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1. Project Overview 

 

a. Problem Statement 

 

Our project develops convolutional neural networks (CNN) to automatically classify 

plankton images. Given as input images of a single organism, the algorithm would 

predict one of 121 plankton classes that it belongs to. Using our algorithm we have 

achieved accuracy of 52%.  

 

Our algorithm has the potential to help scientists gauge ocean and ecosystem health more 

efficiently and accurately. As planktons are a crucial part of the earth’s ecosystem, 

scientists have manually measured and monitored plankton populations. However, the 

traditional method was time-consuming and lacked the scope necessary for large-scale 

studies. An alternative solution is an automated image classification system based on 

machine-learning tools like our algorithm. After training on large data images, the system 

can read in many images of planktons and output their species easily and reasonably 

accurately.  

 

b. Data 

 

Regarding the data of the project, we use the MNIST dataset, which consists of a set of 

60,000 handwritten digits from 0 to 9, for testing of our algorithm in the first stage of 

implementation, as well as our plankton image dataset. The data used to classify 

planktons come from the Kaggle website. We have a total of about 30,000 labelled 

plankton images that we split into 20,000 images for training and 10,000 for testing. 

Example images of our plankton training set are shown below: 

 

 
 

c. Two Stages of Implementation 

 

We ended up having two main implementations of our convolutional neural network. The 

first implementation was based off of the Stanford UFLDL tutorial on CNN
1
. This first 

implementation constructs CNN with one convolutional layer. Unfortunately, our initial 

implementation was limited in that it was a learning exercise, very well designed to teach 

us the basics of the architecture of CNNs, but could not easily extend additional 

convolutional and pooling layers. Adding more layers ended up being extremely difficult 

in this implementation because the selection of layers and their parameters was not 

                                                        
1 http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork/ 



modularized, rather, the whole system was hard-coded assuming only a single hidden 

layer. A better means of trying a more robust and complex model were needed. 

 

The second implementation utilized the DeepLearnToolbox developed by Rasmus Berg 

Palm for MATLAB. We specifically used the commented version and guide provided by 

Chris Mccormick
2
. In this second implementation, we were able to design a more 

complete CNN with 2 convolutional layers and perform many experiments to find the 

final model structure. Our best result comes from this implementation. 

  

2. The CNN Algorithm 

 

a. Forward Propagation 

 

A CNN begins with a certain number of hidden layers, where a single layer is defined as 

a convolution layer followed by a pooling or subsampling layer. The first layer is a 

convolutional layer followed by mean pooling of the convolved features. The 

convolutional layer applies some mapping function (like a sigmoid or rectified linear 

unit) to all valid points in the image f(Wxr,c + b) to increase the non-linear properties of 

the decision function and the overall network, where W and b are the learned weights 

from the input layer to the convolutional layer and x(r,c) is a subset of the image with the 

upper left corner at (r, c). The size of the subset corresponds to that of the feature W. The 

images obtained from convolution are summarized in the subsequent pooling stage. The 

images are divided in disjoint regions to which we apply the mean or max operation get 

the pooled convolved features. In our complete model, we add another 

convolution/pooling layer that repeats the operation above.  

 

Finally, we pass the images to a single densely connected layer that outputs a probability 

matrix consisting of estimated probability for each class given an input example image.  

 

b. Back Propagation and Learning Parameters 

 

For the cost of the network, we used the standard cross entropy between the predicted 

probability distribution over the classes for each image and the ground truth distribution: 
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where j indicates an output neuron, y is the desired value at the output neuron, n is the 

total number of example inputs, and a
L 

is the actual output value. We also tested using a 

second version of the cost function with a weight decay parameter 𝜆, which penalizes 

weights that are too large. This effect is amplified as the value of 𝜆 increases:  

 

                                                        
2 https://chrisjmccormick.wordpress.com/2015/01/10/understanding-the-deeplearntoolbox-cnn-
example/ 
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After deriving the error for the output of the CNN using the cross entropy function, we 

propagated the error through all our previous layers and calculated the gradient of the 

weights and biases at each layers. Using stochastic gradient descent we optimized our 

CNN model. 

 

 
Diagram 1. Simple graphic illustration of forward and backward propagation 

 
 

In summary, the algorithm can be described as follows: 

 

1. Given an input image or set of images, convolve each one using x filters to get x 

feature maps for a single image. 

2. Subsample each feature map using pooling (mean or max); repeat steps 1 and 2 a 

desired number of times. 



