95 0 50 121 9 20 2 0.115929

3 1000 0.1 0.95 0 28 121 9 20 2 0.029074

3 2000 0.1 0.95 0 28 121 9 20 2 0.125

3 5000 0.1 0.95 0 28 121 9 20 2 0.117781

3 6000 0.1 0.95 0 28 121 9 20 2 0.044403

3 20000 0.1 0.95 0 28 121 9 20 2 0.034612

Table 2. Results for the plankton data

We experimented with different model parameters to find the optimal structure in our

first implementation:

1) We first varied the input image sizes and tested for the accuracy. Looking at

Figure 1, the Input Image sizes of 28, 34, 40, and 50 were tested out, yielding

accuracies of 12%, 13%, 21%, and 12%, showing an apparent local optimal size

of 40. Since the total image size determines the total number of input neurons, the

image size can significantly impact model complexity, while also influencing how

easily the convolution and pooling layer can extract features from the images.

Smaller images will make image feature extraction more difficult (less pixels per

unit area to work with) and yield a simpler model (less parameters meaning a

shorter length for our theta vector). The opposite is true for a larger image, so it

seems we would tend for a larger image. However, given that the parameter size

increases with the square of the image dimensions (30 pixels means 30^2 input

neurons while 40 pixels mean 40^2 neurons, a difference of 700) increasing

image dimension size too much can quickly lead to an overly complex model and

thus over fitting. From the values we tested, the optimum falls somewhere around

40, though more values will be tested to see if a better optimum exists.

Figure 1

2) Minibatch determines the size of the subsamples taken from the entire training set

for every iteration of the optimization’s calculation of new parameter values. For

example, when we set the minibatch size to be 256, the main optimization

function calls on 256 random values from the training set many times until every

example in the training set has been used in some combination. Interestingly,

significantly increasing the minibatch size seems to significantly decrease overall

accuracy for both the MNIST and plankton datasets.

0

0.05

0.1

0.15

0.2

0.25

25 35 45 55

A
cc

u
ra

cy
 (

%
)

Image Input Size (Pixels)

Plankton Data

Figure 2

3) Finally, looking at Figures 3 and 4, the influence of the weight decay parameter

lambda was as expected. Increasing lambda significantly diminished the

complexity, and thus the accuracy of the model when trained on the MNIST

dataset. A similar result was possible for the Plankton Image, but given that the

addition of the weight decay parameter was causing it to plateau at a very low

accuracy also shows the model was definitely too simple for the problem of

plankton classification we are trying to solve.

Figure 3

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000

A
cc

u
ra

cy
 (

%
)

Minibatch Size

Mini-Batchsize vs. Accuracy

Plankton Data

Mnist Dataset

0

0.2

0.4

0.6

0.8

1

0.00001 0.001 0.1 10 1000

A
cc

u
ra

cy
 (

%
)

Weight Decay Factor

Weight Decay Factor vs. Accuracy

Mnist Dataset

Figure 4

The overall conclusion was that a significantly more robust and complex algorithm was

needed if we were to significantly improve accuracy on the plankton data set.

In this implementation, we tried several methods to improve performance. For example, a

preprocessing step was added that boosted the best performance from 21 to 27% accuracy

in our initial implementation. However, it was found that histogram equalization had no

tangible effect in later tests with Implementation 2 and was thus scrapped as a

preprocessing step. Mean thresholds and edge detection were tried as well but to no avail.

Implementation 2 (2 convolutional layers: DeepLearnToolbox)

We augmented the first model by adding another convolutional layer. In total, this model

contains two sets of convolutional/mean pooling layers and one fully connected layer that

classify the outputs.

First and foremost, we had to verify that the toolbox and our implementation yielded the

same results with the same parameters, to ensure that the assumption that our

implementation worked as well as another toolbox. We were pleased to see that our

implementation got exactly the average accuracy that the DeepLearnToolbox got,

averaged over 3 runs:

Plankton Dataset:
Implementation 1

Epochs Batch Alpha Mom ImageDim numClasses FilterDim numFilters poolDim Accuracy

3 50 0.1 0.95 40 121 9 20 2 0.0614

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000

A
cc

u
ra

cy
 (

%
)

Weight Decay Factor

Weight Decay Parameter vs. Accuracy

Plankton Data

Plankton Dataset:
Implementation 2

Epochs Batch Alpha Mom ImageDim numClasses FilterDim numFilters poolDim Accuracy

3 50 0.1 0.95 40 121 9 20 2 0.0614

Table 3. Comparison of Implementation 1 and 2

Thus we assumed that all experiments run with the toolbox are reflective of how our

initial implementation, Implementation 1 would perform if we could add another hidden

layer and vary parameters as we do in following.

We performed the following experiments using the DeepLearn toolbox to find the

optimal model structure.

1) We varied the number of feature maps in each of the convolutional layer keeping

other parameters fixed. Table 4 shows the results from this experiment. We found

that the optimum number of feature maps is 6 for the first layer and 8 for the

second layer. We ran each combination of the parameters above using three

different initializations and obtained the accuracy score by averaging the accuracy

outcomes. The other parameters were held in the following way: number of

epochs: 3, filter size: 5, mean pooling dimension: 2, and batch size: 50. Figure 5

illustrates the typical trend of accuracy score as we vary the number of feature

maps in the second layer keeping the feature map count in the first layer fixed at

6. The optimum usually occurs when the feature map counts are similar for both

layers.

