
COURSE MEDIAN PREDICTION VIA SYLLABI

ANALYSIS [FINAL REPORT]

CORALIE PHANORD, GRAESON McMAHON, KELSEY JUSTIS

March 15, 2015

1 Problem Statement

College students often find median grades helpful in the course selection process. Knowledge of a course’s
median grade provides insight on the difficulty of that course, enabling students to set up a well-balanced
schedule. In this project, we applied supervised machine-learning algorithms to course syllabi, hoping to
find some correlation between the content and rhetoric of those syllabi and their associated median grades.

2 Data

2.1 Data Collection

Data collection was a lengthy process and involved two primary sources: Dartmouth class/department
websites and department heads themselves. By searching the former and reaching out to the latter, we
managed to accumulate upwards of 500 syllabi, largely in .pdf format. 30-40% of these were unusable, either
because their respective courses’ medians were not listed online or they did not contain parsable text (several
were scans of physical syllabi).

Median grades were taken from the registrar’s website1 and placed into a .csv file using Excel.

2.2 Data Formatting

After collection, we used Xpdf’s2 pdftotext program to convert every .pdf file to .txt to facilitate later
parsing. Each of these .txt files was renamed using the following scheme: DEPARTMENT-COURSE #-
TERM-SUBCOURSE #, closely following the registrar’s course-naming system. We then wrote code in
MATLAB that, given the title of a syllabus .txt file and the columns of the median .csv file (term, class
name, and median), output a syllabus’s corresponding median. This was error-prone, as small inconsistencies
in the registrar’s course-naming conventions made our code generate a large number of false negatives when
attempting to match syllabi titles to entries in the .csv file. Manual examination of each unmatched syllabus
was therefore necessary. As a result, we used about 235 syllabi in our milestone tests. However, we were
able to add 24 more syllabi to our dataset and represent 19 academic departments at the time of our final
run.

2.3 Syllabi Text Parser

Upon successfully collecting and formatting the syllabi we were then able to parse through the .txt files and
begin examining the more than 450,000 words of content. The final parser design was decided upon reviewing
best practices found in others’ code online. One script that proved especially impactful was developed by

1http://www.dartmouth.edu/ reg/transcript/medians/
2http://www.foolabs.com/xpdf/home.html

1

http://goo.gl/5dMryC
http://www.foolabs.com/xpdf/home.html


Suri Like.3 Using heavily modified portions of this work we filled in the skeleton of our program that filters
through the text content for alphanumeric words. This parser is then capable of producing the dictionary
of vocab used in each individual syllabus. The parser was then further extended to handle a desired batch
of syllabi .txt files and enable feature extraction.

2.4 Features

Our final implementation included a number of high-level and low-level features:

High-Level: Course syllabus department, number, syllabus length (word count), enrollment.

Low-Level:

• Negation word (no, not, never, etc.) count

• Testing word (quizzes,tests,exams, etc.) count

• Homework word (problem set,essays, homework,etc.) count

• Number of percent signs present (as an indication of the grade-breakdown)

• Presence of lab words

• Presence of project words

• Frequency of you words

• Frequency of I words

For our final tests, these features and an additional request were included. The additional request (made
in the final week by Professor Torresani) for having a binary variable for each word used in all syllabi was
implemented by finding the unique words of each syllabus, combining them together and finding the unique
words of that collection, thus creating a vocabulary for Dartmouth College syllabi. We then found all words
which appeared in more than one syllabus and checked against them all in each syllabus.

3 Method and Results

We used decision-tree regression for our approach, basing our algorithm on the capabilities of Quinlan’s
C4.5 algorithm 4. Specifically, we use C4.5’s approach to stopping criterion, creating a leaf node when
the examples at that node reach some threshold of homogeneity. We also apply C4.5’s method of mixing
categorical and numerical inputs; we handle the latter by sorting training sets by the continuous feature and
analyzing the split centered between each pair of examples.

Although our target data could be interpreted as categorical, given there are a finite number of letter grade
medians, we decided that there is utility in predicting intermediate values. For instance, a flat classification
of A (4.0) might be less informative than 3.93, which is only slightly closer to an A than an A/A- (3.83);
continuous predictions better convey uncertainty. Accordingly, we substituted variance for the information
gain/entropy metric used in classification-based decision trees. Essentially, we consider the optimal split of
our data to be that which most greatly reduces the variance in the resulting subsets. Prediction at leaf nodes
is accomplished by averaging the training examples’ associated medians at that node.

