
CS174: MACHINE LEARNING

PROJECT FINAL WRITE-UP

Personalized Song Recommender System

Michael Lau, Binjie Li, Beitong Zhang

March 15, 2015

1 INTRODUCTION

The aim of our project was to create a personalized song recommender system for a dataset
taken from last.fm. More specifically, we endeavored to use user listening history to predict
future behavior, which is a natural problem for any online music providing service.

First, we implemented a naive collaborative filtering neighborhood model, which provided
surprisingly good benchmark results. Then we implemented a form of the latent factor
model, which yielded results with much lower accuracy. Finally, we utilized SVD to reduce
the dimensionality of the neighborhood model so that it can run more efficiently, which is a
crucial requirement for online recommender systems.

2 DATASET AND DATA PREPROCESSING

We are using a real-world dataset [1] [3] containing the listening histories for 1000 different
users from Last.fm. The size of the raw dataset is nearly 3GB which is a really big dataset and
surely quite difficult for us to analyze. Therefore, we first did analysis on the records to reduce
the size of the dataset while keeping its underlying feature distribution as much as possible.

Figure 2.1 shows the history size distribution in our original dataset and we can tell that the
size ranges greatly among different users. For those users with small history sizes, we believe
that they are not good samples for our analysis based on two reasons. First, if we only know a
little about a user’s history, then it would be difficult to find similar users and infer his taste in
music. Secondly, we aim to recommend new songs to each user, so for the user with a small

1



0	  

20000	  

40000	  

60000	  

80000	  

100000	  

120000	  

140000	  

160000	  

180000	  

200000	  

1	   28
	  

55
	  

82
	  

10
9	  

13
6	  

16
3	  

19
0	  

21
7	  

24
4	  

27
1	  

29
8	  

32
5	  

35
2	  

37
9	  

40
6	  

43
3	  

46
0	  

48
7	  

51
4	  

54
1	  

56
8	  

59
5	  

62
2	  

64
9	  

67
6	  

70
3	  

73
0	  

75
7	  

78
4	  

81
1	  

83
8	  

86
5	  

89
2	  

91
9	  

94
6	  

97
3	  

History	  Size	  Distribu/on	  among	  Users	  

History	  Size	  

Figure 2.1: History Size Distribution among Users

history size, we won’t have enough test data to predict the new songs he will listen to. We
decided to filter users with history sizes smaller than 10K, leaving us with only 542 "valid"
users out of 1K as our sample set.

In the raw dataset file, we have more than 100K artists and 1 million songs. Since putting
them all in the user-item matrix is not computationally feasible, we analyzed the popularity
of artists and songs and chose the most popular m artists and n songs to construct our
dictionaries. For now, we’ve chosen m = 3000 and n = 10000.

We wrote a 300-line Java program to analyze the raw datafile and do the above two main
things. The format of one history record in the raw datafile is as follows:

<timestamp, user_id, artist_id, artist_name, song_id, song_name>

After our program, we output two dictionary files for both artists and songs. Also, for each
user, we create two vectors va and vs corresponding to user-artists and user-songs:

va =< a1, a2....an >
vs =< s1, s2....sn >

where ai and s j are the times a user listens to the artist i and song j .

3 NEIGHBORHOOD MODEL

3.1 SIMILARITY

We determined the similarity of users x and y using simply the cosine of their vectors:

si m(x, y) = cos(~x,~y) = ~x ·~y
||~x||2 ×||~y ||2

(3.1)

As each user had three associated vectors, each pair of users had three associated similarities,
based on the songs they had listened to, the artists they had listened to, and their user profiles.

2



Each of these similarities was given a weight in their composition to form the overall user-user
similarity.

To optimize the weights, we iterated through different weight ratios, finding that a ratio
of 100: 10 : 1, for the artist, song, and profile vectors respectively, was sufficient, with higher
values for the artist and song vectors yielding only very marginal increases in accuracy.

3.2 RECOMMENDATIONS

The goal is to provide user x with a set of songs that he or she will probably like. This set, XR ,
must be derived from the set XW = S −X`, where S is the set of all known songs and X` is the
set of songs x has listened to.

