
Deadline Prediction using Ordinal Regression

Joshua Cook, Byoungwook Jang, Aditya Mahara

February 17, 2015

1 Background

StudentLife was a study conducted by Dartmouth College’s computer science department
that collected passive and automatic sensing data over a 10 week period [3]. The goal of this
study was to assess students’ mental health based on their behavior. The students’ behaviors
were determined by processing the collected data using Machine Learning algorithms. How-
ever, for this data set to be useful , additional studies need to be conducted that attempt
to predict metrics that can be used by the school’s leadership and faculty to make real-time
adjustments throughout the term.

2 Scope and Goal

The goal of our study is to implement the artificial neural network that can accurately
predict the number of deadlines from the set 0, 1, 2, or 3 based on the student’s behavior
on the previous day. This way, no compliance is required from students other than simply
downloading an application. We first treated this as a classification problem proposing Naive
Bayes and SVM methods. However, since the ordering of classes has a relationship to one
another, we reformulated our objective as an ordinal regression problem.

3 DataSet

The dataset is collected from 48 undergraduate and graduate students at Dartmouth over
the 10 week spring term (March 27, 2013 to June 5, 2013). Within the StudentLife sen-
sor datasets there are ten different data fields such as physical activity, audio inferences,
conversation inferences, bluetooth scan, light sensor, GPS, phone charge, phone lock, WiFi,
and WiFi location [3]. All sensor data were available as csv files and were organized by
participants. First, we imported these datasets in a meaningful way into MATLAB. The
timestamps in the raw datasets were in Unix time stamp format so the time information
we obtained had a resolution of 1 second. To process the information associated with these
timestamps we wrote a code to convert the Unix timestamp into month-day-year within a
period from March 27, 2013 to June 5, 2013 (i.e 71 days). We also wrote codes to extract
example sets and feature sets using these datasets which is described in detail below.

To test our algorithm, an initial set of training set of 4000 examples, testing set of 1696
examples with 170 features each, is used. Some information on the examples and features

1

along with the data processing necessary to create these example sets and feature vectors
are presented below:

4 Examples and Features

To create an example set we use information about deadlines per day for each student. The
StudentLife dataset has information from 44 students for 71 days with deadline information.
Since our algorithm is trying to predict the deadline for the next day, we will be able to
use information from 44 students for 70 days as examples. Therefore initially we have a
total example set of 3080 (44days ∗ 70 students). We refer to this set as ’Dataset I.’ Next
we scanned over the columns of Dataset I to check for any missing data points. All the
examples with any missing feature were excluded from our algorithm analysis. This reduced
the number of examples to 1886. This new set without any missing feature information is
referred to as ’Dataset II.’

4.1 Unequal label classes

The frequency of different deadline labels (0,1,2,3) is not equal throughout Dataset I and
Dataset II. The total occurrence of deadline labels (0,1,2,3) in Dataset I was 2438, 496,135,11;
and in Dataset II was 1446, 345,89,6, respectively. Since distribution of examples with spe-
cific labels wasn’t equally distributed we replicated the datasets with lower number of label
examples. Using Dataset II we replicated examples for label 1,2,3 by a factor of 4, 16, and
241.

In addition to replicating examples, next we will explore modifying learning objective per
label to create a better classification for labels with low occurrences.

4.2 Features

Features were extracted to represent daily activity using sensor information through the
duration of the study for those specific 44 students for whom we have deadline information
available. For our algorithm analysis we have used three out the ten feature sets available
and we plan to explore more in the coming weeks before our final submission.

To construct a feature vector, we used a simplistic way to capture information about fre-
quency of occurrence of a certain classifier per sensor. Brief descriptions on what these
features represent and how we extracted them are given below:

Audio
The raw data file for audio has two columns. First column has timestamp information and
the second column was information on audio inference where audio inference is classified as
0, 1, 2, or 3 that represents silence, voice, noise, or unknown respectively. The audio classi-
fier runs 24/7 with duty cycling. It makes audio inferences for 1 minute, then pauses for 3
minutes before restart. If the conversation classifier detects that there is a conversation going
on, it will keep running until the conversation is finished. It generates one audio inference

2

every 2 to 3 seconds [3].

Physical Activity
The raw data file for physical activity has two columns. First column has timestamp infor-
mation and the second column was information on activity inference where activity inference
is classified as 0, 1, 2, or 3 that represents stationary, walking, running, or unknown, respec-
tively. The activity classifier runs 24/7 with duty cycling. To avoid draining the battery,
it makes activity inferences continuously for 1 minutes, then pauses for 3 minutes before
restart collecting activity inferences again. It generates one activity inference every 2 to 3
seconds depending on Smartphone’s accelerometer sampling rate [3].

Conversation
The raw data file for conversation has two columns. First column represents a timestamp
where a conversation began and the second column is the timestamp when the conversation
ends.

4.3 Feature Implementation

In Fig. 1 we have a histogram representation of a feature vector for an example feature set
(i.e. Audio). Using ’Audio’ feature we compute the frequency of occurrence for silence, voice,
and noise, for every hour per student. The histogram represents an example of a feature
vector for 1 day for 1 student as we can see which parts of the day he/she was mostly silent
and which parts of the days were mostly in noisy environments or where he/she was talking.
Using this technique, we extracted 72 features (24 hours x 3 labels) for audio data.

