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1. Problem and Data 
Our project attempts to classify plankton images through supervised machine-learning 
algorithms. As mentioned in our proposal, an automated plankton classification system 
would help scientists gauge ocean and ecosystem health more efficiently and accurately. 
We mainly use convolutional neural networks (CNN), the learning algorithm that 
outperforms all other known image classification algorithms in the literature. 
Regarding the data we use, we use the MNIST dataset, which consists of a set of 60,000 
handwritten digits from 0 to 9, for testing of our algorithm, as well as our plankton image 
dataset. One revelation since the time of the proposal has been that our initial training set 
of 30,000 images is the only labeled data, the other 70,000 images in our supposed test 
set are unlabeled, and would be impossible to label without a trained marine biologist. As 
such, we split the training set into 20,000 images for training and 10,000 for testing. 
Example images of our plankton training set are shown below: 
 

 
 
 
2. Milestone Goals and Progress 
 
In our proposal, we aimed to achieve the following goals by the milestone presentation 
date: 
 
1. Size-normalize, center, and perform other processing of input images. 
2. Research and evaluate the best networks for plankton recognition. 
3. Make significant progress on writing a Matlab script that implements the convolutional 
neural networks and produces preliminary results. 
4. Research the literature and other learning resources to gain better understanding of 
CNN and explore other algorithms that could complement CNN.  
 
We successfully completed goals 1, 3, and 4, and we are on good track to achieve goal 2. 
The preprocessing of the data involved size-normalizing and centering, as well as 
preparation of the labels each image from the initial set provided. A basic script was 
written which can reproduce the dataset in a pseudo-randomized fashion, and can also 
adjust the ending size. At the moment, all images are resized into square images. 
Regarding goal number two, in the past few weeks, we examined an extensive array of 
resources in order to better understand CNN and implement one. Among many others, we 
relied on the Deep Learning Stanford Tutorial, LeCun et al. (1998), and the book by 
Michael Nielsen Neural Networks and Deep Learning. We first implemented our CNN 
for the handwritten digit classification problem using basic starter codes given by the 
Stanford tutorial.  (Please refer to the Appendix for an example of our MATLAB 



implementation of CNN). After we successfully implemented our first CNN, we 
modified the codes to solve our main problem of plankton classficiation. Through reading 
the literature and discussing with Professor Torresani, we confirmed that CNN 
outperforms all other learning algorithms . Since our plankton classification problem is 
similar to the handwritten digit classification problem extensively researched by Lecun, 
we decided to follow his approach in implementing our CNN and hope to model our 
CNN after his implementation. We will continue to follow closely Lecun’s approach and 
tweak our algorithm to suit our unique problem of classification for amorphously-shaped 
organisms.     
 
3. Implementation of CNN 
 

a. Forward Propagation 
 

Our CNN has two hidden layers. The first layer is a convolutional layer followed by 
mean pooling of the convolved features. The convolutional layer applies the following 
sigmoid function to all valid points in the image σ Wx!,! + b , where W and b are the 
learned weights from the input layer to the convolutional layer and x(r,c) is a subset of the 
image with the upper left corner at (r, c). The size of the subset corresponds to that of the 
feature map W(9 x 9 pixels). We have 20 different feature maps at the convolutional 
layer. After we convolved each image, we divided the convolved feature matrix using a 
pooling dimension of two-by-two pixels to create disjoint regions and took the mean of 
each of these regions to obtain the pooled convolved features.  
We then implemented a densely connected layer into a standard softmax regression that 
outputs a probability matrix that estimates the probability for each class given an input 
example image.  
 

 
 

b. Back Propagation and Learning Parameters 
 

For the cost of the network, we used the standard cross entropy between the predicted 
probability distribution over the classes for each image and the ground truth distribution: 
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where j indicates an output neuron, y is the desired value at the output neuron, n is the 
total number of example inputs, and aL is the actual output value. We also tested using a 
second version of the cost function with a weight decay parameter 𝜆, which penalizes 
weights that are too large. This effect is amplified as the value of 𝜆 increases:  
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After deriving the error for the output of the CNN using the cross entropy function, we 
propagated the error through all our previous layers and calculated the gradient of the 
weights and biases at each layers. Using stochastic gradient descent with a fixed 
momentum of 0.95 and a learning rate of 0.1, we optimized our CNN model. 
 

 
Diagram 1. Simple graphic illustration of forward and backward propagation 
 
4. Results and Discussion 
Our code was modularized according to the different layers and operations and can be 
found in Appendix A: Code. We tested our CNN first on the MNIST data and 
subsequently on our plankton data. With a basic version of the convolutional neural 
networks algorithm implemented, a basic metric of accuracy was determined to gauge the 
performance of the algorithm as three main factors that determine how the algorithm runs 
were varied:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1{𝑦! == 𝑦!}!

!!!

𝑛  
where n is the total number of examples, i is the index of the i-th example, 𝑦! is the “real” 
test value and 𝑦! is the predicted value that is output from our algorithm. Results of our 
training and testing of the algorithm are shown in Tables 1 and 2. The columns batch and 
weight decay are highlighted in maroon to indicate that they were the variables changed 
to test the algorithms performance. The input image size (ImageDim) was also varied for 
the plankton image data set. Figures 1 through 4 plot the trends in the changes in 
accuracy with respect to these variables. 
 
