
Predicting Congressional Bill Outcomes

Barry Chen, Vivian Hu, David Wu

March 15, 2015

1 Introduction
How can we predict the outcome of legislation in Congress? Will it pass the committees,
subcommittees, and be voted upon by both the House and Senate? The large variation in bill
content makes prediction based on legislative text a challenge. We propose to use the Latent
Dirichlet Allocation (LDA) topic model to extract features from legislative text and a Random
Forest binary classi�er to label each bill as “pass" or “fail."

Our general approach uses a collection of bills to generate the LDA topic model. With the
topic distributions generated by our LDA model as features in a Random Forest, we can classify
new bills into pass and fail groups.

We perform 5-fold cross validation on three hyperparameters governing our LDA model as
well as our classi�er in section 6. In addition, we compare our classi�cation results with three
baselines, and discuss variations in our data set composition in section 7.

2 Previous Work
Previous work in the area of congressional prediction has looked at legislator’s voting habits
or has used bill meta-data in predicting its committee outcome. Gerrish and Blei [1] uses LDA
to extract topics from congressional bills, and applies the topics in the Ideal Point Model to
predict individual legislator’s voting habits. Yano, Smith, and Wilkerson [2] focus on a bill’s
survival through the congressional subcommittee process, based on bill meta-data and a data
set of bills and their labeled categories.

Our work uses the LDA topic model, like Gerrish and Blei, but looks at bill survival through-
out the congressional process, independent of subcommittees and legislators.

3 Data Sets
For this project, we use the comprehensive data complied at govtrack.us. Complete congres-
sional bill text and voting results can be found for congresses 103 through 113 [3].

3.1 Pre-processing
After complete congressional information (meta-data and text) has been downloaded via rsync,
we use Govtrack’s API to retrieve congressional actions for every bill. These actions are parsed
to determine if a bill has passed or failed. Finally, we partition the data into two classes: pass
and fail.

For each document, we �nd the latest version of its text, removing trivial stop-words and
non-alphanumeric characters. From there, we built the vocabulary by lemmatizing the words
and assigning each word a unique ID, resulting in a “bag-of-words” whose size is the number
of word IDs.

For this project, we consider a bill “passed” if it is explicitly passed in both the House and
the Senate and is enrolled (passed to the President for a �nal signature). We say a bill has
“failed” if it has been explicitly voted down, or it has not made it to the voting �oor (by either
not passing through the committee step or being ignored). De�nitions di�ering from the above
will be explored in section 7.

1

govtrack.us

Total number of bills: 16,810
Number of bills in training: 10,669
Number of bills in testing: 6,141
Pass to Fail Ratio: 34% Pass : 66% Fail

3.2 Statistics
The composition of our data set can be seen below.

4 Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a topic model that we use to extract topics from our col-
lection of bills. LDA represents documents (in our case, bills) as a mix of topics, with each
topic being a distribution of word probabilities for that topic [4]. Using Collapsed Gibbs sam-
pling, we randomly assign words to topics and then iteratively improve those assignments, as
explained in the next subsection [5].

Our LDA model takes as input the number of topics we want to �nd, the number of it-
erations of Gibbs sampling, and the set of bills with its associated vocabulary. We receive as
output an assignment for each word in a document to a topic with some probability.

From this, we can generate a word distribution for each topic, which represents the prob-
ability that each word appears in a certain topic. We can also generate a topic distribution for
all bills, which represents the probability, for each bill, that the words in the bill can be catego-
rized into each topic. Using the word distributions for each topic, we can also intuit names for
each topic based on the top words represented in that topic. It should be noted, however, that
topics which may not make intuitive sense to humans may still capture some latent trends in
the set of bills.

We show in Table 1 the top eight words for 5 topics generated from 20 iterations of Gibbs
Sampling on the data set speci�ed in section 3.2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
deleted united united year year
program national person health amended
fund government commission program amount
public committee amended child inserting
federal defense term individual tax
project member federal care plan
�scal title action title code
grant force information �scal credit

Table 1: Top eight words for each topic. Intuitive words italicized.

4.1 Gibbs Sampling
Starting from a random assignment of words to topics, Collapsed Gibbs Sampling will repeat-
edly improve this assignment for a �xed number of iterations. A word is assigned a topic by
assuming that all the other words have been assigned correctly. More precisely, a word is as-
signed to a topic based on a multinomial distribution given by equation 7 in [5]. The equation
shows that the selected topic for a given word in a document is based on the prevalence of that
topic in the document and the topics assigned to other occurrences of the word.

