CS 74 Final Project Report: Predicting Stress from Android Sensor Data
Nishant Kumar, Minsoo Kim
March 15, 2015

I. Project Goal
Stress is an indicator for a wide variety of both physical and mental health disorders. Although stress is

relatively easily self assessed and addressed, it often goes unnoticed as a natural part of everyday life.
Unaddressed in this way, especially over a prolonged period of time, stress may lead to more serious
mental health disorders such as depression or increase the likelihood of physical disorders such as heart
attack.

An automatic stress level prediction system that can infer a user’s level of stress from sensory input
will be helpful in addressing the issues caused by stress. Because sensory data is gathered continuously,
such a system can monitor a user’s stress level with little interruption and alert/remind the user of his or
her current stress level or make recommendations based on it.

We propose an application that can predict a user’s stress levels by analyzing the raw sensor data from
his/her android device. This application then in theory can sit on a centralized web server or on the
user’s Android device itself.

I1.Scope
The current scope of the project is to demonstrate that a machine learning algorithm provided enough

raw sensor data from a smartphone can learn a model to predict a user’s stress levels.

II1. Data

The data used to learn this model is from the Dartmouth StudentLife study. This is available on the CS

department's website. This data was collected from student volunteers from the CS-65 Smartphone
programming class offered last year. Student volunteers were given android phones which had an in
built app which recorded raw sensor data such as:

Audio inputs
Activity inferences
Conversation logs
GPS location
Bluetooth

GPS location
WiFi

WiFi1 location,
Light sensor



Phone lock
Phone Charge
Education data - Deadlines etc.

Data collection monitoring
Students were sent reminder emails if there were any gaps in the data collection or the data was not
getting uploaded at all.

Incentive
The student volunteers were offered incentives such as free T-Shirts, Google Nexus smartphones etc.

Privacy
The student volunteers’ identities were hidden by using random ids. The call logs and sms logs were
hashed.

Survey Data
The dataset also contains self reported stress level data ranging between 1 and 5. The original mapping
used in the dataset is as follows:

Stress Level Id Description

1 A little stressed

2 Definitely stressed
3 Stressed out

4 Feeling good

5 Feeling great

We have used a new mapping in order to show a monotonically increasing values of stress. Its shows as

follows:
Stress Level Id Description
1 Feeling great

2 Feeling good




3 A little stressed

4 Definitely stressed

5 Stressed out

The data collected is stored in csv and JSON formats.

IV.Data Processing

The project requires certain amount of Software Engineering effort. Its described as follows:

a. We have written several parsers in Java to read the data that is in csv and JSON formats.

b. The respective parsers then further pass on the data to data adaptors that store all this sensor
data in a database. The data adaptors are implemented in Java and Hibernate which provide the

Data Access Object(DAO) layer over the database.

c. The database is implemented in MySQL database server.

The database schema diagram is as follows:

PHONECHARGE PHONELOCK o
o i g
Phonechargetd int ophonelockTd int o ' [ermesioonr ]
il i [ usernane varchar 'jggiName \llgir::har t STRESSL?LD'KL!:
°start datetime ostart datetime *stressLevel in
cend datetime oend datetime ﬂdatef T ?QEEU’“E *description varchar
eduration int oduration  int Lnumofbeadlines 1n h
STRESS
AUDIOLOOKUP td_____int
- - “userName varchar
°audicInferenceld int date date
Pdescription  varchar] stressievelld int
[
A y
. USER h
T <
AUDIO Plruserld int < CONVERSATION
userName varchar |4 T -
caudicId int econversationId int
°userName varchar A cuserName varchar
cdate datetime estart datetime
caudicInferenceld int °3nd . datetime
Pduration ant
ACTIVITYLOOKUP
*activityInferenceId int
*description varchar
A
DARK SLEEP
ACTIVITY - SMS -id int
*activityld int cdarkld _int °1d int *us e rName varchar
*userName varchar userhane dateti cuserName varchar date date
3 : <
“date datetime DZ;:” d:::ﬂ: Ptimestamp datetime *hoursofsleep int
*activityInferenceld int o duration int




Every individual sensor data is stored in its own table. The tables further should have a foreign key
relationship with the USER table, indicating that they cannot store data about any user that is not
present in the USER table.