3. Using some non-linear function on the resulting activations from step 2. 

4. Implement a standard feed-forward neural network and forward propagate to get 

results and back-propagate using the errors calculated from the results and the 

expected labeled values. 

5. Repeat forward and back-propagation through all layers until best results are 

obtained. 

 

3. Model Optimization 

 

Our process began with our first implementation CNN that has one convolutional layer 

using the UFLDL tutorial. We present the results using the MNIST data and the plankton 

data. In our second implementation, we use DeepLearn Toolbox to have a more complete 

CNN with two convolutional layers. We discuss experiments we ran to optimize our 

models of both implementations in turn.  

 

As we mentioned in our milestone, a basic metric of accuracy was determined to gauge 

the performance of the algorithm as three main factors that determine how the algorithm 

runs were varied:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 1{𝑦𝑖 == 𝑦�̂�}

𝑛
𝑖=1

𝑛
 

where n is the total number of examples, i is the index of the i-th example, 𝑦𝑖 is the “real” 

test value and 𝑦�̂� is the predicted value that is output from our algorithm.  

 

Implementation 1 (1 Convolutional Layer: UFLDL Tutorial) 

 

We were pleased to observe very high rates of accuracy on the MNIST data set, as 

reflected in Table 1. Since we were using starter code specifically catered towards this 

dataset, this was a good test to ensure our initial understanding and implementation of our 

convolutional neural network was sound. Training and testing on the plankton data set 

yielded much lower accuracy, peaking at 21% as shown in Table 2. Tables 1 and 2 show 

various accuracy results on the MNIST and the plankton data that we obtained as we 

changed model parameters. Below we illustrate our experiments in more detail with 

figures.    

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MNIST 

Dataset 
          Epochs Batch Alpha Mom Weight Dec ImageDim numClasses FilterDim numFilters poolDim Accuracy 

3 100 0.1 0.95 0 28 121 9 20 2 0.9789 

3 256 0.1 0.95 0 28 121 9 20 2 0.987 

3 256 0.1 0.95 0.00001 28 121 9 20 2 0.9668 

3 256 0.1 0.95 0.0001 28 121 9 20 2 0.8959 

3 256 0.1 0.95 0.1 28 121 9 20 2 0.3446 

3 256 0.1 0.95 1000 28 121 9 20 2 0.1135 

3 500 0.1 0.95 0 28 121 9 20 2 0.9577 

3 1000 0.1 0.95 0 28 121 9 20 2 0.9331 

3 2000 0.1 0.95 0 28 121 9 20 2 0.9077 

3 5000 0.1 0.95 0 28 121 9 20 2 0.8017 
 

Table 1. Results for the MNIST data 
 

 

Plankton 
Dataset 

          Epochs Batch Alpha Mom Weight Dec ImageDim numClasses FilterDim numFilters poolDim Accuracy 
3 100 0.1 0.95 0 28 121 9 20 2 0.029371 

3 500 0.1 0.95 0 28 121 9 20 2 0.123022 

3 500 0.1 0.95 0 34 121 9 20 2 0.131207 

3 500 0.1 0.95 0 40 121 9 20 2 0.214205 

3 500 0.1 0.95 0.00001 40 121 9 20 2 0.014969 

3 500 0.1 0.95 0.001 40 121 9 20 2 0.061629 

3 500 0.1 0.95 0.1 40 121 9 20 2 0.029421 

3 500 0.1 0.95 1000 40 121 9 20 2 0.029421 

3 500 0.1 0.95 0 50 121 9 20 2 0.115929 

3 1000 0.1 0.95 0 28 121 9 20 2 0.029074 

3 2000 0.1 0.95 0 28 121 9 20 2 0.125 

3 5000 0.1 0.95 0 28 121 9 20 2 0.117781 

3 6000 0.1 0.95 0 28 121 9 20 2 0.044403 

3 20000 0.1 0.95 0 28 121 9 20 2 0.034612 

 

Table 2. Results for the plankton data 

 

We experimented with different model parameters to find the optimal structure in our 

first implementation: 

 

1) We first varied the input image sizes and tested for the accuracy. Looking at 

Figure 1, the Input Image sizes of 28, 34, 40, and 50 were tested out, yielding 

accuracies of 12%, 13%, 21%, and 12%, showing an apparent local optimal size 

of 40. Since the total image size determines the total number of input neurons, the 

image size can significantly impact model complexity, while also influencing how 



easily the convolution and pooling layer can extract features from the images. 