 
 
 
 



 
 
 
 
 
 
Table	
  1	
  

Mnist 
Dataset 

          Epochs Batch Alpha Mom Weight Dec ImageDim numClasses FilterDim numFilters poolDim Accuracy 

3 100 0.1 0.95 0 28 121 9 20 2 0.9789 
3 256 0.1 0.95 0 28 121 9 20 2 0.987 
3 256 0.1 0.95 0.00001 28 121 9 20 2 0.9668 
3 256 0.1 0.95 0.0001 28 121 9 20 2 0.8959 
3 256 0.1 0.95 0.1 28 121 9 20 2 0.3446 
3 256 0.1 0.95 1000 28 121 9 20 2 0.1135 
3 500 0.1 0.95 0 28 121 9 20 2 0.9577 
3 1000 0.1 0.95 0 28 121 9 20 2 0.9331 
3 2000 0.1 0.95 0 28 121 9 20 2 0.9077 
3 5000 0.1 0.95 0 28 121 9 20 2 0.8017 
 
 
 

Table	
  2	
  

Plankton	
  
Dataset 

          Epochs Batch Alpha Mom Weight	
  Dec ImageDim numClasses FilterDim numFilters poolDim Accuracy 
3 100 0.1 0.95 0 28 121 9 20 2 0.029371 
3 500 0.1 0.95 0 28 121 9 20 2 0.123022 
3 500 0.1 0.95 0 34 121 9 20 2 0.131207 
3 500 0.1 0.95 0 40 121 9 20 2 0.214205 
3 500 0.1 0.95 0.00001 40 121 9 20 2 0.014969 
3 500 0.1 0.95 0.001 40 121 9 20 2 0.061629 
3 500 0.1 0.95 0.1 40 121 9 20 2 0.029421 
3 500 0.1 0.95 1000 40 121 9 20 2 0.029421 
3 500 0.1 0.95 0 50 121 9 20 2 0.115929 
3 1000 0.1 0.95 0 28 121 9 20 2 0.029074 
3 2000 0.1 0.95 0 28 121 9 20 2 0.125 
3 5000 0.1 0.95 0 28 121 9 20 2 0.117781 
3 6000 0.1 0.95 0 28 121 9 20 2 0.044403 
3 20000 0.1 0.95 0 28 121 9 20 2 0.034612 
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Figure	
  3 

	
  
Figure	
  4	
  

We were pleased to observe very high rates of accuracy on the MNIST data set, as 
reflected in Figure 2 and 3. Since we were using starter code specifically catered towards 
this dataset, this was a good test to ensure our initial understanding and implementation 
of our convolutional neural network was sound. Training and testing on the plankton data 
set yielded much lower accuracy, peaking at 21% as shown in Table 2 and Figure 1.  
 
Looking at Figure 1, the Input Image sizes of 28, 34, 40, and 50 were tested out, yielding 
accuracies of 12%, 13%, 21%, and 12%, showing an apparent local optimal size of 40. 
Since the total image size determines the total number of input neurons, the image size 
can significantly impact model complexity, while also influencing how easily the 
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convolution and pooling layer can extract features from the images. Smaller images will 
make image feature extraction more difficult (less pixels per unit area to work with) and 
yield a simpler model (less parameters meaning a shorter length for our theta vector). The 
opposite is true for a larger image, so it seems we would tend for a larger image. 
However, given that the parameter size increases with the square of the image dimensions 
(30 pixels means 30^2 input neurons while 40 pixels mean 40^2 neurons, a difference of 
700) increasing image dimension size too much can quickly lead to an overly complex 
model and thus over fitting. From the values we tested, the optimum falls somewhere 
around 40, though more values will be tested to see if a better optimum exists.  
 
Minibatch determines the size of the subsamples taken from the entire training set for 
every iteration of the optimization’s calculation of new parameter values. For example, 
when we set the minibatch size to be 256, the main optimization function calls on 256 
random values from the training set many times until every example in the training set 
has been used in some combination. Interestingly, significantly increasing the minibatch 
size seems to significantly decrease overall accuracy for both the MNIST and plankton 
datasets. 
 
Finally, looking at Figures 3 and 4, the influence of the weight decay parameter lambda is 
as expected. Increasing lambda significantly diminished the complexity, and thus the 
accuracy of the model when trained on the MNIST dataset. A similar result is possible for 
the Plankton Image, but given that the addition of the weight decay parameter was 
causing it to plateau at a very low accuracy also shows the model is definitely too simple 
for the problem of plankton classification we are trying to solve. 
 
The overall conclusion is that a significantly more robust and complex algorithm is 
needed if we are to significantly improve accuracy on the plankton data set. This will at a 
minimum involve the addition of more convolution, pooling, and densely connected 
hidden layers. Beyond this, some further preprocessing of the data, including mean-
thresholding on the image to emphasize the slighter details in the images will help create 
more needed contrast in these images. 
 
