
Determining Restaurant Success or Failure

Jason Feng∗ Naho Kitade† Matthew Ritter‡

Computer Science Department, Dartmouth College §

Abstract

This paper describes the usage of an Artificial Neural Network to determine the success or failure
of a potential restaurant. We analyze the Yelp Academic dataset [Yelp 2015] which includes all the data
and reviews of the 250 closest businesses for 30 universities. Our approach is to utilize stochastic gra-
dient descent and back propagation to built a model for determining success or failure of a restaurant
given a set of business characteristics. We compare performance among a variety of neural network
architectures and utilize dummy variables to increase the size of our usable dataset. Finally, we dis-
cuss performance of our best performing neural networks compared to our baseline models of logistic
regression and support vector machines.

1 Introduction

The restaurant industry has an incredibly high turnover rate. Many new restaurants do not
survive their first few years in business [Parsa et al. 2005] In addition, the restaurant business
is flooded with various factors that impact success (location, timing, atmosphere, food quality,
etc), such that it can be extremely difficult to create a successful restaurant. Our goal is to
construct a classification system for restaurants based on the Yelp data to determine given a
set of restaurant attributes, whether or not that restaurant will be successful.

2 State of the Art

Currently in the commercial space, there exists a wide range of consumer facing applications
for determining restaurant applications. Companies like Yelp, Foursquare, and Urbanspoon
have created platforms that determine what restaurant you will enjoy based on your past
history. In the academic space, there are a number of papers that discuss restaurant suc-
cess [Youn and Gu 2006], [Kim and Upneja 2014] using various machine learning classifiers.
In our research combine these two avenues by using commercial data to help business own-
ers. Instead of using consumer data from Yelp to create a recommendation system, we help
business owners determine the success or failure of a potential business enterprise.

3 Defining Success or Failure

Conceptually, we realized that a successful restaurant has a high Yelp rating and a high num-
ber of reviews. Ideally, a successful restaurant is both highly-rated and widely known. We
came up with our success classification formula by using the median values for Yelp rating
and number of reviews for restaurants. Ultimately, we decided that: a successful restaurant
has more than 37 reviews and at least 3.5 stars on Yelp.

∗jason.feng.17@dartmouth.edu
†naho.kitade.16@dartmouth.edu
‡matthew.p.ritter.15@dartmouth.edu
§Special thanks to Lorenzo Torresani

4 Data

4.1 Yelp Data

We are using the Yelp Academic Dataset for our study. Yelp releases a large dataset for com-
petitions and other academic uses.

This data contains information on 61,184 businesses, 21,892 of which are classified as restau-
rants. The data is clustered around a few geographic areas. Areas included are Edinburgh,
United Kingdom, Karlsruhe, Germany, Montreal and Waterloo in Canada, Pittsburgh, Char-
lotte, Urbana-Champaign, Phoenix, Las Vegas, and Madison in the United States.

For our analysis, we are using business objects within the dataset that are classified as restau-
rants. Although these business objects have more fields, in our analysis we only utilize the
attributes JSON object. The object fields are organized like below:

1 {
2 "_id" : ObjectId("54efdfbd48c7aed9c7400436"),
3 "business_id" : "mVHrayjG3uZ_RLHkLj-AMg",
4 "full_address" : "414 Hawkins Ave\nBraddock, PA 15104",
5 "hours" : {
6 "Tuesday" : {
7 "close" : "19:00",
8 "open" : "10:00"
9 },

10 "Friday" : {
11 "close" : "20:00",
12 "open" : "10:00"
13 },
14 "Saturday" : {
15 "close" : "16:00",
16 "open" : "10:00"
17 },
18 "Thursday" : {
19 "close" : "19:00",
20 "open" : "10:00"
21 },
22 "Wednesday" : {
23 "close" : "19:00",
24 "open" : "10:00"
25 }
26 },
27 "open" : true,
28 "categories" : [
29 "Bars",
30 "American (New)",
31 "Nightlife",
32 "Lounges",
33 "Restaurants"
34],
35 "city" : "Braddock",
36 "review_count" : 11,
37 "name" : "Emil’s Lounge",
38 "neighborhoods" : [],
39 "longitude" : -79.8663507,
40 "state" : "PA",
41 "stars" : 4.5,
42 "latitude" : 40.408735,
43 "attributes" : {
44 "Alcohol" : "full_bar",
45 "Noise Level" : "average",
46 "Has TV" : true,
47 "Attire" : "casual",
48 "Ambience" : {

