
Deadline Prediction using Ordinal Regression

Joshua Cook, Byoungwook Jang, Aditya Mahara

March 15, 2015

1 Background

StudentLife was a study conducted by Dartmouth College’s computer science department
that collected passive and automatic sensing data over a 10 week period [3]. The goal of
this study was to assess students’ mental health based on their behavior. The students’ be-
haviors were determined by processing the collected data using machine learning algorithms.
However, for this data set to be useful, additional studies need to be conducted that attempt
to predict metrics that can be used by the school’s leadership and faculty to make real-time
adjustments throughout the term.

2 Scope and Goal

The goal of our study is to implement the artificial neural network that can accurately
predict the number of deadlines from the set 0, 1, 2, or 3 based on the student’s behavior
on the previous day. This way, no compliance is required from students other than simply
downloading an application. We first treated this as a classification problem proposing Naive
Bayes and SVM methods. However, since the ordering of classes has a relationship to one
another, we reformulated our objective as an ordinal regression problem.

3 DataSet

The dataset is collected from 48 undergraduate and graduate students at Dartmouth over
the 10 week spring term (March 27, 2013 to June 5, 2013). Within the StudentLife sen-
sor datasets there are ten different data fields such as physical activity, audio inferences,
conversation inferences, bluetooth scan, light sensor, GPS, phone charge, phone lock, WiFi,
and WiFi location [3]. All sensor data were available as csv files and were organized by
participants. First, we imported these datasets in a meaningful way into MATLAB. The
timestamps in the raw datasets were in Unix time stamp format so the time information
we obtained had a resolution of 1 second. To process the information associated with these
timestamps we wrote a code to convert the Unix timestamp into month-day-year within a
period from March 27, 2013 to June 5, 2013 (i.e 71 days). We also wrote codes to extract
example sets and feature sets using these datasets which is described in detail below.

To test our algorithm, we used a final set of training set consisting of 7000 examples, and
a test set with 2600 examples. Some information on the examples and features along with

1

the data processing necessary to create these example sets and feature vectors are presented
below:

4 Examples and Features

To create an example set we use information about deadlines per day for each student. The
StudentLife dataset has information from 44 students for 71 days with deadline information.
Since our algorithm is trying to predict the deadline for the next day, we will be able to use
information from 44 students for 70 days as examples. Therefore initially we have a total
example set of 3080 (44days ∗ 70 students). We refer to this set as ’Dataset I.’ Then, we
scanned over the examples, and duplicated examples for class 1, 2, and 3, so that there are
same number of examples for each label. This increased the number of examples to 9600
examples, of which we chose 7000 examples as a training set, and the remaining examples as
test set. In order to avoid any numerical errors related to NaNs, we investigated averaging
methods in order to fill in the missing data (represented by NaN) that had incomplete feature
vectors.

Once we took care of the missing data by the averaging values, our data set was normal-
ized with respect to each column, and the final numerical values ranged from 0 to 1. The
following subsections will provide descriptions for our features.

In addition to replicating examples, next we will explore modifying learning objective per
label to create a better classification for labels with low occurrences.

4.1 Features

Features were extracted to represent daily activity using sensor information through the
duration of the study for those specific 44 students for whom we have deadline informa-
tion available. For our algorithm analysis we have used 8 feature sets available from the
StudentLife Dataset.

To construct a feature vector, we used a simplistic way to capture information about
frequency of occurrence of a certain classifier per sensor. Brief descriptions on what these
features represent and how we extracted them are given below.

Audio
The raw data file for audio has two columns. First column has timestamp information and
the second column was information on audio inference where audio inference is classified as
0, 1, 2, or 3 that represents silence, voice, noise, or unknown respectively. The audio classi-
fier runs 24/7 with duty cycling. It makes audio inferences for 1 minute, then pauses for 3
minutes before restart. If the conversation classifier detects that there is a conversation going
on, it will keep running until the conversation is finished. It generates one audio inference
every 2 to 3 seconds [3].

Physical Activity
The raw data file for physical activity has two columns. First column has timestamp infor-
mation and the second column was information on activity inference where activity inference
is classified as 0, 1, 2, or 3 that represents stationary, walking, running, or unknown, respec-

2

tively. The activity classifier runs 24/7 with duty cycling. To avoid draining the battery,
it makes activity inferences continuously for 1 minutes, then pauses for 3 minutes before
restart collecting activity inferences again. It generates one activity inference every 2 to 3
seconds depending on Smartphone’s accelerometer sampling rate [3].

Conversation
The raw data file for conversation has two columns. First column represents a timestamp
where a conversation began and the second column is the timestamp when the conversation
ends.

GPS Location

Features related to GPS were constructed using accuracy, latitude, and longitude measure-
ments. Twenty-four features were constructed for each of these measurement categories
corresponding to 24 different hours of one day. Accuracy features for each hour were con-
structed by taking the sum of accuracy measurements. Latitude and longitude features were
made by taking the sum of the differences between measurements taken in any given hour.