 
5. Future Work 
We hope to work on the following tasks to improve our CNN and the performance of our 
model: 

a. Add more densely connected layers and another set of convolutional/pooling 
layer. 

b. Make training faster by implementing techniques such as vectorising matrix 
operations. 

c. Experiment with different functional forms at each layer such as the rectified-
linear function and the tanh hyperbolic function. 

d. Experiment with different cost functions such as the minimum mean squared 
error.  

e. Expand our training data by rotating and translating original training data images. 



We will further modify our future goals based on feedback from ours peers in class, from 
TA Haris Baig, and from Professor Torresani.  
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Appendix A: Code 
 
cnnTrain.m 
%% Convolution Neural Network Exercise 
  
%  Instructions 
%  ------------ 
%  
%  This file contains code that helps you get started in building a 
single. 
%  layer convolutional nerual network. In this exercise, you will only 
%  need to modify cnnCost.m and cnnminFuncSGD.m. You will not need to  
%  modify this file. 
  
%%=====================================================================
= 
%% STEP 0: Initialize Parameters and Load Data 
%  Here we initialize some parameters used for the exercise. 
  
% Configuration 
imageDim = 40; 
numClasses = 121;  % Number of classes (MNIST images fall into 10 
classes) 
filterDim = 9;    % Filter size for conv layer 
numFilters = 20;   % Number of filters for conv layer 
poolDim = 2;      % Pooling dimension, (should divide imageDim-
filterDim+1) 
  
% Load MNIST Train 
addpath ../common/; 
% Mnist Data set 
% images = loadMNISTImages('../common/train-images-idx3-ubyte'); 
% images = reshape(images,imageDim,imageDim,[]); 
% labels = loadMNISTLabels('../common/train-labels-idx1-ubyte'); 
% labels(labels==0) = 10; % Remap 0 to 10 
  
%Plankton Dataset 
load('PlanktonTrain_imsize40'); 
images = trainsetX; 
labels = trainsetY; 
  
% Initialize Parameters 
theta = 
cnnInitParams(imageDim,filterDim,numFilters,poolDim,numClasses); 
  
%%=====================================================================
= 
%% STEP 1: Implement convNet Objective 
%  Implement the function cnnCost.m. 
  
%%=====================================================================
= 
%% STEP 2: Gradient Check 
%  Use the file computeNumericalGradient.m to check the gradient 
%  calculation for your cnnCost.m function.  You may need to add the 
%  appropriate path or copy the file to this directory. 



  
DEBUG=false;  % set this to true to check gradient 
if DEBUG 
    % To speed up gradient checking, we will use a reduced network and 
    % a debugging data set 
    db_numFilters = 2; 
    db_filterDim = 9; 
    db_poolDim = 5; 
    db_images = images(:,:,1:10); 
    db_labels = labels(1:10); 
    db_theta = cnnInitParams(imageDim,db_filterDim,db_numFilters,... 
                db_poolDim,numClasses); 
     
    [cost grad] = cnnCost(db_theta,db_images,db_labels,numClasses,... 
                                db_filterDim,db_numFilters,db_poolDim); 
     
  
    % Check gradients 
    numGrad = computeNumericalGradient( @(x) cnnCost(x,db_images,... 
                                db_labels,numClasses,db_filterDim,... 
                                db_numFilters,db_poolDim), db_theta); 
  
    % Use this to visually compare the gradients side by side 
    disp([numGrad grad]); 
     
    diff = norm(numGrad-grad)/norm(numGrad+grad); 
    % Should be small. In our implementation, these values are usually  
    % less than 1e-9. 
    disp(diff);  
  
    assert(diff < 1e-9,... 
        'Difference too large. Check your gradient computation again'); 
     
end; 
  
%%=====================================================================
= 
%% STEP 3: Learn Parameters 
%  Implement minFuncSGD.m, then train the model. 
  
options.epochs = 3; 
options.minibatch = 500; 
options.alpha = 1e-1; 
options.momentum = .95; 
options.tol = 0.05; 
  
opttheta = minFuncSGD(@(x,y,z) cnnCost(x,y,z,numClasses,filterDim,... 
                      numFilters,poolDim),theta,images,labels,options); 
  
%%=====================================================================
= 
%% STEP 4: Test 
%  Test the performance of the trained model using the MNIST test set. 
Your 
%  accuracy should be above 97% after 3 epochs of training 
  



%Load Test Data for MNist 
% testImages = loadMNISTImages('../common/t10k-images-idx3-ubyte'); 
% testImages = reshape(testImages,imageDim,imageDim,[]); 
% testLabels = loadMNISTLabels('../common/t10k-labels-idx1-ubyte'); 
% testLabels(testLabels==0) = 10; % Remap 0 to 10 
  
%Load/Generate Test Data for Plankton 
load PlanktonTest_imsize40 
  
testImages = testsetX; 
testLabels = testsetY; 
  
[~,cost,preds]=cnnCost(opttheta,testImages,testLabels,numClasses,... 
                filterDim,numFilters,poolDim,true); 
  
acc = sum(preds==testLabels)/length(preds); 
  