49 "romantic" : false,
50 "intimate" : false,
51 "classy" : false,
52 "hipster" : false,
53 "divey" : false,
54 "touristy" : false,
55 "trendy" : false,
56 "upscale" : false,
57 "casual" : false
58 },
59 "Good for Kids" : true,
60 "Price Range" : 1,
61 "Good For Dancing" : false,
62 "Delivery" : false,
63 "Coat Check" : false,
64 "Smoking" : "no",
65 "Accepts Credit Cards" : true,
66 "Take-out" : true,
67 "Happy Hour" : false,
68 "Outdoor Seating" : false,
69 "Takes Reservations" : false,
70 "Waiter Service" : true,
71 "Wi-Fi" : "no",
72 "Caters" : true,
73 "Good For" : {
74 "dessert" : false,
75 "latenight" : false,
76 "lunch" : false,
77 "dinner" : false,
78 "breakfast" : false,
79 "brunch" : false
80 },
81 "Parking" : {
82 "garage" : false,
83 "street" : false,
84 "validated" : false,
85 "lot" : false,
86 "valet" : false
87 },
88 "Music" : {
89 "dj" : false
90 },
91 "Good For Groups" : true
92 },
93 "type" : "business"
94 }

Below is a table of the various features a restaurant can have. Every feature has a set of
possible values. Features that have a Boolean type will be True or False. Features that have
a String type will hold various string values. These string values can be encoded to be a
spectrum. For example, the "Attire" feature can be "casual", "dressy", or "formal". These
values are a gradation, and we can encode them as 0, 1, or 2.

We quickly learned that most restaurants are missing many features. To handle this, we tried
three different paradigms for training our neural network. First, we studied only restaurants
that have all features that appear in 50% or more of the restaurants. This was by far the
smallest dataset, with 3,758 successful restaurants and 2,746 unsuccessful restaurants. Sec-
ond, we studied every single restaurant. For every missing feature, we replaced that feature
with the midway value between the possible outcomes. For example, Price Range, which has
possible values of 1, 2, 3, and 4, would be replaced with 2.5. This set had 5,352 successful
restaurants and 16,540 unsuccessful restaurants. Third, we studied every single restaurant,
but we replaced missing features with the average value for that feature. For example, in this
case Price Range would be set to 1.8, the average value across all restaurants.

We use 70% - 80% of the total data as our training data and hold out the remaining 20% - 30%
as test data. The divisions are made randomly.

4.2 Using MongoDB

Given that Yelp provided their academic dataset in the form of five large JSON files, it made
sense to store the data with MongoDB. MongoLab, a cloud storage system for MongoDB, was
used to host the database. This made it easy to run the neural network from any computer.

The database ended up holding only the JSON file corresponding to the Yelp businesses data,
which was about 550MB.

Using MongoDB allowed the team to quickly analyze the data. Because JSON has nested keys,
it is not trivial to find all of the possible keys for a given restaurant. Fortunately, using Mon-
goDB and an open-source tool called VarietyJS allowed us to find all of the possible features
with the command:

1 mongo ds049181.mongolab.com:49181/new_yelp_data -u naho -p naho --eval "var collection=’businesses’, query=
{’categories’: ’Restaurants’ }" variety.js

MongoDB also allowed us to quickly calculate data metrics. In particular, it simplified deter-
mining the average value for every feature. This task was necessary for implementing dummy
variables, and it could be accomplished with a small amount of math and a simple query:

Finding the Count of Every Value for a Given Key:

1 db.businesses.aggregate(
2 [{
3 $match: { "attributes.Ambience.romantic" : { $exists: "True" }}},
4 {
5 $group: {
6 _id: "$attributes.Ambience.romantic",
7 count: { "$sum": 1 }}},
8 { $sort: { count: -1 }
9 }

10])

Ultimately, our storage system let us iterate quickly and focus on the neural network itself,
rather than data scraping, processing, and manipulation. MongoDB provided us with the tools
to run our neural network multiple items in order to optimize our model selection over many
trials.