4.2 Features
The features of each bill are given by the proportion of words in the bill corresponding to each
topic. More speci�cally, a bill consisting of words (w1, w2, ..., wn) is represented as a feature
vector, X , of length K, where:

Xk = P (topic = k|w1, w2, ..., wn) =
(
∏n
i=1 P (wi|topic = k))P (topic = k)

P (w1, w2, ..., wn)

2

Since the denominator is a constant for a given bill, we can compute the numerator and
normalize the features to sum to 1. The terms in the numerator can be calculated in the fol-
lowing way:

P (wi|topic = k) =
frequency of wordwi

frequency of words assigned to topic k

P (topic = k) =
frequency of words assigned to topic k

total number of words
If a test document contains a word that is not assigned a topic by LDA (i.e. the word is not

contained in any of the training documents), then the word is skipped.

4.3 LDA Results
Perplexity is a measurement of how well the probability model assigns words to topics. The
perplexity is given by equation 11 in [5]. After each iteration of Sampling, the assignment of
words to topics should improve, and the perplexity should decrease, as shown below for 20
topics and 20 iterations of Gibbs Sampling on the data set speci�ed in section 3.2.

Figure 1: Perplexity for 20 iterations of Gibbs Sampling

The following �gures show the word distributions for �ve topics generated from our data
set. We only show the word distribution for the top 50 words overall over all topics. We also
show the overall topic distribution for 50 randomly chosen bills in �gure 7. We can see that
topic 2 (in light blue) is a very general topic that is found with a high probability in many
documents.

3

Figure 2: Word probability distribution for Topic 1

Figure 3: Word probability distribution for Topic 2

4

Figure 4: Word probability distribution for Topic 3

Figure 5: Word probability distribution for Topic 4

5

Figure 6: Word probability distribution for Topic 5

Figure 7: Topic distributions for 50 randomly chosen bills

5 Random Forest Classi�er
After using LDA to model legislative texts as distributions of topics, we decided to take the
ensemble approach and implement the random forest algorithm [6] as a binary classi�er to
make predictions about bill outcomes. In generating our random forest, we use bootstrap
aggregating, or bagging, to grow individual decision trees.

For each tree, we randomly sample m examples from an original training set of size m with-
out replacement and use this bootstrap sample to train the tree. The thresholds that ultimately

6

become the decision rules for that tree are chosen at each non-leaf node by considering mul-
tiple splits for each feature in a random subset. The samples are sorted by their value for that
feature, and we take as splits the midpoints between those samples which have di�erent labels.
Each split is considered by calculating the information gain, or expected decrease in entropy,
at that threshold. Information gain and entropy, a measure of sample impurity, are de�ned as:

Entropy(S) =

c∑
i=1

−pi log2 pi

Gain(S,A) = Entropy(S)−
∑

vεV alues(A)

|Sv|
|S|

Entropy(Sv)

Finding the threshold with the lowest entropy, i.e. the threshold that results in the most
homogenous sample, increases the likelihood of us reaching a leaf node. Therefore, we choose
the split with the highest gain, or lowest decrease in entropy, for each feature. Of those, the
feature with the greatest maximum gain and its corresponding split value are chosen as the
decision rule. Ultimately, each leaf node culminates in a posterior probability of "passing" and
casts a vote for "passing" if the probability is more likely than the alternative, or "failing". The
samples that aren’t used to grow the tree, our out-of-bag samples, are used to produce the
out-of-bag error, which we used as an early estimate of classi�cation error.

At test time, for each bill in the test set we produce individualized posterior probabilities
for each topic generated by LDA during training based on the words in that document. Then,
using our grown random forest, we run each test sample down each tree in the forest, making
decisions at every level based on decision thresholds for a speci�c feature (determined during
training), and we choose the majority vote as the class label.

6 Cross Validation
The hyperparameters of a random forest consist of the maximum depth of each decision tree
and the number of randomly selected features to consider at each split. From LDA, we also have
a third hyperparameter for the number of topics used to represent each bill. To determine
the optimal hyperparameters, we performed 5-fold cross validation on a set of 10,669 bills,
including 2073 passed bills and 8596 failed bills. Below are two sets of graphs (one with and
one without error bars), showing the relationship between the cross-validation error and the
maximum decision tree depth.

Figure 8: Cross Validation Results for k=5 Figure 9: Cross Validation Results for k=8

7

Figure 10: Cross Validation Results for k=10 Figure 11: Cross Validation Results for k=15

Figure 12: Cross Validation Results for k=20

8

Figure 13: Cross Validation Results for k=5
with error bars.

Figure 14: Cross Validation Results for k=8
with error bars.

Figure 15: Cross Validation Results for k=10
with error bars.

Figure 16: Cross Validation Results for k=15
with error bars.

Figure 17: Cross Validation Results for k=20
with error bars.