Figure 1: Feature vector profile for Audio Data

Similar techniques are used to extract 96 features (24 hours x 4labels) for physical activity
and 6 features for conversation. Next steps during feature extraction will involve extracting
information not based solely on frequency of occurrence, but using more elaborate infor-
mation. Some of these features to be explored will be parameters such as duration of time

3

between events, distance travelled per unit of time by a student, hours spent in the library,
usage of the gym, and so on. All these information can be extracted from the StudentLife
dataset that’s available to us.

5 Implementation

Jianlin Cheng’s paper, A Neural Network Approach to Ordinal Regression, implements the
artificial neural network (ANN) to perform the ordinal regression task [1]. In order to im-
plement the neural network, the algorithm modularized into two major parts: 1) forward
propagation and backpropagation, and 2) batch gradient descent. The detailed implemen-
tation tutorial can be found from Andrew Ng’s coursera course [2].

5.1 Notations

The following notations are going to be used in the cost functions.

(x(i), y(i)) = i-th training example (1)

L = total number of layers in the neural network (2)

sl = number of nodes in layer l (3)

a
(l)
i = activation of unit i in layer l (4)

θ
(l)
ij = matrix of weights from j-th node in layer l to i-th node in layer l + 1 (5)

As mentioned in class, the cost function of the logistic regression is as follows

J(θ) = − 1

m
[
m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)))] +

λ

2m

n∑
j=1

θ2 (6)

As we are using the logistic function for each activation node, we can sum rewrite the
cost function for the neural network as follows

J(θ) = − 1

m
[
m∑
i=1

K∑
k=1

y
(i)
k (log hθ(x

(i)))k + (1− y(i)k) log(1− (hθ(x
(i)))k)] +

λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(θ
(l)
ji)2

(7)

5.2 Algorithm

The steps for the neural network algorithm is as follows:

Given the training set {(x(1), y(1)), · · · , (x(m), y(m))}

• Initialize the θ matrix

• for i = 1 to m

Perform forward propagation to compute a(l) for l = 2, 3, · · · , L

4

• Perform back propagation to compute the gradient of J(θ)

With the gradient, we performed the bath gradient descent until we reached the stopping
criteria. The stopping criteria is given as follows. Given δ1, δ2, and δ3 > 0, we need to satisfy
the following three criteria to stop the gradient descent

||θ − θnew|| < δ1 (8)

||J(θ)− J(θnew)|| < δ2 (9)

||∇J(θ)|| < δ3 (10)

6 Results

Using the Artifical Neural Network modified for the Ordinal Neural Network(ONN) case,
firstly we use 100 training and testing examples with equal number of all deadline labels
examples with a architecture of 1 layer and 10 nodes. Next we used 4000 training examples
and 1696 testing examples to test two architecture: i. 1 Layer 10 nodes, ii. 2 Layers with 10
nodes each. For each arrangement we plot the error per example as a function of the lambda
value we used. In all cases the training error was less than the testing error.

Figure 2: Error per examples vs. lambda using 100 examples for architecture using 1 layer and 10
nodes

As seen in Fig. 2. using 100 training and testing examples with architecture of 1 layer
and 10 nodes we see that with increasing lambda, the error per example goes down. It seems
like to lower values of lambda (10−2 to 10) there is over fitting. Also, as seen in Fig. 3. when
we use all examples and use the identical architecture, the error per example goes down;

5

however the error seems to be scaled down. This happens since we use many more examples
the average error per examples. In both cases we see over fitting for lower values of lambda.
In both cases we do not see issues with under fitting.

Figure 3: Error per examples vs. lambda using all examples for architecture using 1 layer and 10
nodes

When we use architecture with 2 layers with 10 nodes each, we get a error per example
plot as shown in Fig.4. This doesn’t make a lot of sense to us since there seems to be one
value of lambda for which the error is maximized and there seems to be no issues caused by
over fitting and underfitting. Further analysis for architectures with additional layers and
nodes will need to be conducted before we can conclude anything from these preliminary
results.

6

Figure 4: Error per examples vs. lambda using all examples for architecture using 2 layers and 10
nodes each

Some of the things we plan to do next are analyze the propagation of error as a function
of system architecture (nodes/layers) to get a sense of which architecture might perform the
best for this application. In addition to that we plan to analyze the error for each deadline
label separately to see how the non uniformity of distribution of examples (per label) is
affecting the performance of our algorithm.

7 Future Work

Now that the neural network has been implemented, we can begin to explore how different
design choices affect our results. During training, we eliminated training examples that
had incomplete feature vectors. In the final implementation of the ANN, we are going to
investigate averaging methods in order to fill in these missing data. This will hopefully
increase the number of unique examples we have for training and testing. In addition, there
is more sensing data that has not been processed from the study that will give our ANN
more insight into making accurate predictions. Once these adjustment on features have
been made, different ANN architectures will be explored for varying values of lambda and
parameter initialization values.

7

References

[1] Jianlin Cheng, Zheng Wang, and Gianluca Pollastri. A neural network approach to
ordinal regression. Neural Networks, 2008. IJCNN 2008, pages 1279–1284, 2008.

[2] Andrew Ng. Coursera - machine learning. https://www.coursera.org/course/ml.

[3] Zhenyu Chen Andrew T. Campbell et el. Rui Wang, Fanglin Chen. Studentlife: Assessing
mental health, academic performance and behavioral trends of college students using
smartphones. In Proceedings of the ACM Conference on Ubiquitous Computing, 2014.

8