5 Methodology

5.1 Overview

We have decided to use a feedforward Artificial Neural Network (ANN) model with multilayer
perceptrons. We use stochastic gradient descent with a backpropagation training algorithm to
optimize our least mean squares learning objective. We use sigmoid neurons rather than sim-
ple perceptrons in our model. Similar analyses of the restaurant industry have been conducted
in past using ANN models as well [Youn and Gu 2010].

5.2 Backpropagation

Backpropagation is a method for computing the gradient of the error function with respect to
the weights of each node in the neural network. The backpropagation algorithm is used to
train a multi-layer feedforward network by determining how changing the weights and biases
changes the behavior of the neural network. The goal of backpropagation is to adjust the
weights of the neural networks to minimize the weights that are contributing to the greatest
error, and maximizing the weights that are contributing to our desired output.

The main challenge with neural networks is that there is no guaranteed method for reaching
the global minimum because there are various local minima in the error function. Thus, it
is important to average the test error over multiple for accurate predictions. We take this
problem into consideration by averaging the performance of multiple hold out validations.
Below is a summary of the equations of backpropagation:

δL = 5aC � σ
′
(zL)

δl = ((wl+1)Tdeltal+1 � σ′(zL)
δC

δblj
= δlj

δC

δwl
jk

= al−1k δlj

The first equation is the error in the output layer, which depends on how fast the cost is
changing as a function of the output activation and how fast the activation function is changing
at the current output. Next, we relate the equation for the error in layer l in terms of the error
in the next layer, l + 1 The two final equations relate the cost function to the weights and bias
of each particular neuron.

We referenced chapters 1 and 2 of Michael A. Nielsen [Nielsen 2015] in our neural networks
analysis and adapted both his stochastic gradient descent and back propagation algorithm for
our analysis.

When we train the neural network, we also reduce the learning rate by half after 5 epochs.
If the learning rate is too high, it can actually cause the error to increase over epochs, when
it should generally be decreasing or staying the same. This graph displays a single neural
network being trained over time, with the error slowly decreasing.

6 Model Selection

Determining an optimum neural network architecture requires significant human intervention,
and there is not an elegant procedure for model selection. Thus, we have implemented holdout
validation that takes in multiple different neural network architectures and outputs a csv file
to visualize the performance of each model. The output contains the training and test error
of the cross validation phase, as well as the training and test error averaged over multiple
trials. This output enables us to easily compare the performance of various models, taking
into account issues of under/overfitting. Each training of a neural network is susceptible to
converging to a local minimum, which makes the network produce high errors. Since we use
these error measurements to determine performance, we train and test the same network
using the holdout validation technique many times and average the performance over those
runs.

We used the same process of model selection for our three data cases: using only restaurants
that have every feature, using dummy variables where each variable of the non-existent fea-
tures is the midpoint of possible values, and using dummy variables where each variable of the
non-existent features is the average of the possible value among all restaurants in our dataset.
Since average dummy variables proved to be the best, we will show the graphs and describe
the process with respect to that case.

We developed scripts that would run hold out validation on a given dataset using a fixed num-
ber of hidden layers and a varying number of nodes in each hidden layer. First, we had to
determine the ideal number of hidden layers for our neural network. Too many hidden layers

may increase error due to overfitting, are computationally expensive to train, and are more
susceptible to local minima. Thus, we opt for the simplest model that does not have signifi-
cantly more error than a model with one more hidden layer. The following graphs describe
the various error for models with one, two, and three hidden layers. (All error bars show the
standard error)

Evidently, networks with two hidden layers seem ideal. There is a downward trend in the
percent error as make the model more complex by adding nodes in the hidden layer. The error
decreases when going from one layer to two layers, but adding a third layer does not seem to
significantly decrease the error.

The next step in our process was to find the ideal combination of nodes per hidden layer.
Looking at the two hidden layer graph, the mean test error is clearly lowest somewhere in the
neighborhood of twenty nodes in the first hidden layer and sixty nodes in the second hidden
layer. From there, we ran a more fine-grained model selection that examined node values
specifically within that tightened range.

This graph is the equivalent of "zooming in" on the overall two hidden layers examination to
the networks that have around twenty hidden nodes in the first hidden layer. Now, we can
easily pick our three best models based on the mean test error of the holdout validation (note
that we do not pick our networks based on the real test errors. We only look at the mean
errors from the holdout validation). They are:

• 2 hidden layers, 25 nodes in first layer, 10 nodes in second layer

• 2 hidden layers, 30 nodes in first layer, 40 nodes in second layer

• 2 hidden layers, 20 nodes in first layer, 60 nodes in second layer

We repeated this process for the other two methods of feature selection to find the three best
neural network models on a per case basis. This allowed us to create our final results.