For each song Si ∈ XW , we project a recommendation score rxi based on the number of
times other users U have listened to Si , weighted by their similarity to x:

rxi =
∑

u∈U
si m(x,u)× `ui∑|S|

j=1`u j

(3.2)

`ui is the number of times user u listened to Si . It is normalized by sum of all the times u
has listened to any song, essentially giving the percent that Si constitutes u’s history.

This function was based off of one for a standard dataset, where a user’s relationship with
an item is determined by a rating, not a history. These ratings were normalized by subtracting
the average of all the user’s ratings [2].

rxi = r̄x +k
∑

u∈U
si m(x,u)× (rui − r̄u) (3.3)

Ratings and histories differ in their range of values, so normalizing using the original func-
tion was not effective. Also, because we are not predicting a rating, we do not need to incorpo-
rate the user’s average rating or the normalization constant k.

3.3 EVALUATION

Using the first n songs that X listened to, Xn , we found recommendation scores for all the
songs that X hadn’t listened to in the training set. The songs with the top k recommendations
scores constitute the set R ⊆ X −Xn .

Our goal is to predict Xp , X ’s k most listened to songs in the test set minus the training set,
i.e. their ’future’ behavior: Xp ⊆ X −Xn .

We define accuracy rate z as:

z =
∑

r∈R r ∈ Xp

m
(3.4)

3.4 RESULTS

As shown in Figure 3.1, the neighborhood model yielded surprisingly good results. To put
them into perspective, after a user has listened to 3000 songs, our model accurately predicts

3



three of the five songs they will listen to the most that they have not yet listened to. With this
kind of information, a music recommender system can provide real utility for the average user.

Figure 3.1: Accuracy with Various Top K Songs Recommended

There is a significant caveat for these results in that the sample size is only a little more than
500 users. When looking at the user profiles, it is clear that the users are actually very similar,
which is when the neighborhood model works the best. In a real world application, the dataset
would be much larger, and the similarity between users might not be so high.

4 LATENT FACTOR MODEL

Our second approach, the Latent Factor Model [5] [4], predicts the "ratings" of items which
is unrated in our training set. In the Neighborhood Model, our recommendations were
based on the assumption that similar users will listen to similar songs. As mentioned in
Sec. refsec:similarity, the similarity we used was the cosine distance of different users’ listening
histories, formatted as vectors. In the Latent Factor Model, we try to predict the "rating" of a
user to all the songs which hasn’t been rated and recommend songs with high "rating". The
primary distinction from the Neighborhood Model is that we do not directly calculate the
similarity between users, but instead elicit latent associations between users and items in the
entire listening history matrix to indirectly find which songs to recommend.

4.1 GENERAL IDEA

We assume that ratings are deeply influenced by a set of factors that are specific to the domain,
e.g. the amount of characters in a novel, scene complexity in a movie. Since these factors

4



are in general very ambigious, it’s hard to manually classify them and estimate their impact
on the ratings. Hence, the Latent Factor Model uses mathematical techniques, e.g. matrix
factorization, to infer these latent factors from the existing rating data. Given a particular user
u and an item i , we can get two vectors, each representing how much interest user u has in
these latent features and how related is the item i to these latent features. Such decomposition
is executed on a partially defend rating matrix and we can use the inner product of these
two vectors to predict unknown ratings. Since these two vectors are based on known ratings
in the training data, it is crucial that the rating we have can reflect the users’ interest well.
Unfortunately, in our case the only data we have is how many times user u has listened to
a song i , which is only a kind of implicit feedback which can reflect users’ interest in songs.
Hence, the results we get are not as good as the Neighborhood Model, and we will give detailed
analysis later.