This database is then queried to generate input for the Neural Network to train on. For the milestone,
the sensor data we used for the features is as follows:

Conversation logs
Light data

Phone lock
Phone Charge
Sleep

Stress data acts as our y - label.

If the sensor data is recorded multiple times in a given day for a given user, we add up all the data. Eg:
the conversation data for a given day and given user is added up to indicate the number of hours a user
has conversation logs on that day.

The stress data on the other hand for a given day and user is averaged up.
Feature expansion
In order to generate discriminative feature vectors, we expanded our original set of 5 features.

We expanded Conversation based on histogram by total calls made under certain call length. Eg how
many calls were made by a given user on a given day that were of the length 5 mins. The max call
length by any user went all the way till 412 mins. So this gives us about 412 expanded features from
Conversation

We expanded PhoneLock using a similar criteria i.e how many time was the phone locked for a certain
length. Eg how many time was the phone locked by a given user on a given day for 5 mins. The max
time a phone was kept locked was about 600 mins. So this gives us about 600 expanded features from
Phone Lock.

Again, a similar criteria performed on Phone Charge gave us about 600 expanded features.
After this feature expansion exercise and including the already present features, we get a total of 1622

features. Each feature containing 3872 rows. Although number of rows were further filtered described
in results section below.



V. Neural network
1. Motivation

Models of regression and classification that involve linear combinations of fixed basis
functions are useful analytical tools, but they often run into trouble when the model we desire to
approximate has high dimensionality. The relationship between human behavior and phenomena such
as stress is most likely high dimensional and nonlinear. Therefore we use neural networks to
approximate a model of the relationship between behavior and stress.

2. Training
1) Gradient descent

To train a neural network, we wish to find a weight matrix w which minimizes the error
function E(w). Since we cannot find an analytical solution to dE(w)=0, we use gradient descent to
optimize the weight matrix. We choose the weight update to be a small step in the direction of the
negative gradient. The gradient descent update rule is given by:

wiTtl) = wlm) — nyE(wl™)

where the parameter # is the learning rate. The above rule applies to the batch gradient descent method,

which evaluates the gradient based on the entire training set before updating the weight matrices.

An online version of gradient descent, whose weight update rule is given by:
wlTHl) = wlr) — pvE, (w(™)

is known as stochastic gradient descent, and updates the weight matrix based on each training example.
Stochastic gradient descent simplifies the gradient by computing one for each training example, but has
been demonstrated to perform on par with batch methods, while taking less running time.

i1) Backpropagation

In order to evaluate the gradient of E(w) for a feed-forward network, we use error
backpropagation. The backpropagation algorithm is derived by applying the chain rule for partial
derivatives and obtaining the derivatives of the error function with respect to the the neural network
weights.



We omit the full derivation of the backpropagation algorithm, which was referenced from
Section 5.3.1 of Bishop.

3. Algorithm

Based on the algorithm provided by Bishop, we build a neural network with the following
functions.

First, the activation function for the hidden units are given by

h(a) = tanh(a)

where

a_ g-a

e
tanh{a) = ——
@ g% 4 g7e

The hyperbolic tangent function has its derivative given by

h'(a) = 1 — h(a)*

We use a euclidean error function given by

1 K
E:'z = EZU’K - tka
k=1

where y, is the activation output unit k£ and ¢, is the corresponding target value.