7 Results

Using the best models for each case, we were able to comfortably beat benchmark tests of
SVM and Logistic Regression. We ran a simple model selection on the SVM to fine tune
the hyper-parameter C from the L1-norm soft margin SVM model, and we also tried using a
polynomial kernel for each of the feature selection methods. This graph compares the test
errors for each of the different feature selection methods and models.

Evidently, using dummy variables proved extremely helpful - we can see clearly that without
any dummy variables, the neural network had a 67% success rating. This difference in perfor-
mance is probably not due to the dummy variables themselves, but due to the fact that we can
use all restaurants. In fact, the training set size with dummy variables was roughly 4 times
larger than that with no dummy variables. Taking into account this drastic increase in training
set size, the outcome is not very surprising since neural networks suffer greatly with smaller
datasets in comparison to other models. As the networks becomes more complex, this issue is
aggravated. Additionally, it is possible that restaurants with incomplete features are generally
less successful, since Yelp may not be as interested in those establishments. This gives addi-
tional information to the neural network, since it can learn to correlate many mocked features
with failure. Interestingly, there was not much of a difference in performance between when
we mocked non-present features with the average feature value instead of the middle feature
value.

Although the neural networks that did not use dummy features underperformed those that did,
our neural network outperformed all benchmarks for all three methods. Our neural network
easily outperformed Logistic Regression and SVM by around 7-8% across the board. Our best
neural network classifies restaurants with 83.3% accuracy, while the best performing Logistic
Regression had 76.4% accuracy, and SVM had 76.4% accuracy. Given that we even used
model selection to pick the best performing SVM, we are impressed by the performance of our
networks.

8 Contact Information

If you have questions or suggestions regarding this paper, please contact Jason Feng at “ja-
son.feng.17@dartmouth.edu”, Naho Kitade at “naho.kitade.16@dartmouth.edu”, or Matthew
Ritter at “matthew.p.ritter.15@dartmouth.edu”.

Acknowledgements

We would like to acknowledge Yelp for providing us with the dataset that made this experiment
possible. We would also like to acknowledge Professor Lorenzo Torresani for all of his advice.

References

Kim, S. Y., and Upneja, A. 2014. Predicting restaurant financial distress using decision tree
and adaboosted decision tree models. Economic Modelling 36 , 354–362.

Nielsen, M. A. 2015. Neural Networks and Deep Learning. Determination Press.

Parsa, H. G., Self, J. T., Njite, D., and King, T. 2005. Why restaurants fail. Cornell Hospitality
Quarterly 46, 3 (August), 304–322.

Yelp, 2015. Yelp’s academic dataset. https://www.yelp.com/academic_dataset.

Youn, H., and Gu, Z. 2006. Predicting restaurant bankruptcy: A logit model in comparison
with a discriminant model. Tourism and Hospitality Research 30, 4, 474–493.

Youn, H., and Gu, Z. 2010. Predict us restaurant firm failures: The artificial neural network
model versus logistic regression model. Tourism and Hospitality Research 10, 3 (jul), 171–
187.

Implementation Details

All of our code is hosted on Github here. All of the files present in the codebase were written
exclusively by the team, with the exception of parts of network.py and variety.js. Network.py
was based on code snippets provided by Neural Networks and Deep Learning, found here.
This file was initially meant to be used in an experiment to assess handwritten numbers, but
we have modified it for our Yelp dataset. In the codebase, functions provided are annotated as
External Software. Contributions from our team are labeled as such as well.

Variety.js is a file that helps us analyze MongoDB data. Its use is described above for learning
about the data features. It is also available on Github here.

In addition, we relied heavily on some very helpful packages:

• Pymongo: Used for interacting with MongoDB and MongoLab

• Numpy: Used for creating vectors and matrices in Python

• VarietyJS: Used for learning about restaurant features

• SciKit-Learn: Used to provide SVM and Logistic Regression for benchmarks

https://www.yelp.com/academic_dataset
https://github.com/ritmatter/neural_net
https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network.py
https://github.com/variety/variety

