Music Rating Prediction: Final

Brian Doolittle and Pratap Luitel
COSC 174

Problem:

Our goal is to predict how a user will rate a song given their previous ratings, user profile,
and artist descriptions. This project was originally posted on kaggle.com as a 24 hour hackathon
taking place on July 21st, 2012 [1]. The winners of the competition were able to achieve a root
mean square error (RMSE) of 13.196 [2].

For our final algorithm we implemented a latent factor model using matrix factorization. We
chose to use this model because of its success in state of the art recommender systems as well

as in the Kaggle competition [2,3].

State of the Art:

Recommender systems are commonly used to predict how a user will rate a new item.

They perform collaborative filtering to identify items that a user may rate highly. Collaborative
filtering only requires users’ past histories to make predictions. One technique used in
collaborative filtering is matrix factorization. This latent feature model finds features for each
user and item. To predict how a user will rate an item, one can take the inner product between
the user and track latent features. These latent features can be learned by applying matrix
factorization to the known ratings. One problem that all recommender systems face is the cold
start problem. The problem is: given a new user or item, how can we make a prediction of its
rating. Since no latent features have been learned for this user or item, they must be

determined by comparison with other users in the training set [3].

Data:

Our data is a subset of EMI’s 1 million interview dataset [4]. We have 3 data sets,

“Users.csv”, “Words.csv” and “Train.csv”. Users.csv contains a user profile, Words.csv

contains user’s description of artist, and Train.csv contains user ratings of tracks. Our data

was taken over a 2 year period and contains 50,928 ratings of 184 tracks by 50 artists.

Distribution of Ratings

16000 = =
14000 |- = 4
12000 | |
10000 s |

8000 | M = i

of Examples

6000 4

ST T T R = = o0 i

50
Rating
Fig. 1: The histogram shows the distribution of user ratings for the entire data set provided

The distribution of user ratings (fig. 1) shows an interesting trend. Rather than being
centered around an average rating as one would expect, there are distinct peaks occurring at
10, 30, 50, 70 and 90 indicating that users prefer to rate these values. For a model to perform

well on the data set, it would need to be able to predict these trends.

Preprocessing:

Words.csv and Users.csv contain numeric and string valued data. To incorporate
these data sets into our model, we needed to convert the non-numerical fields into numerical
values. We separated all strings into classes and represented each class with a binary
feature. Fields with numeric ratings were normalized to 1. A tabled description of data

manipulation can be found in appendix A.

In order to implement matrix factorization we needed to perform further preprocessing.

nUsers x nTracks

We created matrix M € R! ! where M, ; contains the user(i)'s rating of track(j).
Since users only rate a handful of tracks, M is a sparse matrix meaning that it only has a few

known entries.

To make our user profiles easy to access, we ordered them in matrix

UserProf € R lnUsersxnkeatures] Hawever, some users are missing profiles. In these cases, we

assigned the user the average for all user features. We applied similar preprocessing to the

{R [nArtists x nF eatures

artist descriptions ordering them into matrix ArtistProf € I Since multiple

users rated each artist, the profile of each artist contains the average descriptions by all

users.

Model:

Baseline Model: Average

For a baseline model we predicted the user’s rating by assigning the training set
average for the given track. In the case that there are no instances of the example track in our
training set, our algorithm output the value of 30, the mode for track ratings. Testing this

model in a cross validation we found an RMSE of 21.47.

Final Model: Matrix Factorization
Training the model
The goal of our latent feature model is to learn the matrix factors of A7,

U € RlnUsersxnlaten] gnq 7 & R Inkatentxnlracks] Rating predictions are determined by the inner

product of the user latent features and the track latent features.

Our learning objective was to minimize the RMSE of our prediction.

M. - U-THE A8 ol s 2l
E 2(M i U i T j) + > ||||U z|||| + > ||||T]1|‘| (2)
We used regularization terms, A, and i ,, to help prevent overfitting and give us more

control over our model. We performed an alternating least squares algorithm on our initialized

latent feature with the following update parameters [3].