% Accuracy should be around 97.4% after 3 epochs 
fprintf('Accuracy is %f\n',acc); 
 
  



cnnInitParams.m 
 
function theta = cnnInitParams(imageDim,filterDim,numFilters,... 
                                poolDim,numClasses) 
% Initialize parameters for a single layer convolutional neural 
% network followed by a softmax layer. 
%                             
% Parameters: 
%  imageDim   -  height/width of image 
%  filterDim  -  dimension of convolutional filter                             
%  numFilters -  number of convolutional filters 
%  poolDim    -  dimension of pooling area 
%  numClasses -  number of classes to predict 
% 
% 
% Returns: 
%  theta      -  unrolled parameter vector with initialized weights 
  
%% Initialize parameters randomly based on layer sizes. 
assert(filterDim < imageDim,'filterDim must be less that imageDim'); 
  
Wc = 1e-1*randn(filterDim,filterDim,numFilters); 
  
outDim = imageDim - filterDim + 1; % dimension of convolved image 
  
% assume outDim is multiple of poolDim 
assert(mod(outDim,poolDim)==0,... 
       'poolDim must divide imageDim - filterDim + 1'); 
  
outDim = outDim/poolDim; 
hiddenSize = outDim^2*numFilters; 
  
% we'll choose weights uniformly from the interval [-r, r] 
r  = sqrt(6) / sqrt(numClasses+hiddenSize+1); 
Wd = rand(numClasses, hiddenSize) * 2 * r - r; 
  
bc = zeros(numFilters, 1); 
bd = zeros(numClasses, 1); 
  
% Convert weights and bias gradients to the vector form. 
% This step will "unroll" (flatten and concatenate together) all  
% your parameters into a vector, which can then be used with minFunc.  
theta = [Wc(:) ; Wd(:) ; bc(:) ; bd(:)]; 
  
end 
  



cnnCost.m 
function [cost, grad, preds] = 
cnnCost(theta,images,labels,numClasses,... 
                                filterDim,numFilters,poolDim,pred) 
% Calcualte cost and gradient for a single layer convolutional 
% neural network followed by a softmax layer with cross entropy 
% objective. 
%                             
% Parameters: 
%  theta      -  unrolled parameter vector 
%  images     -  stores images in imageDim x imageDim x numImges 
%                array 
%  numClasses -  number of classes to predict 
%  filterDim  -  dimension of convolutional filter                             
%  numFilters -  number of convolutional filters 
%  poolDim    -  dimension of pooling area 
%  pred       -  boolean only forward propagate and return 
%                predictions 
% 
% 
% Returns: 
%  cost       -  cross entropy cost 
%  grad       -  gradient with respect to theta (if pred==False) 
%  preds      -  list of predictions for each example (if pred==True) 
  
  
if ~exist('pred','var') 
    pred = false; 
end; 
  
  
imageDim = size(images,1); % height/width of image 
numImages = size(images,3); % number of images  
  
  
lambda = 1000; 
USE_WEIGHT_DECAY = 1; 
  
%% Reshape parameters and setup gradient matrices 
  
% Wc is filterDim x filterDim x numFilters parameter matrix 
% bc is the corresponding bias 
  
% Wd is numClasses x hiddenSize parameter matrix where hiddenSize 
% is the number of output units from the convolutional layer 
% bd is corresponding bias 
[Wc, Wd, bc, bd] = 
cnnParamsToStack(theta,imageDim,filterDim,numFilters,... 
                        poolDim,numClasses); 
  
% Same sizes as Wc,Wd,bc,bd. Used to hold gradient w.r.t above params. 
Wc_grad = zeros(size(Wc)); 
Wd_grad = zeros(size(Wd)); 
bc_grad = zeros(size(bc)); 
bd_grad = zeros(size(bd)); 
  



%%=====================================================================
= 
%% STEP 1a: Forward Propagation 
%  In this step you will forward propagate the input through the 
%  convolutional and subsampling (mean pooling) layers.  You will then 
use 
%  the responses from the convolution and pooling layer as the input to 
a 
%  standard softmax layer. 
  
%% Convolutional Layer 
%  For each image and each filter, convolve the image with the filter, 
add 
%  the bias and apply the sigmoid nonlinearity.  Then subsample the  
%  convolved activations with mean pooling.  Store the results of the 
%  convolution in activations and the results of the pooling in 
%  activationsPooled.  You will need to save the convolved activations 
for 
%  backpropagation. 
convDim = imageDim-filterDim+1; % dimension of convolved output 
outputDim = (convDim)/poolDim; % dimension of subsampled output 
  
% convDim x convDim x numFilters x numImages tensor for storing 
activations 
activations = zeros(convDim,convDim,numFilters,numImages); 
  
% outputDim x outputDim x numFilters x numImages tensor for storing 
% subsampled activations 
activationsPooled = zeros(outputDim,outputDim,numFilters,numImages); 
%Convolving Code written by Saaid H. Arshad 
%Begun February 11, 2015, 11:22 pm 
%%% YOUR CODE HERE %%% 
activations = cnnConvolve(filterDim,numFilters,images,Wc,bc); 
activationsPooled = cnnPool(poolDim,activations); 
  
  
  
% Reshape activations into 2-d matrix, hiddenSize x numImages, 
% for Softmax layer 
activationsPooled = reshape(activationsPooled,[],numImages); 
  
%% Softmax Layer 
%  Forward propagate the pooled activations calculated above into a 
%  standard softmax layer. For your convenience we have reshaped 
%  activationPooled into a hiddenSize x numImages matrix.  Store the 
%  results in probs. 
  
