Project Milestone

Determining successful restaurants using Yelp Data
Team: Matt Ritter, Naho Kitade, Jason Feng
February 14, 2015

1. Project Introduction

The restaurant industry has an incredibly high turnover rate. Many new restaurants do not
survive their first few years in business. In addition, the restaurant business is flooded with
various factors that impact success (location, timing, atmosphere, food quality, etc), such
that it can be extremely difficult to create a successful restaurant. We hope to analyze Yelp
data to determine if there are certain factors that are most important for a successful
restaurant. This study may be extended to ultimately look at restaurants in different cities
individually, since geography plays an overwhelming role in food culture.

2. Data

We are using Yelp’s academic dataset for our study. Yelp releases a large dataset for
competitions and other academic uses. The page from which we requested the data can be
found here.

This data contains information on 61184 businesses, 21,892 of which are classified as
restaurants. The data is clustered around a few geographic areas. This will allow us to
potentially compare our results across different locations, since food culture can vary
wildly depending on location.

Since not all restaurants have the all features present, we have analyzed which features
appear often enough to be used. On the next page is the breakdown of the features we will
be using, the number of restaurants which have that feature, and the different values for
each feature. 12,924 restaurants have all of the features combined. We are using some of
this data (70 - 80%) as our training data and will hold out another portion of the data,
randomly selected, (10 - 20%) as test data.

The success (label 1) or failure (label 0) is determined using the following function:
SuccessScore(stars,review count) = 0.7Xstars + 0.3Xreview count

with the cut off of success being if the above success score is greater than 18.5.

We have 4881 restaurants that are classified as successful, and 8043 restaurants that are

classified as failures.



Feature Table
Table of used features, number of examples in our data with those features, and the values
that each feature can take:

iiiﬁ?t:lggenst ‘ti;f zfé rirllgilfe Values that each attribute can take
Take-out 19769 [True: 1, False: 0]
Good For: dessert 18757 [True: 1, False: 0]
Good For: latenight 18815 [True: 1, False: 0]
Good For: lunch 18815 [True: 1, False: 0]
Good For: dinner 18815 [True: 1, False: 0]
Good For: breakfast 18825 [True: 1, False: 0]
Good For: brunch 18765 [True: 1, False: 0]
Caters (omitted) 12818 [True: 1, False: 0]
Noise Level 16613 ['quiet: 1', 'average: 2', 'loud: 3', 'very_loud: 4']
Ambience: romantic 16591 [True: 1, False: 0]
Ambience: intimate 16578 [True: 1, False: 0]
Ambience: tourist 16578 [True: 1, False: 0]
Ambience: hipster 16401 [True: 1, False: 0]
Ambience: divey 15727 [True: 1, False: 0]
Ambience: classy 16578 [True: 1, False: 0]
Ambience: trendy 16578 [True: 1, False: 0]
Ambience: upscale 16468 [True: 1, False: 0]
Ambience: casual 16578 [True: 1, False: 0]
Parking: garage 18683 [True: 1, False: 0]
Parking: street 18681 [True: 1, False: 0]
Parking: validated 18470 [True: 1, False: 0]
Parking: lot 18681 [True: 1, False: 0]
Parking: valet 18681 [True: 1, False: 0]
Has TV 17274 [True: 1, False: 0]
Outdoor Seating 19370 [True: 1, False: 0]
Attire 19824 ['casual: 1', 'dressy: 2', 'formal: 3']
Alcohol 18007 ['none: 1', 'beer_and_wine: 2', 'full_bar: 3']
Waiter Service 18404 [True: 1, False: 0]
Accepts Credit Cards 20413 [True: 1, False: 0]
Good for Kids 19643 [True: 1, False: 0]
Takes Reservations 19262 [True: 1, False: 0]
Delivery 19173 [True: 1, False: 0]
Good For Groups 19893 [True: 1, False: 0]
Price Range 20430 Scale: [1, 2, 3, 4]
Combined 12924

As the “Values that each attribute can take” column suggests, we have divided up truly
categorical attributes such as “Ambience” into a Boolean feature for each categories, and
represent other spectrum based categorical attributes to a scale of 1 ~ 3 or 4.



3. Methodology

Overview

We have decided to use a feedforward Artificial Neural Network (ANN) model with
multilayer perceptrons. We use stochastic gradient descent with a backpropagation
training algorithm to optimize our least mean squares learning objective. We use sigmoid
neurons rather than simple perceptrons in our model. Similar analyses of the restaurant
industry have been conducted in past using ANN models as well. [3]

Backpropagation

Backpropagation is a method for computing the gradient of the error function with respect
to the weights of each node in the neural network. The backpropagation algorithm is used
to train a multi-layer feedforward network by determining how changing the weights and
biases changes the behavior of the neural network. The goal of backpropagation is to adjust
the weights of the neural networks to minimize the weights that are contributing to the
greatest error, and maximizing the weights that are contributing to our desired output.

The main problem with the backpropagation algorithm with that there is no guaranteed
method to reach the global minimum because there are various local minimums in the
error function. Thus, it is important to average the test error over multiple runs to
determine an accurate representative performance of a specific neural network
architecture.

Model Selection: N-fold Cross Validation

Determining an optimum neural network architecture require significant human
intervention, and there is not much more elegant of a procedure for model selection than
taking a simple trial and error approach. Thus, we have implemented N-fold cross
validation that would take in multiple different neural network architectures and output a
csv file to visualize the performance of each model. The output contains the training and
test error of the cross validation phase, as well as the training and test error averaged over
multiple trials. This output enables us to easily compare the different models’ performance
taking into account issues of under/overfitting. An example output of the cross validation
appears in the results section.