Ui U; +y(e,;*T,— MUy (3)
T, T, +Y(ei,j*Ui_7‘2Tj) 4)

Here, e, denotes the difference of the actual and predicted ratings. On each iteration
of our algorithm we update latent feature vectorT’;, make a new prediction then update latent
user vector U,. All elements of U; and T';are updated in parallel to increase efficiency of our

algorithm.

Since matrix factorization is a complex problem with many local optima, initial
conditions to the learning algorithm are important. Through trial and error we found that
initializing the user latent features with their 92 feature user profile. Tracks were initialized to

ones.

ALS: RMSE Minimization
g T T T T T T T T T
© Emor AferTrack Updats
Q x Enor Alter User Update |

20 -

w
EREIS 4
i R
&]
§ e
g
gl & i
£
@
@
]
5L & 4
@
@
e
L - ° {
ol 1 1 1 L I L L 1 Ry
] 2 4 & 8 4 6 18 20

10
Iteration

Fig 2: The plot shows the RMSE for each iteration of our ALS optimization. Blue shows the error after updating the track and red
shows the error after updating the user.

E ALS: lteration vs. Error
B T T T T T T T - T

RMSE Test Emor
&
T
L

SES

165 L L L —l i L L .
0 8 10 : 1 14 16 18 20
Number of lterations

Fig 3: The plot shows the test error for different number of training iterations.

Fig. 2 shows that the algorithm reduces error on each step and thus, converges. Fig. 3
supplements this information showing the optimal amount of iterations to use is 5. Using less
than 5 iterations results in high error because the model has not been sufficiently trained.
Using more than 5 iterations actually results in more error because the algorithm begins to
overfit the training data.

ALS: Step Size Vs. RMSE
T |

28 = -

16 L 1 I
0% 10 w0 10? 10
Step Size

Fig 4: The plot shows the reduction in error as we varied y, the step size of our model. For this test, the number of iterations was

held constant at 10 iterations.

From fig 4 we can see that the minimum error occurred at 5 * 10 ~*. Using smaller step
sizes would achieve the same or higher accuracy if given enough iterations but computation
time would be significantly longer. Therefore we chose the step size of 0.0005. Step sizes

larger than 10 caused overflow as we would experience overshoot issues.

ALS: Lambda Vs. RMSE
T

=
Lambda 2

Fig 5: The contour plot shows how the RMSE error changed with log ,,(A,)and log ,,(A,) . Orange corresponds to higher errors

while blue corresponds to lower errors.

Fig. 5 shows that regularization of the tracks (1 ,) did not really affect our model while
regularization of the users (1 ;) did have an effect. 1 ;, values less than 0.1 all had similar
errors. This corresponds to the blue plateau shown in fig. 5. Increasing A ; from 0.1 caused

there to be a significant rise in error.

Cold Start Cases

The latent factor model predicts user(i)'s rating for track(j) as the inner product U, T;
(equation 1). However, the matrices U and T contain latent features for only the users and
tracks included in the training set. The cold start cases occur when the test set includes users

and tracks that are not part of the training set. Further details about the cases can be found in

Appendix B.

When a prediction is to be made for a known user and artist but an unknown track, the
latent features for the track are estimated as the average of the latent features of the known
tracks by the same artist. However, if there are no tracks by the artist with known latent
features, we estimate the latent features for the track as the average latent features of known
tracks from the most similar artist. The most similar artist is the one whose artist profile is
correlated the most (maximum inner-product) with the artist profile of the unknown artist.
Similarly, the latent features for a new user are estimated as the latent features of the most
similar known user. The user correlation is found by taking inner product of the new user

profile with user profile of known users.

Design Decisions

Latent Factor Model-

In the milestone we discussed the possibility of using a kNN classifier to map users to
the distinct peaks shown in fig. 1. However we chose to use the latent factor model instead
because of its use in many recommender systems as well as its success in the kaggle

competition [2,4].

Missing Data Entries-

Many of the entries in our user profile and artist rating data sets were missing. We
originally chose to mark these entries with -1 so that they would be disregarded by our model.
However, this required us to pass around a cell containing the indices of the missing features
for each user. These indices were used by our functions to remove the -1’'s and rescale the
feature vector accordingly. Later we found that setting these values to 0 cut the training and

prediction time by a factor of 3 and reduced error by a few percent.