Smaller images will make image feature extraction more difficult (less pixels per 

unit area to work with) and yield a simpler model (less parameters meaning a 

shorter length for our theta vector). The opposite is true for a larger image, so it 

seems we would tend for a larger image. However, given that the parameter size 

increases with the square of the image dimensions (30 pixels means 30^2 input 

neurons while 40 pixels mean 40^2 neurons, a difference of 700) increasing 

image dimension size too much can quickly lead to an overly complex model and 

thus over fitting. From the values we tested, the optimum falls somewhere around 

40, though more values will be tested to see if a better optimum exists.  

 

 

Figure 1 

 

2) Minibatch determines the size of the subsamples taken from the entire training set 

for every iteration of the optimization’s calculation of new parameter values. For 

example, when we set the minibatch size to be 256, the main optimization 

function calls on 256 random values from the training set many times until every 

example in the training set has been used in some combination. Interestingly, 

significantly increasing the minibatch size seems to significantly decrease overall 

accuracy for both the MNIST and plankton datasets. 

0

0.05

0.1

0.15

0.2

0.25

25 35 45 55

A
cc

u
ra

cy
 (

%
) 

Image Input Size (Pixels) 

Plankton Data



 

 

Figure 2 

 

3) Finally, looking at Figures 3 and 4, the influence of the weight decay parameter 

lambda was as expected. Increasing lambda significantly diminished the 

complexity, and thus the accuracy of the model when trained on the MNIST 

dataset. A similar result was possible for the Plankton Image, but given that the 

addition of the weight decay parameter was causing it to plateau at a very low 

accuracy also shows the model was definitely too simple for the problem of 

plankton classification we are trying to solve. 

 

 

 
Figure 3 
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Figure 4 

 

 

 

The overall conclusion was that a significantly more robust and complex algorithm was 

needed if we were to significantly improve accuracy on the plankton data set. 

 

In this implementation, we tried several methods to improve performance. For example, a 

preprocessing step was added that boosted the best performance from 21 to 27% accuracy 

in our initial implementation. However, it was found that histogram equalization had no 

tangible effect in later tests with Implementation 2 and was thus scrapped as a 

preprocessing step. Mean thresholds and edge detection were tried as well but to no avail.  

 

Implementation 2 (2 convolutional layers: DeepLearnToolbox) 

 

We augmented the first model by adding another convolutional layer. In total, this model 

contains two sets of convolutional/mean pooling layers and one fully connected layer that 

classify the outputs. 

 

First and foremost, we had to verify that the toolbox and our implementation yielded the 

same results with the same parameters, to ensure that the assumption that our 

implementation worked as well as another toolbox. We were pleased to see that our 

implementation got exactly the average accuracy that the DeepLearnToolbox got, 

averaged over 3 runs: 

 
Plankton Dataset: 
Implementation 1 

             
Epochs Batch Alpha Mom ImageDim numClasses FilterDim numFilters poolDim Accuracy 

3 50 0.1 0.95 40 121 9 20 2 0.0614 
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Plankton Dataset: 
Implementation 2 

             
Epochs Batch Alpha Mom ImageDim numClasses FilterDim numFilters poolDim Accuracy 

3 50 0.1 0.95 40 121 9 20 2 0.0614 

Table 3. Comparison of Implementation 1 and 2 

 

Thus we assumed that all experiments run with the toolbox are reflective of how our 

initial implementation, Implementation 1 would perform if we could add another hidden 

layer and vary parameters as we do in following. 

 

We performed the following experiments using the DeepLearn toolbox to find the 

optimal model structure.  

 

1) We varied the number of feature maps in each of the convolutional layer keeping 

other parameters fixed. Table 4 shows the results from this experiment. We found 

that the optimum number of feature maps is 6 for the first layer and 8 for the 

second layer. We ran each combination of the parameters above using three 

different initializations and obtained the accuracy score by averaging the accuracy 

outcomes. The other parameters were held in the following way: number of 

epochs: 3, filter size: 5, mean pooling dimension: 2, and batch size: 50.   Figure 5 

illustrates the typical trend of accuracy score as we vary the number of feature 

maps in the second layer keeping the feature map count in the first layer fixed at 

6. The optimum usually occurs when the feature map counts are similar for both 

layers. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Table 4. Number of Feature Maps VS Accuracy 

 