% numClasses x numImages for storing probability that each image 
belongs to 
% each class. 
probs = zeros(numClasses,numImages); 
  
%Softmax Code written by Saaid H. Arshad and Tae Ho Kim 
%Begun February 12, 2015, 11:22 am 
%%% YOUR CODE HERE %%% 
  



% z = (Wd * activationsPooled); 
% z = bsxfun(@plus,z,bd); 
% expz = exp(z); 
% denoms = sum(expz); 
% for i = 1:numImages 
%     
%     probs(:,i) = expz(:,i)/denoms(i); 
%      
% end 
  
%----------------------------------------------------- 
activationsSoftmax = Wd * activationsPooled + repmat(bd, 1, numImages); 
activationsSoftmax = bsxfun(@minus, activationsSoftmax, 
max(activationsSoftmax)); 
activationsSoftmax = exp(activationsSoftmax); 
probs = bsxfun(@rdivide, activationsSoftmax, sum(activationsSoftmax)); 
  
%%=====================================================================
= 
%% STEP 1b: Calculate Cost 
%  In this step you will use the labels given as input and the probs 
%  calculate above to evaluate the cross entropy objective.  Store your 
%  results in cost. 
  
cost = 0; % save objective into cost 
  
%Cost Calc. Code written by Saaid H. Arshad and Tae Ho Kim 
%Begun February 12, 2015, 6:52 pm 
%%% YOUR CODE HERE %%% 
% groundTruth = full(sparse(labels, 1:numImages, 1)); 
% %  
% cost = -mean(sum((groundTruth*log(probs') - (1-groundTruth)*log(1-
probs')),1)); 
onehotLabels = zeros(size(activationsSoftmax)); 
labelIndex = sub2ind(size(activationsSoftmax), labels', 1:numImages); 
onehotLabels(labelIndex) = 1; 
cost = -sum(sum(onehotLabels .* log(probs))); 
  
if USE_WEIGHT_DECAY 
    lambda = .5 * lambda * (sum(Wd(:) .^ 2) + sum(Wc(:) .^ 2)); 
else 
    lambda = 0; 
end 
  
cost = cost / numImages + lambda; 
  
% Makes predictions given probs and returns without backproagating 
errors. 
if pred 
    [~,preds] = max(probs,[],1); 
    preds = preds'; 
    grad = 0; 
    return; 
end; 
  
%%=====================================================================
= 



%% STEP 1c: Backpropagation 
%  Backpropagate errors through the softmax and 
convolutional/subsampling 
%  layers.  Store the errors for the next step to calculate the 
gradient. 
%  Backpropagating the error w.r.t the softmax layer is as usual.  To 
%  backpropagate through the pooling layer, you will need to upsample 
the 
%  error with respect to the pooling layer for each filter and each 
image.   
%  Use the kron function and a matrix of ones to do this upsampling  
%  quickly. 
% Code written by Saaid H. Arshad and Tae Ho Kim 
%%% YOUR CODE HERE %%% 
% delta_init = -sum(groundTruth - probs,2); 
% delta_softmax = (Wd' * delta_init) * (1./z).*(1 - 1./z); 
% delta_softmax = (Wd' * delta_init) * (1./(1 + exp(-(Wd * 
activationsPooled + bd)))*(1 - 1./(1 + exp(-(Wd * activationsPooled + 
bd))))); 
%delta_pool = (1/poolDim^2) * kron(delta,ones(poolDim)); 
  
errorsSoftmax = probs - onehotLabels; 
errorsSoftmax = errorsSoftmax / numImages; 
errorsPooled = Wd' * errorsSoftmax; 
errorsPooled = reshape(errorsPooled, [], outputDim, numFilters, 
numImages); 
errorsPooling = zeros(convDim, convDim, numFilters, numImages); 
unpoolingFilter = ones(poolDim); 
poolArea = poolDim ^ 2; 
unpoolingFilter = unpoolingFilter / poolArea; 
  
for imageNum = 1:numImages 
    % for imageNum = 1:numImages 
    for filterNum = 1:numFilters 
        e = errorsPooled(:, :, filterNum, imageNum); 
        errorsPooling(:, :, filterNum, imageNum) = kron(e, 
unpoolingFilter); 
         
        %         errorsPooling(:, :, filterNum, imageNum) = 
kron(errorsPooled(:, :, filterNum, imageNum), unpoolingFilter); 
    end 
end 
  
errorsConvolution = errorsPooling .* activations .* (1 - activations); 
%%=====================================================================
= 
%% STEP 1d: Gradient Calculation 
%  After backpropagating the errors above, we can use them to calculate 
the 
%  gradient with respect to all the parameters.  The gradient w.r.t the 
%  softmax layer is calculated as usual.  To calculate the gradient 
w.r.t. 
%  a filter in the convolutional layer, convolve the backpropagated 
error 
%  for that filter with each image and aggregate over images. 
  