Passing indices to functions-

Since the matrices we were dealing with were so large, it would be inefficient to loop
through all of the users or tracks when only a handful would actually be present. To mitigate
this inefficiency, we passed the indices of interest to our function. To easily transfer between
our training and test examples and our matrices M, U, and T we ordered users and tracks
in terms of their id’s. This way, given a user in our test set, we could easily find their user

profile, latent features, or tracks they’ve rated by indexing their user id.

Optimization Method-

We tried using both stochastic gradient descent and ALS to update our latent features
for tracks and users. We made the decision to go with ALS because it ran significantly faster
than using stochastic gradient descent. Furthermore, stochastic gradient descent did not offer

much reduction in error.

Latent Factor Initialization-

In order to run our ALS optimization, we needed to initialize U and T as well as
determine the number of latent features to use in our model. We were unable to get good
results initializing all vectors to ones. We found that initializing U to the user profiles
significantly reduced the error that we saw from the initialization of 1’s. Furthermore, we tried
to initialize our matrix factors using an estimate from SVD. However, this was not effective
because of the sparsity of M. Since our matrix was not completely filled in and SVD makes
this assumption, we needed to initialize the unknown entries of M to the average value of our
training set. This allowed us to use SVD to find matrix factors. However, since so many values

of M were set to the average, a single eigenvector returned by the SVD function out scaled

the others by a factor of 1000. This large eigenvector caused numerical issues in the ALS
optimization as well an increased training time as more iterations were needed to achieve the
desired tolerance. The SVD initialization both increased both training time and error and was

thus disbanded.

Results
Model Performance on Known Users and Tracks:

Rating Distribution of Predictions Vs Actual
T T T T T T

2500

]
]

Number of Ratings
o
=

=]
=

500

50
Rating

Fig 6: The histogram shows the distribution of predicted ratings and actual ratings for known users and tracks

We first tested our model’s ability to predict ratings for new combinations of known users and
tracks (fig. 6). For this test we randomized our training set and partitioned it into train and test
folds with the ratio of 9:1. Randomizing the training data ensured a very low probability of
encountering cold start cases. This allowed us to accurately test the performance of our
matrix factorization model on a known set. We determined an RMSE of 16.42 for this cross

validation. For this same test, our baseline average model achieved an RMSE of 21.47.

Model Performance on Cold Start Cases:

Actual rating vs Predicted rating for new tracks
3500 T T T T T

Il Actual rating
Il Predicted rating ||

RMSE: 17.78

3000+

2500

2000

1500

Number of ratings

1000

500

0 10 20 30 40 50 60 70 80 90 100
Rating

Fig. 7: Comparison of actual rating vs. predicted rating for new tracks

Actual rating vs. predicted rating for new users

3000 T T T T - -
I Actual rating

2500 Il Predicted rating
o RMSE: 24.60
22000
IS
G 1500
(0]
Q
£ 1000
=

500
OO 10 20 30 40 50 60 70 80 90 100

Rating

Fig. 8: Comparison of actual rating vs. predicted rating for new users

Actual rating vs Predicted rating for new artists

3500 , ‘ ‘ ‘ ‘ ‘ . -
Il Actual rating
3000+ IlPredicted rating
RMSE: 21.95
,» 2500
2
® 2000
k<]
& 1500
£
=
1000
500
% 10 20 30 40 50 60 70 80 90 100

Rating

Fig 9: Comparison of actual rating vs. predicted rating for new artists

To evaluate our model’s performance, we cross validated each of the cold start cases
independently. Our cross validation could partition our training set into folds containing new
artists, new tracks, or new users. To test the new track case, the training set included at least
one track by all artists while the test set contained exclusively new tracks. To test the new
user case, the training set included all artists and tracks while the test set included all new
users. To test the new artist case, the test set contained exclusively new artists and tracks
while users may have been known. The RMSE for the cold start case with new tracks, new
users and new artists are 17.78 (Fig. 7), 24.60 (Fig. 8) and 21.95 (Fig. 9) respectively.