3Suri Like’s Wordcount.m Script
4http://en.wikipedia.org/wiki/C4.5 algorithm

2

http://www.mathworks.com/matlabcentral/fileexchange/19505wordcount/ cont ent/wordcount.m
http://en.wikipedia.org/wiki/C4.5_algorithm


3.1 Version I

Our initial implementation suffered from several issues. We had a limited feature set (size four) at the time
of testing, and the algorithm lacked the ability to handle categorical data. Additionally, our code had a few
bugs, including an inability to perform prediction if a test example was inconsistent with the features of the
training subset at every leaf node. More importantly, when calculating the summed variance after a split,
we did not take into account the size of each subset. As a result, the algorithm favored splitting off a single
example (with ’zero’ variance) each time.

Consequently, our results were rather poor, with clear overfitting even at shallow maximum depths. The
following graphs displays our initial performance (averaged over ten random partitions of the dataset into
training and test data).

3.2 Version II

Our next iteration included an expanded feature set (size twelve) and improvements on our algorithm. We
addressed the issues from our first version; to fix the variance problem, we instructed the algorithm to only
partition on the middle sixty percent of the data. We attempted several different approaches to splitting
on categorical features. Originally, we tried the brute force approach of examining every possible split.
For categorical features with a large number of possible values, however, this method is very slow. We
subsequently tried random partitions, hoping to arrive at something close to the optimum after a large
number of attempts. Finally, we opted to sort the data by category, sorting the categories according to their
average median grades. This imposed an order on the categories and allowed us to partition between them
in the same manner that we did for numerical features.

The performance of our algorithm increased significantly:

3



In Versions II and later, the error decreases, so we are able to identify features with predictive power.
Commonly chosen features include course enrollment (admittedly not a syllabus feature, but one included
with median data), percent sign frequency, number of testing words (quiz, exam, etc.), presence of labs, and
department.

3.3 Version III

In our final version, we made an additional change to our splitting criteria, removing the ’middle sixty
percent’ constraint in favor of weighting each subset’s variance according to its size. This further improved
our performance (for our final test, we ran our algorithm over one hundred random partitions to get a better
sense of its general performance). The top graph is 100 repetitions of Version II, for comparison.

4



Though Version III overfits more heavily at higher depths, it reaches a better minimum than Version II
(0.0664 versus 0.0687). For the Version III graph, we also included linear regression with regularization as a
baseline (tested with the same 100 random partitions); we note that our algorithm beats its best minimum
of 0.0706.

As a final experiment, we modified our parser to treat every word found in each syllabus as a new feature,
such that the feature for a given word was ’1’ if present in a syllabus and ’0’ otherwise. This produced over
ten thousand features. Our algorithm performed very slowly on such a large feature set, so we only managed
to run it on one random partition up to depth four. The results were underwhelming, failing to improve on
our hand-picked feature set.

With some modifications (such as saving the indices of our examples sorted according to each feature,
rather than recomputing at each split), we could speed up the algorithm considerably and test this feature
set for more repetitions and larger depths. This would be a good area for future work. In addition, we note
that Versions II and III of our algorithm both have significantly varying performance on different random
partitions, sometimes reaching minimum errors as low as 0.055. Analyzing the factors that contribute to
these discrepancies might provide insight into possible improvements for our dataset and algorithm (for

5



instance, if the algorithm performed better when each department had examples in the training and test
sets).

4 Conclusions

We identified recursive feature partitioning as a means of studying the correlation between the text in a
course’s syllabus and the course’s median grade. With only 259 syllabi and less than half of Dartmouth’s
departments represented, we were still able to find notable results. We see that, with an appropriate feature
set, syllabi text indeed correlates to course grade distributions. As we know that there is correlation between
a course’s median grade and certain features available in a course’s syllabus, exploring additional features in
a larger and more representative dataset could potentially lead to stronger results. This sheds light on how
interesting a large scale study could be.

6



5 Appendix A: Implementation Details and Attributions

We would like to properly recognize Suri Like for her Wordcount.m script5; this code was quite helpful early
on in identifying the initial direction of the parser code. We made use of Xpdf’s pdftotext program6 to convert
our .pdf files to .txt files. We compiled a list of stopwords (found in OutsideVocabDatabases/stopwords.txt)
from a number of sources.7

Otherwise, all code submitted is our own.

5Suri Like’s Wordcount.m Script
6http://www.foolabs.com/xpdf/home.html
7ranks.nl stopword listxpo6.comGoogle Stopword ProjectPMTK

7

http://www.mathworks.com/matlabcentral/fileexchange/19505wordcount/ content/wordcount.m
http://www.foolabs.com/xpdf/home.html
http://www.ranks.nl/stopwords
http://xpo6.com/list-of-english-stop-words/
https://code.google.com/p/stop-words/
https://code.google.com/p/pmtkdata/source/browse/trunk/20news_w1000/stopwords.txt?r=86

	Problem Statement
	Data
	Data Collection
	Data Formatting
	Syllabi Text Parser
	Features

	Method and Results
	Version I
	Version II
	Version III

	Conclusions
	Appendix A: Implementation Details