The forward propagation is performed by:

D
— E EY
-ﬂ:r = H‘"_ff X;

i=0

z; = tanh (a;)

M
— E (2}
Y = wk_;" z_;"
j=a

Finally, to obtain the gradients, we first compute

S = Vi — e

and



K
ﬂj = (1 - ij:] Z ij.' Sk"

k=1
and compute

dE, dE
m = djx; "r:] = 8z;
H'r.l'f ﬂWkJ. :

Finally, we added regularization to the neural network.

VI. Implementation details & Challenges

a. External software: We did not not use any external software other than STATA to help with the
data collection and merging processes. The preprocessing of data was done via MySQL, and Java, and
STATA, and the neural network was implemented in MATLAB.

b. Training and testing code: The training and testing codes are implemented as MATLAB functions.

Neural network implementation

1. Random initialization

We encountered a symmetry problem in our initial implementation of the neural network.
Initializing the parameters to random positive values between 0 and 1, while an intuitive choice, causes
a problem known as symmetry, in that all activation values of the hidden layer take on similar values.
In this case, the neural network will be unable to learn. Since we used the hyperbolic tangent function,
an initialization of all parameters to positive values has a high likelihood of causing all of the hidden
unit layer activations to take on the value of 1. This means that the error signals propagated to these
units will take the same value, which means that the weight updates for the hidden units will be
identical. This causes the neural network to “get stuck”.

We resolved the issue by initializing the parameters to random values within a range of -0.12 to
0.12. The specific values were reached via trial and error of best performance, and recommendations
from literature.

2. Stochastic Gradient Descent

We found that performing Stochastic Gradient descent with one training example at a time resulted in
poor performance. Therefore we implemented minibatch and were able to speed up our training time,
but we ran into issues with bad local minima, so switched back to the batch implementation.



Data processing implementation

The Java files are described as below:
The Java files contained in the package edu.cs174.studentlifedataadaptor are the files that parses the
raw data from their individual csv / json files and stores them the database.

The Java files contained in the package edu.cs174.studentlifedataadaptor.dao are the files that pull the
required data out of the database and perform the processing needed on the data. Eg as follows:
a. query the database and get the list of dates for which we have self reported stress levels data
b. for these dates query the database and get the Conversation logs. Extract the duration in
minutes or hours as per requirement. If there are multiple logs for a given user and on a given
day, then they can all be added up here

The Java files contained in package edu.cs174.studentlifedataadaptor.featureexpansion does the
expansion of the features as described in above sections.

All these Java files use third party jar files / libraries as follows:

ant
ant-launcher
antlr-2.7.6
asm
cglib-2.1.3
commons-collections-2.1.1
commons-lang-2.4
commons-logging-1.0.4
dom4j-1.6.1
hibernate3
jms
joda-time-2.7

. json-simple-1.1.1
jta
log4j-1.2.17
mysql-connector-java-3.1.14
opencsv-3.1

S E® Mo A o

2w o5 g~ FT

VII. Results

For our final results, we used a data set of 1270 total examples, produced by removing all
training examples which did not have the full set of feature data, meaning there was at least one sensor
data (out of the five features, phone-lock, phone-charge, sleep, dark, conversation) from the user that
was unable to be collected for the corresponding time period. Afterwards, we expanded these existing



features by adding minutely histogram features of phone-lock, phone-charge, and conversation, adding
~600, ~600, and ~400 features, respectively for a total of 1622 features.

1. Test of Objective using user separation

Firstly, we needed to address the issue arising from the fact that our dataset did not differentiate
between the 60 different users from whom the data were collected. This meant that if it was the case
that certain users always produced the same input-stress pairs, then our test set could potentially be a
partial replicate of our training set, because the same user will likely appear in both the training and test
sets. To test for this possibility, we ran two separate validation runs, first taking the first 10 users by
user]D as the test set and the other 50 users as the training set, and in the second case taking the last 10

users by userID as the test set and the rest of the users as the training set. Figures A and B show the
results:

Figure A: First 10 users as test set

Meural Metwork Baseline: Mean

1 1
0.8 1 0.8
0.6 1 0.6
0.4 1 0.4
0.2 1 0.2

% 2 g 6 % 2 4 6

Comparison

1
0.8
0.6
0.4
0.2

0



Figure B: Last 10 users as test set

Because both validation results returned errors roughly equal to 1 for a training error of 1, and
they performed close to the baseline, we decided to go ahead with the mixing the datapoints of different
users in our main dataset.