Model Performance in Causal System:

Actual rating vs. predicted rating - 'Real World' test set
I I T I I

12000

Il Actual rating
Il Predicted rating ||

RMSE: 28.58

10000

(2]
2 8000
©
S 6000
[
O
£ 4000
P
2000
0
0 10 20 30 40 50 60 70 80 90 100
Rating

Fig. 10: Comparison of actual rating vs. predicted rating for new artists

For our causal system test, we divided our training and test sets based on time to
model a real life situation where a recommender system needs to make predictions for
unknown cases of users and/or items. We partitioned the user ratings such that the training
set included ratings from the first 18 months and the train set included ratings from the next 6
months. This ensures that the training set will contain a combination of unknown users, tracks
and artists. The RMSE for this case is 28.58 (Fig. 10). When we assigned the mode of our
training set, 30, we found an RMSE of 22.18.

Discussion

Our model performed with the least error when given known users and tracks. The
reason being that the latent features we optimized for the training set could be directly applied
to the test set. While we were able to achieve low errors on the training set, our test set has
higher errors because users may be rating new tracks that are completely unlike any tracks
the user rated in our training set. The user’s latent features may not predict so accurately

when matched with a new set of latent features.

While our latent factor model outperformed the baseline average model, the predicted
rating distribution still failed to resolve the peaks shown in fig 1. Instead, the distribution more
closely followed the shape of a normal distribution (fig 6). This indicates that our model is still
predicting an average rating of sorts instead of modeling the trends of how users actually rate

tracks.

For the cold start cases we tested we found that the RMSE increased from that of the
test with known users and tracks.This is expected because we must make the assumption
that users and artists with similar profiles would rate and be rated similarly. The new tracks
cold start case had the minimal cold start error. In this case, the latent features for the new
track were derived by averaging latent features of known tracks by the same artist. Since we
already have a history of the artist ratings, it is expected that this case would perform better
than the other cold start cases. Our model assumes that new tracks will be similar or an
“average” of tracks previously composed for the artist. Because time was not taken into
account for the cold start cross validations, tracks recorded at similar times are contained in
both the training and test set. Thus, it would make sense why taking the average track latent

features for an artist in the training set would yield a small error.

The error in the new user and new artist cases is higher because our model tries to
estimate the latent features of users and tracks by finding a similar user and artists. Our
model is making the assumption that artists and users with similar profiles will be described by
similar latent features. Since there are many factors that cannot be described by these

profiles, it makes sense that this approach may not produce the best results.

The maximal RMSE error of our model was found in the causal time test. Here we
introduced the concept of time into our training and test sets. The RMSE of our model for this
test was 28.58. Predicting the mode would have yielded a RMSE of 22.18. The reason our
model performed so poorly was that causality was introduced. The cold start case tests we
performed were non-causal meaning that the data was partitioned with disregard for time. We
may have trained on examples that occurred at a later time than the examples in our test set.
Thus, our training set was a better representation of our test set. For the time-based test, the
training and test sets may have been very different as users’ preferences and artists’ music
changes over time. There is no way for our algorithm to determine how these users and
artists would change with time. However, one thing that does not seem to change is the mode
rating for tracks. While our model makes worse and worse predictions with time, the mode
stays the same. Thus, in a causal system, assigning mode or mean ratings may be a better

strategy than using a complex model that was trained on past ratings.

Sources of Error:

The largest source of error is that our model is based on finding averages. When we
perform our ALS optimization, we are not finding latent features that predict exactly how a
user rates, but latent features that minimize the error in the prediction. Rather than overfitting
the data the algorithm settles on latent features that will give a good estimate, an average of
sorts. This is reflected in the gaussian shaped curve seen in fig. 6. Since the data is clearly
not distributed as a single normal distribution (fig 1), but a sum of several normal distributions
our model can only perform so well. Our model is essentially trying to fit a single normal
distribution to a sum of normal distributions. Thus, there is a significant amount of error

inherent to our model selection.