%Code written by Saaid H. Arshad and Tae Ho Kim 



%%% YOUR CODE HERE %%% 
% Wd_grad = gradient; 
Wd_grad = errorsSoftmax * activationsPooled'; 
  
if USE_WEIGHT_DECAY 
    Wd_grad = Wd_grad + lambda * Wd; 
end 
  
bd_grad = sum(errorsSoftmax, 2); 
  
  
for filterNum = 1 : numFilters 
%     e = errorsConvolution(:, :, filterNum, :); 
        e = errorsPooling(:, :, filterNum, :); 
    bc_grad(filterNum) = sum(e(:)); 
end 
  
for filterNum = 1 : numFilters 
    % for filterNum = 1 : numFilters 
    for imageNum = 1 : numImages 
        e = errorsConvolution(:, :, filterNum, imageNum); 
        %         e = errorsPooling(:, :, filterNum, imageNum); 
        errorsConvolution(:, :, filterNum, imageNum) = rot90(e, 2); 
         
        %         errorsPooling(:, :, filterNum, imageNum) = 
rot90(errorsPooling(:, :, filterNum, imageNum), 2); 
    end 
end 
  
  
for filterNum = 1 : numFilters 
    Wc_gradFilter = zeros(size(Wc_grad, 1), size(Wc_grad, 2)); 
    %     parfor imageNum = 1 : numImages 
    for imageNum = 1 : numImages 
        %                 image = images(:, :, imageNum); 
        %                 error = errorsPooling(:, :, filterNum, 
imageNum); 
        %         %         Wc_grad(:, :, filterNum) = Wc_grad(:, :, 
filterNum) + conv2(image, error, 'valid'); 
        %         Wc_gradFilter(:, :, imageNum) = conv2(image, error, 
'valid'); 
        %         Wc_gradFilter(:, :, imageNum) = conv2(images(:, :, 
imageNum), errorsPooling(:, :, filterNum, imageNum), 'valid'); 
         
        Wc_gradFilter = Wc_gradFilter + conv2(images(:, :, imageNum), 
errorsConvolution(:, :, filterNum, imageNum), 'valid'); 
        %         Wc_gradFilter = Wc_gradFilter + conv2(image, error, 
'valid'); 
    end 
    %     Wc_grad(:, :, filterNum) = sum(Wc_gradFilter, 3) / numImages 
+ regularization; 
    Wc_grad(:, :, filterNum) = Wc_gradFilter; 
end 
  
if USE_WEIGHT_DECAY 
    Wc_grad = Wc_grad + lambda * Wc; 



end 
  
  
%% Unroll gradient into grad vector for minFunc 
grad = [Wc_grad(:) ; Wd_grad(:) ; bc_grad(:) ; bd_grad(:)]; 
  
end 
 
cnnConvolve.m 
 
function convolvedFeatures = cnnConvolve(filterDim, numFilters, images, 
W, b) 
%cnnConvolve Returns the convolution of the features given by W and b 
with 
%the given images 
% 
% Parameters: 
%  filterDim - filter (feature) dimension 
%  numFilters - number of feature maps 
%  images - large images to convolve with, matrix in the form 
%           images(r, c, image number) 
%  W, b - W, b for features from the sparse autoencoder 
%         W is of shape (filterDim,filterDim,numFilters) 
%         b is of shape (numFilters,1) 
% 
% Returns: 
%  convolvedFeatures - matrix of convolved features in the form 
%                      convolvedFeatures(imageRow, imageCol, 
featureNum, imageNum) 
  
numImages = size(images, 3); 
imageDim = size(images, 1); 
convDim = imageDim - filterDim + 1; 
  
convolvedFeatures = zeros(convDim, convDim, numFilters, numImages); 
  
% Instructions: 
%   Convolve every filter with every image here to produce the  
%   (imageDim - filterDim + 1) x (imageDim - filterDim + 1) x 
numFeatures x numImages 
%   matrix convolvedFeatures, such that  
%   convolvedFeatures(imageRow, imageCol, featureNum, imageNum) is the 
%   value of the convolved featureNum feature for the imageNum image 
over 
%   the region (imageRow, imageCol) to (imageRow + filterDim - 1, 
imageCol + filterDim - 1) 
% 
% Expected running times:  
%   Convolving with 100 images should take less than 30 seconds  
%   Convolving with 5000 images should take around 2 minutes 
%   (So to save time when testing, you should convolve with less 
images, as 
%   described earlier) 
  
  
for imageNum = 1:numImages 



  for filterNum = 1:numFilters 
  
    % convolution of image with feature matrix 
    convolvedImage = zeros(convDim, convDim); 
     
    % Obtain the feature (filterDim x filterDim) needed during the 
convolution 
  
    filter = zeros(filterDim); 
    filter = W(:,:,filterNum); 
  