# Feature Maps -Layer 1 # Feature Maps -Layer 2 Accuracy Score(%) 

   2 2 8.66 
2 4 8.02 
2 6 10.39 
2 8 11.15 
2 10 7.24 
2 12 5.89 

   4 4 10.09 
4 6 10.40 
4 8 7.73 
4 10 9.70 
4 12 7.00 
4 14 7.91 

   6 6 11.72 
6 8 12.05 
6 10 7.49 
6 12 5.31 
6 14 8.15 
6 16 6.37 

   8 8 10.44 
8 10 8.03 
8 12 6.37 
8 14 7.60 
8 16 5.04 
8 18 8.36 



 
Figure 5. Number of Feature Maps VS Accuracy 

 

2) We found that the optimal filter size is 5 for each of the convolutional layers 

(Table 5). We used three different initializations and obtained the accuracy score 

by averaging the accuracy outcomes. The other parameters were held in the 

following way: number of epochs: 3, first layer filter dimension: 6, second layer 

filter dimension: 8, mean pooling dimension: 2, and batch size: 50. 

Filter Size - Layer 1 Filter Size - Layer 2 Accuracy Score (%) 

5 5 11.99 

5 9 11.94 

5 13 9.36 

   

   9 5 10.20 

9 9 9.02 

9 13 6.48 

   

   13 5 6.48 

13 9 8.98 

13 13 6.59 

       Table 5. Filter Size VS Accuracy 

 

3) We determined the optimal mean gradient step (batch size) of the model to be 50. 

Figure 6 shows how our model’s performance substantially worsened with higher 

values of batch size. We ran the model for each values of the parameter using 

three different initializations and obtained the accuracy score by averaging the 
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accuracy outcomes. The other parameters were held in the following way: number 

of epochs: 3, filter size: 5, first layer filter dimension: 6, second layer filter 

dimension: 8, mean pooling dimension: 2, and batch size: 50.    

 

 
Figure 6. Batch Size VS Accuracy 

 

 

4) Figure 7 shows our optimized model tested over various time periods. Obviously, 

the longer we train, the better our accuracy, but we see that after 50 epochs, the 

rate of improvement for every epoch decreases. The best accuracy we have 

achieved after 300 epochs so far has been 52%. We are currently running 

experiments for 500 and 1000 epochs but those will not be done till tomorrow 

night! 
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Figure 7. Number of Epochs VS Accuracy 

 

5) An important factor to account for was the difference between classes in terms of 

the labeled examples available for each class. For example, the class with the 

smallest number of examples has only 9 images compared to the one with the 

most with 1979. It was suggested to us by Professor Torresani and TA Haris Baig 

that we account for this by multiplying by a weight factor 𝑊 =
1

𝑠𝑖𝑧𝑒(𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑦(𝑖))
 in 

our cost function. However, in trying to implement this in our first 

implementation, results dropped to 0.06 % accuracy at best and implementation 2 

yielded at best 1.34% accuracy.  

 

 

4. Implementation Details 

 

The Stanford tutorial of the first implementation came with a starter code where we have 

to implement the convolution and pooling layers, the forward and backward propagation, 

and the calculation of the gradients. The README file found in our uploaded code will 

make it apparent, but the code written by us is indicated by comment tags in capital 
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commented tags%SAAID AND TAE HO CODE STARTS HERE and %SAAID AND 

TAE HO CODE ENDS HERE. What we wrote can be assumed to be in between these 

two lines and everything else is externally sourced. There can be multiple sections where 

our code ends and begins in one source code file. Our codes can be found in the 

following files: 

 

 Final_Submission 

o Code_Final_Impl1 

 cnnTrain.m 

 cnnCost.m 

 computeNumericalGradient.m 

 minFuncSGD.m 

 cnnConvolve.m 

 cnnPool.m 

 

We had an original script to process the data from the original jpeg images into usable 

.mat files. This file also allowed us to do some basic processing of the data, primarily 

resizing and mean-thresholding, though after optimization, the only preprocessing done 

in this script was resizing of the images: 

 

 Final_Submission 

o ImageHandler 

 

However the original training images folder of jpegs has not been included because it 

would take up too much space and be too time consuming to move.  

 

 

For the second implementation, the set of code can be found in the Code_Final_Impl2 

folder in our Final Submission file. The only file we modified here was 

test_example_CNN, which can be found through the following path, and we have tagged 

the code we have written as we did in the first implementation: 

 

 Final_Submission 

o Code_Final_Impl2 

 tests 

 test_example_CNN 

 

 

5. Conclusion 

 

In this project, we set out to implement an automated image processing algorithm that 

classifies plankton species given plankton images. We achieved accuracy of 52% so far. 

Such high accuracy attests to the strength of CNN in image classification. We plan on 

increasing the number of epochs and increase the accuracy for better performance.   
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