Another large source of error is that we are trying to predict a track rating, but are
given no information about the track. In order to make a better prediction about how a user
would rate a track, we would need features that describe the tracks. Without these features,
we must assume that new tracks can be described as averages of old tracks. This

assumption is not always true and thus accounts for noise.

Some other sources of error include that this is a real world problem and many factors
go into a user’s rating other than their profiles and past histories. Our data sets contain many
missing values and there are cases of users without user profiles to which we assigned the

average of all users’ features to the missing user.

Future Work:

In the cold start case with an unknown user, we assign the latent features of the most
similar known user. Similarly, when trying to predict for a new artist, we first find a similar
known artist and then use the average features of the tracks by the artist. In both these cases,
we essentially use just one user or artist to get the needed features. This could be possibly be
improved by using a KNN approach to find k similar users/artists to estimate the unknown

latent features.

Our model derives an artists profile by averaging all the user’s description of an artist.
The artist profile is then used to find similar artists. This approach gives equal weight to each
of the features in artist’s profile. However, there could be some unique features within artists
that might be more useful to relating artists. A latent factor matrix factorization model could

learn the features that are most correlated among similarly rated artist.

An alternative approach to estimating the prediction could be to use classification. We
can infer from fig. 1 that there are distinct peaks at ratings of 30, 50, 70, and 90. Rather than
predicting a discrete value in the range of 0-100 like our model does, the classifier would
assign one of the four rating classes to each data point. Such a classifier would fail to predict
values to the left and right of each peak as observed in fig. 1. To improve this model, we could
use a mixture of classification and regression in which the classifier predicts one of the four

classes, and the regression model predicts the distribution around each class.

Works cited

"EMI Music Data Science Hackathon - July 21st - 24 Hours." Description -. N.p., n.d.
Web. 15 Mar. 2015.

"Shanda Innovations 1st Prize Winner — EMI Music Data Science Hackathon." Data
Science London RSS. N.p., n.d. Web. 15 Mar. 2015.

. Koren, Yehuda, Robert Bell, and Chris Volinsky. "MATRIX FACTORIZATION
TECHNIQUES FOR RECOMMENDER SYSTEMS." IEEE Computer Society(2009): n.
pag. Web.

"EMI Music Data Science Hackathon - July 21st - 24 Hours." Description -. N.p., n.d.
Web. 15 Mar. 2015.

Appendix A:

Table 1: Data After Preprocessing

Data field Description Type
Artist_id unique identifier for artist used for indexing
Track_id unique identifier for track used for indexing
User_id unique identifier for user used for indexing

Track Rating

User’s rating of track

Integer [0,100]

artist

Time_id month data was taken 24 integer values
Gender Male/Female 2 binary features
Age Age of user 5 binary features
corresponding to 20 year
spans
Working Employment status of user 9 binary features
Region Where the user is from 4 binary features
List Own Hours spent listening to 12 binary features
owned music
List Back Hours spent listening to 12 binary features
music in background
Q_xx 19 questions about a user’s normalized value [0,1]
music preferences

Heard_of Has the user heard of the 5 binary features

Own-Artist_Music

Does the user own any of

5 binary features

the artists music

Like_Artist

User’s rating of artist

normalized value [0,1]

Words_ xx

82 words used to describe
the artist

82 binary features

Table 2: Classification of Non-Numerical Values

Data Field

File

Original Data

Number of
Binary

Features

Heard_of?

Words.csv

Heard of

Never heard of

Heard of and listened to music
recently

Heard of and listened to music
RECENTLY

Own_Artist Music?

Words.csv

Donit know

Own none of their music
Own a little of their music
Own a lot of their music

Own all or most of their music

Gender

users.csv

Male

Female

Working

users.csv

Employed 30+ hours a week
Employed 8-29 hours per week
Full-time housewife

/househusband

In unpaid employment
Other

Importance of

Music?

users.csv

Music means a lot to me and is a
passion of mine

Music is important to me but not
necessarily more important

| like music but it does not
feature heavily in my life

Music has no particular interest

for me

Appendix B

Track
Artist

User

None

Estimate the latent feature of the unknown

user as the latent features of the most similar
known user

Estimate the latent feature of the track as the
average of the latent features of the track of

the most similar artist