4.2 LEARNING ALGORITHM

In our model, as given in the Recommender Systems Handbook [5], we predict a rating
according to the following rule:

r̂ui =µ+bu +bi +qT
i pu (4.1)

Here rui denotes an unknown rating in our data. µ is the average of the rating data, and
bi , bu are the bias for user u and item i . These three factors are called baseline prediction
because for example, it would predict a higher rating of items to a user if he in past always rated
higher compared to other users. qT

i pu is the inner product of user feature matrix and item
feature matrix. We then loop through all the known ratings in the training set and compute
the prediction error between the existent rating and the predicted rating as:

êui = rui − r̂ui (4.2)

To train the model, we define the loss function as:

min
b∗,q∗,p∗

∑
(u,i )∈K

(rui −µ−bi −bu −qT
i pu)2 +λ(b2

i +b2
u +||qi ||2 +||pu ||2) (4.3)

which is a squared error function with a regularization term. We use stochastic gradient
descent to find the convergence since the quadratic function is guaranteed a global minimum.
In every loop, for each known rating tuple, we update its corresponding parameters bi , bu , pu ,
qi in the opposite direction of the gradient.

4.3 RESULTS

The accuracy rate evaluated here is the same as the one in the Neighborhood Model and we
get the following result with different number of latent features:

As shown in Table 4.1, the results are relatively low compared to our earlier success with the
Neighborhood Model. Here we list several main reasons why we think the Latent Factor Model
is not a good choice in our case.

5



Table 4.1: Accuracy with various number of latent features

Featur eNumber 2 8 16 64 128
Accur ac y 8.11% 9.37% 9.41% 8.98% 9.04%

We believe the main reason is that the Latent Factor Model works well on a dataset with
explicit feedback, for example, the users’ ratings for various items. Traditionally, a high rating
reflects that user has interest in that item and lower rating means dislike. Based on such
training data, the predicted rating would also reflects the user’s taste or interests. Here our
rating data is actually the number of times the song or artist has been listened to, and we try to
predict the top songs the user will listen to the most in the future. The first problem is, in the
training data, the number of times a song has been listened to can differ a lot from the user’s
actual interest, especially when the times are few. For example, for a song the user listened to
only once, we cannot claim the user dislikes the song, because we believe the user would only
repeat his favorite songs a lot of times. Hence, listening few times doesn’t mean very low rating
in the standard form. Unfortunately, such instances with very few listening times account for
a very large proportion in our known data (as shown in the Figure 4.1 where tag 11 stands for
the ratings above 10), and we believe this is the reason why the results we predict are not so
accurate.

Figure 4.1: Distribution of the Ratings

During our presentation, Professor Torresani suggested we delete the ratings with small
values, which is the data with few listening times, since such history is mostly noise and
doesn’t represent user’s interest. We tried this idea and got slightly better results(as shown in
the Table 4.2), but the improvement is negligible. We think excluding such data in our training
stage is helpful, but the property of our "rating" data remains the same. For example, the
residual rating distribution in our case is still quite different from the standard rating data,
which is generally a Gaussian Distribution.

6



Table 4.2: Accuracy with various number of latent features(Improved Version)

Featur eNumber 2 8 16 64 128
Accur ac y 10.96% 9.94% 9.82% 9.65% 9.26%

Secondly, we think negative samples should be considered in our case. As mentioned before,
in our training stage, we use only the known rating data and ignore all zeros since we treat
them as unobserved ratings. Actually, such zero ratings are meaningful to us. For example, if
a song is very popular among other users but this user has never listened to it, we can infer
that this user doesn’t like this song. But the challenge here is how to rate such a negative
sample, since our ratings have a large range and it is unclear how to differentiate whether a
user dislikes a song or is simply ignorant of it. Another reason why we need negative sample
is that in the Neighborhood Model, we calculate the relative distance with users and such
zeros are considered because we calculate the difference in vectors. We haven’t yet tried to
implement this in our algorithm, and we shall treat it as our future work.

There are other reasons we think might cause the problem here, for example, the size of our
user data is not large and diverse enough. Since users are quite similar, the Neighborhood
Model should perform far better than the LFM.

5 SVD + NEIGHBORHOOD APPROACH

After trying the LMF method, we decided to use SVD in another way. We started by using the
built-in SVD algorithm in Matlab to factorize our original user-item matrix A.