Dark
Dark data files record when the phone was at a dark environment for a significantly long
time (≥1 hour). There are two fields in each data file: start and end timestamp [3].

Phone Lock
The phone lock data files record when the phone was locked for a significant long time (≥ 1
hour). There are two fields in each data file: start and end timestamp [3].

Phone Charge
The phone charge data files record when the phone was plugged in and charging for a signif-
icantly long time (≥1 hour). There are two fields in each data file: start and end timestamp
[3].

NaN
As we mentioned before, we replaced NaNs with the average value of the features that it
belongs to. As we wanted to retain the information of whether or not a given feature vector
had NaN values before the replacement with the average value, we added an additional fea-
ture with the number of NaNs that the given example had.

Normalization
With the pre-processed data set, we performed a max −min normalization, which led the
feature values to range from 0 to 1.

4.2 Feature Implementation

In Fig. 1 we have a histogram representation of a feature vector for an example feature set
(i.e. Audio). Using ’Audio’ feature we compute the frequency of occurrence for silence, voice,
and noise, for every hour per student. The histogram represents an example of a feature

3

vector for 1 day for 1 student as we can see which parts of the day he/she was mostly silent
and which parts of the days were mostly in noisy environments or where he/she was talking.
Using this technique, we extracted 72 features (24 hours x 3 labels) for audio data.

Figure 1: Feature vector profile for Audio Data

Similar techniques are used to extract 96 features (24 hours x 4labels) for physical activity
and 6 features for conversation. Next steps during feature extraction will involve extracting
information not based solely on frequency of occurrence, but using more elaborate infor-
mation. Some of these features to be explored will be parameters such as duration of time
between events, distance travelled per unit of time by a student, hours spent in the library,
usage of the gym, and so on. All these information can be extracted from the StudentLife
dataset that’s available to us.

5 Implementation

Jianlin Cheng’s paper, A Neural Network Approach to Ordinal Regression, implements the
artificial neural network (ANN) to perform the ordinal regression task [1]. In order to im-
plement the neural network, the algorithm modularized into two major parts: 1) forward
propagation and backpropagation, and 2) batch gradient descent. The detailed implemen-
tation tutorial can be found from Andrew Ng’s coursera course [2].

4

5.1 Notations

The following notations are going to be used in the cost functions.

(x(i), y(i)) = i-th training example (1)

L = total number of layers in the neural network (2)

sl = number of nodes in layer l (3)

a
(l)
i = activation of unit i in layer l (4)

θ
(l)
ij = matrix of weights from j-th node in layer l to i-th node in layer l + 1 (5)

As mentioned in class, the cost function of the logistic regression is as follows

J(θ) = − 1

m
[
m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)))] +

λ

2m

n∑
j=1

θ2 (6)

As we are using the logistic function for each activation node, we can sum rewrite the
cost function for the neural network as follows

J(θ) = − 1

m
[
m∑
i=1

K∑
k=1

y
(i)
k (log hθ(x

(i)))k + (1− y(i)k) log(1− (hθ(x
(i)))k)] +

λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(θ
(l)
ji)2

(7)

5.2 Algorithm

The steps for the neural network algorithm is as follows:

Given the training set {(x(1), y(1)), · · · , (x(m), y(m))}

• Initialize the θ matrix

• for i = 1 to m

Perform forward propagation to compute a(l) for l = 2, 3, · · · , L

• Perform back propagation to compute the gradient of J(θ)

With the gradient, we performed the bath gradient descent until we reached the stopping
criteria. The stopping criteria is given as follows. Given δ1, δ2, and δ3 > 0, we need to satisfy
the following three criteria to stop the gradient descent

||θ − θnew|| < δ1 (8)

||J(θ)− J(θnew)|| < δ2 (9)

||∇J(θ)|| < δ3 (10)

5

6 Results

Using the Artifical Neural Network modified for the Ordinal Neural Network(ONN) case,
firstly we use 100 training and testing examples with equal number of all deadline labels
examples with a architecture of 1 layer and 10 nodes. Next we used 4000 training examples
and 1696 testing examples to test two architecture: i. 1 Layer 10 nodes, ii. 2 Layers with 10
nodes each. For each arrangement we plot the error per example as a function of the lambda
value we used. In all cases the training error was less than the testing error.

Figure 2: Error per examples vs. lambda using 100 examples for architecture using 1 layer and 10
nodes

As seen in Fig. 2. using 100 training and testing examples with architecture of 1 layer
and 10 nodes we see that with increasing lambda, the error per example goes down. It seems
like to lower values of lambda (10−2 to 10) there is over fitting. Also, as seen in Fig. 3. when
we use all examples and use the identical architecture, the error per example goes down;
however the error seems to be scaled down. This happens since we use many more examples
the average error per examples. In both cases we see over fitting for lower values of lambda.
In both cases we do not see issues with under fitting.