As we increase the depth, the cross validation error decreases until a minimum is reached,
after which the error increases. Since the number of failed bills greatly exceeds the number of
passed bills, a larger max depth is appropriate; a lot of branching is necessary before reaching
a node with a majority of passed bills. Our decision tree is restricted to be a binary tree, so for
larger numbers of topics, the optimal depth must also increase. This is because each node split
is based on exactly one feature; in order to describe the set of feature values that represent
passed bills when there are many features, more branching is necessary. In fact, for K=15,
we are unable to determine the optimal depth based on the set of hyperparameter values we
considered, as the optimal depth seems to exceed 14.

9

Below are two sets of graphs (one with and one without error bars), showing the relation-
ship between the cross-validation error and the number of randomly selected features consid-
ered at each split.

Figure 18: Cross Validation error vs. Split
size, k=5

Figure 19: Cross Validation error vs. Split
size, k=8

Figure 20: Cross Validation error vs. Split
size, k=10

Figure 21: Cross Validation error vs. Split
size, k=15

Figure 22: Cross Validation error vs. Split
size, k=20

10

Figure 23: Cross Validation error vs. Split
size, k=5, with error bars

Figure 24: Cross Validation error vs. Split
size, k=8, with error bars

Figure 25: Cross Validation error vs. Split
size, k=10, with error bars

Figure 26: Cross Validation error vs. Split
size, k=15, with error bars

Figure 27: Cross Validation error vs. Split
size, k=20, with error bars

The motivation for restricting the number of features considered at each split (called feature
bagging) is to reduce the correlation between trees when one or a few features are very strong
predictors of whether a bill will pass. A split size of 2 gives high error, but the remaining higher
split size values seem to consistently give the same error. Therefore, not restricting the number
of features considered at each node split seems to be optimal. Since splitting barely a�ects the
overall classi�cation error, it is possible that no feature strongly determines the label of the
bill.

Below is a graph showing the relationship between the cross-validation error and the num-
ber of topics used to represent each bill, K. For each value of K, the error is the classi�cation

11

error given by the best architecture of the random forest for that given value of K.

As the number of topics increases, the error decreases and seems to level o� at K=15 or
K=20. We can see under�tting for small numbers of topics presumably because they aren’t
su�cient to describe the wide variety of bills that exist.

7 Results and Discussion
The following graph shows the classi�cation error as a function of the number of trees in the
forest:

Typically, a larger number of trees in the forest will increase the accuracy of the majority
vote, decreasing the error. For K=20, there is indeed a slight downward trend, but many huge
oscillations, particularly at 40 and 90 trees, seem to suggest that the random forest may be
unstable and inconsistent. K=15, the performance is much more stable and consistent, and the
error stays constant at around 23%.

Sci-Kit Learn provides libraries for logistic regression and random forest, which are used
as baselines for our own random forest implementation. The following graph shows the error
using the three classi�ers on a training set of 10,669 bills (from cross-validation) and a test set
of 6,143 bills (1566 passed bills and 4577 failed bills).

12

Both logistic regression and our random forest performs better than Sci-Kit Learn’s random
forest. For K=10 and K=15, our random forest performs better than Sci-Kit Learn’s logistic re-
gression. Our random forest produces an extremely high error for K=20, further demonstrating
that K=20 is unstable.

We note that the error is much larger overall compared to cross-validation. One potential
reason may be that the proportion of passed bills is much higher in the test set (25%) than in
the validation sets from cross-validation (19%). When K is set to 20, the signi�cantly worse
performance on the testing set relative to cross-validation may be attributed to the di�erent
ratio of passed to failed bills.

8 Data Visualization
To visualize the data, we used Principal Component Analysis to reduce the dimensions of the
feature vectors for each bill to three, and plotted the data points in the following graphs:

13

14

Visualizing the data helps to understand the level of di�culty of the classi�cation problem.
Although there is some separation between points from the two classes, the distinction is not
obvious.

9 Data Sets Revisited
Because our congressional bill data set is quite large, we had the luxury of experimenting
with a varied composition. However, given the time constraints, we were not able to fully
test these specialty cases. Nevertheless, we found the results worth mentioning and perhaps
worth investigating at a later time. Below we explore the results of varying pass to fail ratios
and de�nitions.

9.1 Big Data
For congresses for which there is comprehensive bill text readily available (i.e. Congresses 103–
113), there are some 123,012 bills in total with 86,032 unique words. Each bill has a maximum of
276,152 words. Unfortunately, this data set failed to run in MATLAB on machines with 16GB of
memory, as the matrices being built for LDA exceeded the available memory on the machine.
Here, algorithms that are optimized for large data sets such as Online LDA [8] might have been
more appropriate.

9.2 Balanced Classes
The pass to fail ratio for our original data set (detailed in section 3.2) was 1:3. We created a
new data set that is about the same size, but with a pass to fail ratio of 1:1 (details below). We
run our classi�er for 20 topics (this was after we found that k=20 produced sub-optimal results,
however there was not enough time to re-run LDA for a di�erent value of k as 20 iterations of
Gibbs Sampling takes 10+ hours). Our classi�cation error on this data set is 49.9%, compared
to scikit-learn’s random forest classi�cation error of 40.7%.