    % Flip the feature matrix because of the definition of convolution, 
as explained later 
    filter = rot90(squeeze(filter),2); 
       
    % Obtain the image 
    im = squeeze(images(:, :, imageNum)); 
  
    % Convolve "filter" with "im", adding the result to convolvedImage 
    % be sure to do a 'valid' convolution 
  
    %Convolving Code written by Saaid H. Arshad and Tae Ho Kim 
    %Begun February 11, 2015, 5:40 pm 
     
    convolvedImage = convolvedImage + conv2(im,filter,'valid'); 
    
     
    % Add the bias unit 
     
    convolvedImage = convolvedImage + b(filterNum); 
     
    % Then, apply the sigmoid function to get the hidden activation 
  
    convolvedImage = 1./(1 + exp(-convolvedImage)); 
  
     
    convolvedFeatures(:, :, filterNum, imageNum) = convolvedImage; 
  end 
end 
  
  
end 
 
  



cnnParamsToStack.m 
function [Wc, Wd, bc, bd] = 
cnnParamsToStack(theta,imageDim,filterDim,... 
                                 numFilters,poolDim,numClasses) 
% Converts unrolled parameters for a single layer convolutional neural 
% network followed by a softmax layer into structured weight 
% tensors/matrices and corresponding biases 
%                             
% Parameters: 
%  theta      -  unrolled parameter vectore 
%  imageDim   -  height/width of image 
%  filterDim  -  dimension of convolutional filter                             
%  numFilters -  number of convolutional filters 
%  poolDim    -  dimension of pooling area 
%  numClasses -  number of classes to predict 
% 
% 
% Returns: 
%  Wc      -  filterDim x filterDim x numFilters parameter matrix 
%  Wd      -  numClasses x hiddenSize parameter matrix, hiddenSize is 
%             calculated as numFilters*((imageDim-
filterDim+1)/poolDim)^2  
%  bc      -  bias for convolution layer of size numFilters x 1 
%  bd      -  bias for dense layer of size hiddenSize x 1 
  
outDim = (imageDim - filterDim + 1)/poolDim; 
hiddenSize = outDim^2*numFilters; 
  
%% Reshape theta 
indS = 1; 
indE = filterDim^2*numFilters; 
Wc = reshape(theta(indS:indE),filterDim,filterDim,numFilters); 
indS = indE+1; 
indE = indE+hiddenSize*numClasses; 
Wd = reshape(theta(indS:indE),numClasses,hiddenSize); 
indS = indE+1; 
indE = indE+numFilters; 
bc = theta(indS:indE); 
bd = theta(indE+1:end); 
  
  
end 
 
 
sigmoid.m 
function [ output ] = sigmoid( input ) 
  
output = 1./(1+exp(-input)); 
 
 
  



cnnPool.m 
function pooledFeatures = cnnPool(poolDim, convolvedFeatures) 
%cnnPool Pools the given convolved features 
% 
% Parameters: 
%  poolDim - dimension of pooling region 
%  convolvedFeatures - convolved features to pool (as given by 
cnnConvolve) 
%                      convolvedFeatures(imageRow, imageCol, 
featureNum, imageNum) 
% 
% Returns: 
%  pooledFeatures - matrix of pooled features in the form 
%                   pooledFeatures(poolRow, poolCol, featureNum, 
imageNum) 
%      
  
numImages = size(convolvedFeatures, 4); 
numFilters = size(convolvedFeatures, 3); 
convolvedDim = size(convolvedFeatures, 1); 
  
pooledFeatures = zeros(convolvedDim / poolDim, ... 
        convolvedDim / poolDim, numFilters, numImages); 
  
% Instructions: 
%   Now pool the convolved features in regions of poolDim x poolDim, 
%   to obtain the  
%   (convolvedDim/poolDim) x (convolvedDim/poolDim) x numFeatures x 
numImages  
%   matrix pooledFeatures, such that 
%   pooledFeatures(poolRow, poolCol, featureNum, imageNum) is the  
%   value of the featureNum feature for the imageNum image pooled over 
the 
%   corresponding (poolRow, poolCol) pooling region.  
%    
%   Use mean pooling here. 
  
%Mean Pooling Code written by Saaid H. Arshad 
%Begun February 11, 2015, 5:40 pm 
  
for imageNum = 1:numImages 
  for filterNum = 1:numFilters 
       
      currFeat = convolvedFeatures(:,:,filterNum,imageNum); 
      currFeat = conv2(currFeat,ones(poolDim),'valid')/poolDim^2; 
       
%       for i = 0:size(pooledFeatures,1)-1 
%           for j = 0:size(pooledFeatures,2)-1 
%           
%               pooledFeatures(i+1,j+1,filterNum,imageNum) = 
currFeat(1+i*poolDim,1 + j*poolDim); 
%                
%                
%           end 
%       end 
  