When we use architecture with 2 layers with 10 nodes each, we get a error per example
plot as shown in Fig.4. This doesn’t make a lot of sense to us since there seems to be one
value of lambda for which the error is maximized and there seems to be no issues caused by
over fitting and underfitting. Further analysis for architectures with additional layers and
nodes will need to be conducted before we can conclude anything from these preliminary
results.

6

Figure 3: Error per examples vs. lambda using all examples for architecture using 1 layer and 10
nodes

Figure 4: Error per examples vs. lambda using all examples for architecture using 2 layers and 10
nodes each

Some of the things we plan to do next are analyze the propagation of error as a function
of system architecture (nodes/layers) to get a sense of which architecture might perform the
best for this application. In addition to that we plan to analyze the error for each deadline

7

label separately to see how the non uniformity of distribution of examples (per label) is
affecting the performance of our algorithm.

Figure 5: Test Error per label without replication

Figure 6: Test Error per label with replication

In order to visualize the test errors for each label, we implemented 16 different architectures,
varying in the number of hidden layers and the number of nodes in each hidden layer. These
values are plotted with replicated examples and without replicated examples as shown in
Figure 5 and Figure 6. We chose our architecture to have two hidden layers, and plotted
test and train errors for different number of nodes (Figure 7 - 10).

8

Figure 7: Test and Train error of the architecture with 2 hidden layers and 5 nodes

Figure 8: Test and Train error of the architecture with 2 hidden layers and 10 nodes

9

Figure 9: Test and Train error of the architecture with 2 hidden layers and 15 nodes

Figure 10: Test and Train error of the architecture with 2 hidden layers and 20 nodes

10

At the final presentation, it was suggested that there seems to be barely any difference
between our train error and test error. This comes from the fact that we calculated these
errors with the regularization term, which was overpowering the error calculation. Thus, the
following figures show the train errors and test errors calculated without the regularization
terms.

Figure 11: Test and Train error of the architecture with 2 hidden layers and 5 nodes without the
regularization term

Figure 12: Test and Train error of the architecture with 2 hidden layers and 10 nodes without the
regularization term

11

Figure 13: Test and Train error of the architecture with 2 hidden layers and 15 nodes without the
regularization term

Figure 14: Test and Train error of the architecture with 2 hidden layers and 20 nodes without the
regularization term

7 Conclusion and Discussion

The final poster and report includes plots of architectures that seemed to have the best
results. The final report includes additional error plots that do not include the model pa-

12

rameters as part of the cost. It was expected that larger differences between training error
and testing error would be seen once terms including model parameters in the cost function
were removed but this was not the case. This was caused by the normalizing process used
in the preprocessing of our data to construct features. Since the features were between 0
and 1, this caused our model parameters to be on orders of magnitude that were between
10-7 and 10-8. Furthermore, this normalization of all features to the same scale is also what
probably caused us to converge to very poor local minima. If we were to retrain with the
same features, using a very small value for the learning rate would likely yield results with
lower error rates.

Another factor that had a huge impact on the algorithm performance was the sensor data
used. The algorithm was built for regression to predict whether or not students had 0, 1 ,2
or 3 deadlines. There were large differences in the number of training examples that were
available to us for each of these classes. In addition, many of the examples that we did have
did not have complete feature vectors. As discussed previously, examples were replicated
and some averaging methods were used to try and create a data set with an equal number
of examples for each label and fill in empty features. However, even though these methods
helped patch up some of the issues with the original data set, it made a lot of training and
testing examples too similar to make large distinctions between training and testing error
rates. If more time was available, it may be possible that using N-fold cross validation would
give better results than using the hold out validation results shown in the figures.

Furthermore, if this algorithm were to be used for targeting advertising it may be better
to treat this problem with a binary classification approach. These would alleviate any need
to replicate examples since the number of examples labeled 0 would be equal to the number
of examples for categories 1,2 and 3 combined.

7.1 Implementation Details

In order to translate the timestamps in our data, which were in Unix time, we imported
’unixtime.m’ MATLAB function online, which translates the unix time stamps to regular
calendar date and time. Furthermore, in order to read in the cvs files, we also adopted
’mfcvsread.m’ from online to read in the cvs file to MATLAB. The portions of the code that
was implemented by the group is provided in the submission on Dartmouth Canvas.

13

References

[1] Jianlin Cheng, Zheng Wang, and Gianluca Pollastri. A neural network approach to
ordinal regression. Neural Networks, 2008. IJCNN 2008, pages 1279–1284, 2008.

[2] Andrew Ng. Coursera - machine learning. https://www.coursera.org/course/ml.

[3] Fanglin Chen Zhenyu Chen Tianxing Li Gabriella Harari Stefanie Tignor Xia Zhou Dror
Ben-Zeev Wang, Rui and Andrew T. Campbell. Studentlife: Assessing mental health,
academic performance and behavioral trends of college students using smartphones. In
Proceedings of the ACM Conference on Ubiquitous Computing, 2014.

14