Total number of bills: 18,889
Number of bills in training: 13,550
Number of bills in testing: 5,339
Pass to Fail Ratio in total: 48% Pass : 52% Fail

9.3 Unambiguous Bill Outcomes
Our original problem de�ned the fail class as containing bills that either were explicitly voted
upon and failed the vote, or did not pass the subcommittee stage, or were un-acted upon. If
we instead de�ne fail as the class only containing bills that are explicitly voted upon and fail,
and de�ne the pass class as before (containing bills that are explicitly voted upon and pass),
then we have the following composition of our data set.

Note that out of our total data set of 123,012 bills, only a total of 4% (5026) �t these class
de�nitions, including only 350 total bills that explicitly fail. This composition agrees with

15

Total number of bills: 5,026
Number of bills in training: 3,971
Number of bills in testing: 1,055
Pass to Fail Ratio in total: 93% Pass : 7% Fail

Govtrack’s analysis in [9]. For this reason, we chose not to adopt such explicit labels for our
overall classi�cation. When we perform classi�cation on this data set, our classi�cation error
is 8.6%, compared to scikit-learn’s random forest classi�cation error of 8.5%. Once again, this
was done with 20 topics.

10 Implementation Details
Based on the tutorial from [10], we were able to draft the pseudocode for LDA, as well as adopt
the preprocessing of stop words, lemmatization, and word stemming, which can be found in the
following �les: extract_words.py, lda.m, learn_distributions.m, random_topic_assignment.m,
word_dist.m, topic_dist.m, perplexity.m. We ultiminately decided to implement the code in a
di�erent language (MATLAB).

Scikit learn provides libraries for running logistic regression and random forest, which we
use as baselines against our random forest implementation. Scikit learn’s library is used in
test_sklearn_forest.py and in cross_validation.py (within comments). There is also a Scikit
learn library for PCA, which we used in pca_visualization.m and pca_dimred.py (within com-
ments). It can be found at [11] and instructions for environmental setup can be found in the
README.

16

References
[1] Probabilistic Topic Models; David M. Blei, 2012 (http://www.cs.princeton.edu/

~blei/papers/Blei2012.pdf)

[2] Predicting Legislative Roll Calls from Text; S.M. Gerrish, D.M. Blei, 2011 (http://www.
cs.columbia.edu/~blei/papers/GerrishBlei2011.pdf)

[3] Govtrack.us - About (https://www.govtrack.us/about)

[4] Latent Dirichlet Allocation; D.M. Blei, A.Y. Ng, M.I. Jordan (http://www.jmlr.org/
papers/volume3/blei03a/blei03a.pdf)

[5] Gibbs Sampling in the Generative Model of Latent Dirichlet Allocation; T. Gri�ths
(https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/
griffiths02gibbs.pdf)

[6] Random Forests; L. Breiman, A. Cutler, (https://www.stat.berkeley.edu/~breiman/
RandomForests/cc_home.htm)

[7] Decision Trees - Tutorial (http://dms.irb.hr/tutorial/tut_dtrees.php)

[8] Online Learning for Latent Dirichlet Allocation; M.D. Ho�man, D.M. Blei, F. Bach (https:
//www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf)

[9] Kill Bill: How many bills are there? How many are en-
acted?; J.Tauberer (https://www.govtrack.us/blog/2011/08/04/
kill-bill-how-many-bills-are-there-how-many-are-enacted/)

[10] https://shuyo.wordpress.com/category/machine-learning/lda/

[11] http://scikit-learn.org/stable/

17

http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf
http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf
http://www.cs.columbia.edu/~blei/papers/GerrishBlei2011.pdf
http://www.cs.columbia.edu/~blei/papers/GerrishBlei2011.pdf
https://www.govtrack.us/about
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/griffiths02gibbs.pdf
https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/griffiths02gibbs.pdf
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://dms.irb.hr/tutorial/tut_dtrees.php
https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://www.cs.princeton.edu/~blei/papers/HoffmanBleiBach2010b.pdf
https://www.govtrack.us/blog/2011/08/04/kill-bill-how-many-bills-are-there-how-many-are-enacted/
https://www.govtrack.us/blog/2011/08/04/kill-bill-how-many-bills-are-there-how-many-are-enacted/
https://shuyo.wordpress.com/category/machine-learning/lda/
http://scikit-learn.org/stable/

	Introduction
	Previous Work
	Data Sets
	Pre-processing
	Statistics

	Latent Dirichlet Allocation
	Gibbs Sampling
	Features
	LDA Results

	Random Forest Classifier
	Cross Validation
	Results and Discussion
	Data Visualization
	Data Sets Revisited
	Big Data
	Balanced Classes
	Unambiguous Bill Outcomes

	Implementation Details