 Table 4. Number of Feature Maps VS Accuracy

Feature Maps -Layer 1 # Feature Maps -Layer 2 Accuracy Score(%)

 2 2 8.66
2 4 8.02
2 6 10.39
2 8 11.15
2 10 7.24
2 12 5.89

 4 4 10.09
4 6 10.40
4 8 7.73
4 10 9.70
4 12 7.00
4 14 7.91

 6 6 11.72
6 8 12.05
6 10 7.49
6 12 5.31
6 14 8.15
6 16 6.37

 8 8 10.44
8 10 8.03
8 12 6.37
8 14 7.60
8 16 5.04
8 18 8.36

Figure 5. Number of Feature Maps VS Accuracy

2) We found that the optimal filter size is 5 for each of the convolutional layers

(Table 5). We used three different initializations and obtained the accuracy score

by averaging the accuracy outcomes. The other parameters were held in the

following way: number of epochs: 3, first layer filter dimension: 6, second layer

filter dimension: 8, mean pooling dimension: 2, and batch size: 50.

Filter Size - Layer 1 Filter Size - Layer 2 Accuracy Score (%)

5 5 11.99

5 9 11.94

5 13 9.36

 9 5 10.20

9 9 9.02

9 13 6.48

 13 5 6.48

13 9 8.98

13 13 6.59

 Table 5. Filter Size VS Accuracy

3) We determined the optimal mean gradient step (batch size) of the model to be 50.

Figure 6 shows how our model’s performance substantially worsened with higher

values of batch size. We ran the model for each values of the parameter using

three different initializations and obtained the accuracy score by averaging the

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 5 10 15 20

A
cc

u
ra

cy
 (

%
)

Number of Feature Maps in Second Layer

Number of Feature
Maps in First Layer
Fixed at 6

accuracy outcomes. The other parameters were held in the following way: number

of epochs: 3, filter size: 5, first layer filter dimension: 6, second layer filter

dimension: 8, mean pooling dimension: 2, and batch size: 50.

Figure 6. Batch Size VS Accuracy

4) Figure 7 shows our optimized model tested over various time periods. Obviously,

the longer we train, the better our accuracy, but we see that after 50 epochs, the

rate of improvement for every epoch decreases. The best accuracy we have

achieved after 300 epochs so far has been 52%. We are currently running

experiments for 500 and 1000 epochs but those will not be done till tomorrow

night!

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

A
cc

u
ra

cy
 (

%
)

Batch Size

Figure 7. Number of Epochs VS Accuracy

5) An important factor to account for was the difference between classes in terms of

the labeled examples available for each class. For example, the class with the

smallest number of examples has only 9 images compared to the one with the

most with 1979. It was suggested to us by Professor Torresani and TA Haris Baig

that we account for this by multiplying by a weight factor 𝑊 =
1

𝑠𝑖𝑧𝑒(𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑦(𝑖))
 in

our cost function. However, in trying to implement this in our first

implementation, results dropped to 0.06 % accuracy at best and implementation 2

yielded at best 1.34% accuracy.

4. Implementation Details

The Stanford tutorial of the first implementation came with a starter code where we have

to implement the convolution and pooling layers, the forward and backward propagation,

and the calculation of the gradients. The README file found in our uploaded code will

make it apparent, but the code written by us is indicated by comment tags in capital

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

A
cc

u
ra

cy
 (

%
)

Epochs

Accuracy of Optimized Model vs. Epochs
over Data

Optimized Model on…

commented tags%SAAID AND TAE HO CODE STARTS HERE and %SAAID AND

TAE HO CODE ENDS HERE. What we wrote can be assumed to be in between these

two lines and everything else is externally sourced. There can be multiple sections where

our code ends and begins in one source code file. Our codes can be found in the

following files:

 Final_Submission

o Code_Final_Impl1

 cnnTrain.m

 cnnCost.m

 computeNumericalGradient.m

 minFuncSGD.m

 cnnConvolve.m

 cnnPool.m

We had an original script to process the data from the original jpeg images into usable

.mat files. This file also allowed us to do some basic processing of the data, primarily

resizing and mean-thresholding, though after optimization, the only preprocessing done

in this script was resizing of the images:

 Final_Submission

o ImageHandler

However the original training images folder of jpegs has not been included because it

would take up too much space and be too time consuming to move.

For the second implementation, the set of code can be found in the Code_Final_Impl2

folder in our Final Submission file. The only file we modified here was

test_example_CNN, which can be found through the following path, and we have tagged

the code we have written as we did in the first implementation:

 Final_Submission

o Code_Final_Impl2

 tests

 test_example_CNN

5. Conclusion

In this project, we set out to implement an automated image processing algorithm that

classifies plankton species given plankton images. We achieved accuracy of 52% so far.

Such high accuracy attests to the strength of CNN in image classification. We plan on

increasing the number of epochs and increase the accuracy for better performance.

REFERENCES

https://chrisjmccormick.wordpress.com/2015/01/10/understanding-the-deeplearntoolbox-

cnn-example/

http://www.kaggle.com/c/datasciencebowl/details/tutorial

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to

Document Recognition, Proceedings of the IEEE, 86(11):2278-2324,

November 1998,\cite{lecun-98}.

http://neuralnetworksanddeeplearning.com/index.html

http://ufldl.stanford.edu/tutorial/

http://www.kaggle.com/c/datasciencebowl/details/tutorial
http://www.kaggle.com/c/datasciencebowl/details/tutorial
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html