SV D(A) =U
∑

V T (5.1)

Figure 5.1: Performance of SVD+Neighborhood Approach

We then reduced the dimensions of A by selecting the first k columns of matrix U , thus
getting the top k components of the listening history. This new matrix U ′ became our new
user- item matrix. The neighborhood approach in Section 3 is used again on U ′. We ran this

7



program with different remaining dimensions k and also calculate the running time of our
program (SVD+neighborhood approach).

We can see that in the left of Figure 5.1, the accuracy of our prediction after using SVD is
a little lower than the one using original data. However, the accuracy is still acceptable. The
running time grows when we use a larger dimension k. For all of the dimensions, the running
times are much better than in the original method (218 seconds). Thus, we have found a much
faster recommender. This is very meaningful for a larger, real-world dataset that will be used
for an online recommender system.

6 CONCLUSION

Facing a non-standard dataset, we first found a way to reprocess our data to fit the input of
a traditional rating based recommender system. We then implemented two recommender
systems with different models: the Neighborhood Model and the Latent Factor Model. Our
results show that, though it is a simpler model, due to our uncommon data, the accuracy using
Neighborhood Model is much better than the Latent Factor Model. We analyzed different
possible reasons why the Latent Factor Model doesn’t work well, which mainly centered around
problems with our dataset. Furthermore, we tried different ways to improve the accuracy of
both models, and made marginal improvements in both cases. We also found a way to apply
SVD on the Neighborhood Model and achieve a better time-efficiency with an acceptable
precision level.

Though it is slightly disappointing that our more sophisticated technique performed worse,
the results from both methods had significant value. The metric we chose for evaluating
accuracy was such that even a result of ten percent has a clear value for the user. If we can
recommend just one song that will become one of a user’s ten most frequently listened to
songs, then we have succeeded. This is the result of only one term’s worth of work, and it is
clear that with a larger dataset and some more refinement to our techniques, the methods we
have developed form the basis of a successful recommender system.

7 IMPLEMENTATION DETAILS

7.1 DATA PREPROCESSING

The folder DataProcess contains two Java files we wrote to process the original data. Dat-
aProcess.java does the job mentioned in Section 2. dataProcessLFM.java turns the user-song
matrix, which is the output of the DataProcess.java, into a line based <user,item,rating> tuples
as the input of our LFM algorithm.

7.2 NEIGHBORHOOD MODEL

Our implementation of the Neighborhood Model required four functions in Matlab: simUser,
recommendations, accuracy, and test. In addition we used a matlab script for implementing
the tests necessary for analyzing our methods.

8



The simUser function simply implemented the cosine similarity function described above.
The recommendations function recommends songs for a particular user, given a set of other
users and all their listening histories. The accuracy function finds the accuracy for the recom-
mendations for one user. Finally, the test function iterates through the data set, finding the
recommendations and accuracy for each user. All of these functions were written by us.

7.3 LATENT FACTOR MODEL

We wrote the LFM algorithm in Python based on the equations given in [5]. We use stochastic
gradient descent to find the convergence since the quadratic function is guaranteed a global
minimum. In every loop, for each known rating tuple (each line in the output file of dataPro-
cessLFM.java), we update its corresponding parameters bi , bu , pu , qi in the opposite direction
of the gradient. The training step would use pickle module to output a lfm_model.pkl file
containing the information of the parameters of the model we get. The prediction step uses
the model we trained to output a prediction file which contains the predicted rating matrix. We
also wrote Matlab scripts to calculate the accuracy based on our evaluation rules mentioned
in Section 3.3.

7.4 SVD + NEIGHBORHOOD MODEL

For this part, we have almost the same Matlab code as the naive neighborhood model. We call
the built-in SVD function in the Test_Script.m in the folder SVD+Neighborhood. As mentioned
in Section 5, we use the similarity in the subspace to run our Neighborhood Model.

REFERENCES

[1] last.fm music recommendation dataset. http://last.fm. Accessed: 2015-02-17.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

[3] O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

[4] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filter-
ing model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 426–434. ACM, 2008.

[5] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. Recommender systems
handbook, volume 1. Springer, 2011.

9