%%% YOUR CODE HERE %%% 
%Written by Saaid and Tae Ho 2/15/2015 
  
extractrow = (1:poolDim:poolDim * (size(pooledFeatures,1))); 
extractcol = (1:poolDim:poolDim * (size(pooledFeatures,2))); 
pooledFeatures(:,:,filterNum,imageNum) = 
currFeat(extractrow,extractcol); 
    
  end 
end 
end 
 
minFuncSGD.m 
function [opttheta] = minFuncSGD(funObj,theta,data,labels,... 
                        options) 
% Runs stochastic gradient descent with momentum to optimize the 
% parameters for the given objective. 
% 
% Parameters: 
%  funObj     -  function handle which accepts as input theta, 
%                data, labels and returns cost and gradient w.r.t 
%                to theta. 
%  theta      -  unrolled parameter vector 
%  data       -  stores data in m x n x numExamples tensor 
%  labels     -  corresponding labels in numExamples x 1 vector 
%  options    -  struct to store specific options for optimization 
% 
% Returns: 
%  opttheta   -  optimized parameter vector 
% 
% Options (* required) 
%  epochs*     - number of epochs through data 
%  alpha*      - initial learning rate 
%  minibatch*  - size of minibatch 
%  momentum    - momentum constant, defualts to 0.9 
  
  
%%=====================================================================
= 
%% Setup 
assert(all(isfield(options,{'epochs','alpha','minibatch'})),... 
        'Some options not defined'); 
if ~isfield(options,'momentum') 
    options.momentum = 0.9; 
end; 
tol = options.tol; 
epochs = options.epochs; 
alpha = options.alpha; 
minibatch = options.minibatch; 
m = length(labels); % training set size 
% Setup for momentum 
mom = 0.5; 
momIncrease = 20; 
velocity = zeros(size(theta)); 
  
costprev = 0; 
thetaprev = 0; 



%%=====================================================================
= 
%% SGD loop 
it = 0; 
for e = 1:epochs 
     
    % randomly permute indices of data for quick minibatch sampling 
    rp = randperm(m); 
     
    for s=1:minibatch:(m-minibatch+1) 
        it = it + 1; 
  
        % increase momentum after momIncrease iterations 
        if it == momIncrease 
            mom = options.momentum; 
        end; 
  
        % get next randomly selected minibatch 
        mb_data = data(:,:,rp(s:s+minibatch-1)); 
        mb_labels = labels(rp(s:s+minibatch-1)); 
  
        % evaluate the objective function on the next minibatch 
        [cost grad] = funObj(theta,mb_data,mb_labels); 
         
        % Instructions: Add in the weighted velocity vector to the 
        % gradient evaluated above scaled by the learning rate. 
        % Then update the current weights theta according to the 
        % sgd update rule 
         
        %Code written by Saaid H. Arshad and Tae Ho Kim 
        %%% YOUR CODE HERE %%% 
         
        velocity = mom * velocity + alpha * grad; % add the velocity 
vector to the gradient 
        theta = theta - velocity; %update the unrolled parameter vector 
         
         
%         abs(costprev - cost) 
%         abs(norm(thetaprev) - norm(theta)) 
%         if abs(costprev-cost) < tol 
%             break 
%         end 
         
%         if abs((norm(thetaprev) - norm(theta))) < tol 
%             break 
%         end 
%          
  
  
%         costprev = cost; 
%         thetaprev = theta; 
         
         
         
        fprintf('Epoch %d: Cost on iteration %d is %f\n',e,it,cost); 



    end; 
  
    % aneal learning rate by factor of two after each epoch 
    alpha = alpha/2.0; 
  
end; 
  
opttheta = theta; 
  
end 
 
 
computeNumericalGradient.m 
function numgrad = computeNumericalGradient(J, theta) 
% numgrad = computeNumericalGradient(J, theta) 
% theta: a vector of parameters 
% J: a function that outputs a real-number. Calling y = J(theta) will 
return the 
% function value at theta.  
   
% Initialize numgrad with zeros 
numgrad = zeros(size(theta)); 
  
%% ---------- YOUR CODE HERE -------------------------------------- 
% Instructions:  
% Implement numerical gradient checking, and return the result in 
numgrad.   
% (See Section 2.3 of the lecture notes.) 
% You should write code so that numgrad(i) is (the numerical 
approximation to) the  
% partial derivative of J with respect to the i-th input argument, 
evaluated at theta.   
% I.e., numgrad(i) should be the (approximately) the partial derivative 
of J with  
% respect to theta(i). 
%                 
% Hint: You will probably want to compute the elements of numgrad one 
at a time.  
  
epsilon = 1e-4; 
  
for i =1:length(numgrad) 
    oldT = theta(i); 
    theta(i)=oldT+epsilon; 
    pos = J(theta); 
    theta(i)=oldT-epsilon; 
    neg = J(theta); 
    numgrad(i) = (pos-neg)/(2*epsilon); 
    theta(i)=oldT; 
    if mod(i,100)==0 
       fprintf('Done with %d\n',i); 
    end; 
end; 
  
% eps = 1e-4; 
% n = size(numgrad); 



% I = eye(n); 
% for i = 1:size(numgrad) 
%     eps_vec = I(:,i) * eps; 
%     numgrad(i) = (J(theta + eps_vec) - J(theta - eps_vec)) / (2 * 
eps); 
% end 
  
  
  
  
  
%% --------------------------------------------------------------- 
end 
 