2. Optimal Hidden Units, Learning Rates, and Regularization

i) Learning rate



The process of finding the optimal hyperparameters was carried out starting with the learning
rate. We found that the learning rate was better manually picked because variations in the number of
hidden units caused different bad local optima or training failure (values going to infinity). Therefore
we used the learning rates 0.1~0.01 keeping in mind consistency for comparisons. However in general,
most training runs shown in the following results were conducted with learning rate=0.01 except when
the learning rate of 0.1 was found to be feasible.

ii) Hidden units
In order to find the optimal number of hidden units, we looked at the holdout validation error
and the standard deviation results returned by our training & tests. Figure C shows the plot of holdout

validation errors for different numbers of hidden units.

Figure C:

Holdout Validation Errors by #of Hidden Units

131

1.25

12

1.1

1.05

0.95

U-g, | 1 | | | | | | 1 |
0 50 100 150 200 250 300 350 400 450 500

We found that the validation error generally increased for increasing numbers of hidden units.
However, before deciding on 5, for example, as the number of hidden units based on this result, we
looked at another criteria, standard deviation. Figure D shows the plot of standard deviation for
different numbers of hidden units.



Figure D:

Standard Deviations by #of Hidden units
U.E T T T T

0.45

04

0.35

0.3

0-25 | | 1 1 1
0 50 100 150 200 250 300

Noticeably, we observed that for numbers of hidden units less than 50, the standard deviation
was very low, at 0.3 or lower. Looking at the predicted values for the test examples, we confirmed that
indeed that predicted values were mostly very close to the mean. However this was not desirable
because the variance of the Y column is close to 1, and a low standard deviation simply means that the
model is minimizing the MSE by finding a mean value. Therefore we began to look at standard

deviation as a criteria for our test performance, postponing the decision on the optimal number of
hidden units.

We saw that lower number of units fits the base well because the variance and std is lower
meaning it predicts mostly the mean.

ii1) To explore the implications of standard deviation values further, we tested whether they had
any correlation with the lambda regularization hyperparameter. The following tables shows a
comparison of lambda=0 vs lambda=1000 on the standard deviation.



Hidden Units Training error Lambda Standard deviation

5 1 0 0.0372

5 1 1000 0.2657

We found that by forcing the lambda to a high value, we could drive down the standard deviation and
also bring our neural networks predictions very close to the mean of the Y’s, our baseline. Figure E
shows the effect of lambda=1000 on the comparison with the baseline.

Figure E:
Effect of a high regularization hyperparameter

1 : : : : 1
0.8} . D&t ]
06 E 06 i
04+t - 04f i
0.2 . 02t i

% ) P 3 1 5 0 3 1 5

Based on this result, we were able to conclude that underfitting causes the model to predict the mean
value of the Y’s.



Finally, we tested the validation errors and standard deviations that result from training to a lower error
threshold (0.7 as opposed to 1 before). The table shows our results:

Hidden units Training error Standard Deviation Test error
5 0.7 0.4218 0.8594
100 0.7 0.4799 1.0836
200 0.7 0.4158 1.2154

We found that the number of hidden units ceased to have a significant effect on the standard deviation.
The standard deviation also increased to over 0.4 for all hidden units, as opposed to before when we
had values 0.2~0.3 for some numbers of hidden units. However we did see that choosing 100 hidden

units gave a slightly higher standard deviation.

Our final figure shows the results of training to a training error of 0.5. The validation error was 1.2085,
and the standard deviation was 0.4557.

Figure F : Trained to 0.5 training error, 100 hidden units.

Results: Training error = 0.5

1 1
0.5 0.5
0 : : 0
0 2 4 B
1
0.5
D n L
0 2 4 B




VIII. Conclusions & Discussion

From Figure F, we can see that the neural network did not outperform a baseline of taking the
mean of the target variables as the predicted value for all examples. However we were able to find a
different fit for the data from the baseline, with a relatively similar MSE near 1, and standard deviation
of ~0.4 as opposed to 0 given by the baseline.

However, the fact that we were not able to outperform the mean baseline, coupled with the fact
that we found that imposing high regularization on the neural network caused it to underfit and match
the baseline, led us to conclude that the dataset as constructed by us had too high variance and was not
enough to capture the model we had hoped for. Some obvious issues were feature expansion, and
dealing with missing sensor values, resulting in a smaller dataset size.

Although our results indicate that it is difficult to predict stress data from the raw sensor data of
sleep, conversation, light/dark and phone lock/charge, we hope to have an opportunity to perform a
deeper analysis of this problem in the future with a more expansive set of features.

IX. Possible Future Work

Apply more feature expansion techniques to construct a richer dataset
Increase the size of the dataset

Apply more advanced neural network techniques

Put the application on a web-server

=

X. References:
1. Discussions with Professor Lorenzo Torresani.

2. Wang, Rui, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie Tignor,
Xia Zhou, Dror Ben-Zeev, and Andrew T. Campbell. "StudentLife: Assessing Mental
Health, Academic Performance and Behavioral Trends of College Students using
Smartphones." In Proceedings of the ACM Conference on Ubiquitous Computing. 2014.

3. S. E Taylor, W. T. Welch, H. S. Kim, and D. K. Sherman. Cultural differences in the
impact of social support on psychological and biological stress responses. Psychological
Science, 18(9):831-837, 2007



4. N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T.
Choudhury, and A. Campbell. Bewell: A smartphone application to monitor, model and
promote wellbeing. In Proc. of PervasiveHealth , 2011

5. CS65 Smartphone Programming. http://www.cs.dartmouth.edu/~campbell/cs65/cs65.html

6. Depression. http:// www.nimh.nih.gov/health/topics/depression/index.shtml

7. StudentLife Dataset 2014. http://studentlife.cs.dartmouth.edu/

8. C. M. Aldwin.Stress, coping, and development: An integrative perspective. Guilford
Press, 2007

9. Eftekhar B, Mohammad K, Ardebili HE, Ghodsi M, Ketabchi E. Comparison of artificial
neural network and logistic regression models for prediction of mortality in head trauma
based on initial clinical data. BMC Medical Informatics and Decision Making 2005;5:3.
doi:10.1186/1472-6947-5-3.

10. Bishop, Christopher M. Pattern Recognition and Machine Learning

11. Ng, Andrew. Machine Learning Course Materials (Stanford, Coursera)

12. hitp://'www.mysql.com/

13. http://ant.apache.org/

14. http://asm.ow2.org/
15. https://eithub.com/cglib/calib

16. http.://commons.apache.org/proper/commons-collections/

17. http://commons.apache.org/proper/commons-lang/

18. http://hibernate.org/

19. hitp://'www.mysql.com/

20. http://opencsv.sourceforge.net/


http://www.cs.dartmouth.edu/~campbell/cs65/cs65.html
http://www.cs.dartmouth.edu/~campbell/cs65/cs65.html
http://www.nimh.nih.gov/health/topics/depression/index.shtml
http://www.nimh.nih.gov/health/topics/depression/index.shtml
http://studentlife.cs.dartmouth.edu/
http://studentlife.cs.dartmouth.edu/
http://www.mysql.com/
http://ant.apache.org/
http://asm.ow2.org/
https://github.com/cglib/cglib
http://commons.apache.org/proper/commons-collections/
http://commons.apache.org/proper/commons-lang/
http://hibernate.org/
http://www.mysql.com/