4. Initial Results

General run result

Here, you can see a graph displaying the improvement of a given neural network run over
each epoch. We trained our neural network using 30 epochs, which is a number that was
arbitrarily chosen to obtain initial results.

Figure 1
Relationship between epoch and test/training error for neural network
with 1 hidden layer of 5 nodes
36
Testing Error
34 I

Training Error

) A N
. oA
RN/ 1A\ L\

|
26 \Ql/ V \\\ \// \\/ \\\//N/ \yt‘\///\ )
N ViIT VNN

Percent Error

24

22

20
1 2 3 456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30

Epochs

This graph shows how the test error and training error change similarly per epoch, with a
downward trend. This is reassuring, since we can be confident that the network is actually
learning after each epoch. The training error is consistently lower than the testing error,
which is to be expected, but we can start to see some signs of overfitting from the errors of
epochs 24 onwards since the difference between the training and testing error is starting to
increase. This result suggests that after determining the optimal network architecture, we
should try to determine the optimal epoch number.




10-fold cross-validation result

With the assumption that our data is not linearly separable, we have determined that our
network should have one or more hidden layers. We started with one hidden layer, and the
result of the cross-validation on different number of nodes in that hidden layer is shown
below. We calculated the cross validation test error, cross validation training error, overall
test error, and overall training error. We plotted these errors together to find trends of
overfitting and underfitting (by comparing the training and test errors), and to check that
our cross-validation is reliably predicting the final performance of the neural network (by
comparing the cross-validation and overall errors).

Figure 2
Relationship between number of nodes in the hidden layer and test/

32 training error for neural network with 1 hidden layer

Cross Validation Testing error
‘ Actual Testing error

30 Cross Validation Training error
Actual Training error

28

Percent Error
N
(@)}

L |
24 NS
22

20
1 2 3 456 7 8 91011121314151617 18 19 20 21 22 23 24 2526 27 28 29 30
Number of nodes in hidden layer

From above, we can see signs of underfitting in the smaller number of nodes in the hidden
layer (< 6), and signs of overfitting in the larger number of nodes in the hidden layer (> 25),
which is expected behavior. The optimum number of layers for a network with one hidden
layer seems to be in the 12 ~ 17 hidden units range, with the best model based on “Actual
Testing error” results being 13 hidden units with error of 25.5%.

One frightening thing that we can tell from the above graph is that if we had picked our
model based on the cross validation results, we would have chosen the model with 15
hidden units, which gave a 28.6% “Actual Testing error” - unluckily one of the higher
errors out of all of the models. Since the performance of even one architecture of neural
network varies over multiple runs, it may be the case that the actual training error
calculated for the 15 hidden units was based on an unusually badly performing run,
although this error is calculated by averaging the errors over three runs. This may suggest
that we should calculate the “Actual Testing/Training error” over more runs to get a more
representative performance measure.



5. Optimization and Next Steps

Completely determining the success rating function and cut-off

Although the score was constructed through intuition, this is an arbitrary cut off and
function, so we should completely solidify what this function should be before moving on
any further with model selection, now that we have implemented all of the tools needed for
those steps. We may take into consideration that the current ratio between the two classes
is unbalanced, so we may want to balance this when modifying the labels.

Increasing the number of hidden layers

Now that we have our cross validation implemented, the next logical step is to determine
the optimum number of hidden layers and the correct number of nodes in each hidden
layer through trial and error. Since we have experimented with having a single hidden
layer, we will explore if adding more layers to network will have a positive effect on our
test error. One of the challenges with this next step is that neural networks with more
hidden layers require much more computational power and time, and the number of
possible neural net architecture increases drastically. We must do some research to
determine a relatively small set of candidate neural network structures and possibly
optimize or parallelize the cross-validation implementation for efficiency.

Increasing data set

Since filtering out for restaurants with all features of interest shrinks our data size to
around half to that of the original, we may attempt to include restaurants without specific
features by marking their presence as an additional feature. We want to use as many
examples as possible, but do not want to decrease the number of features that we use to
train the network. Thus, we can add a dummy Boolean feature set to 1 if a given feature,
say feature A is present or 0 if not present in the hopes that the network will learn that
feature A is unreliable when its dummy feature is set to 0. A challenge here is that we
cannot apply this procedure to all of the features, as there will be too many dummy
features, which will lead to other problems. We may try to see which features, when
included, decreases the overall example size the most, and decide which of those features
are worth including with the presence variable to deal with this trade off.

Early Stopping

Looking at Figure 1, we see that the more epochs we run, we risk overfitting. Thus, we can
employ the early stopping technique to find the optimal epoch to stop our training to
maintain a reasonable generalization error, especially if we decide that the optimal
network architecture is multilayered and complex. This regularization technique seems
promising and is very easy to employ — we can simply modify our cross-validation
implementation to be able to vary epoch size, and implement an additional stopping
condition. We have found literature explaining specifically on how to best employ this
technique, which we plan to follow. [1]

Disconnected from improving our network’s performance, we may want to implement
some benchmark method like logistic regression or support vector machines to compare
the performance of our algorithm.



Sources:
1. Prechelt@ira.uka.de, Lutz Prechelt. Early Stopping - but When? (n.d.): n. pag. 1997.
Web. <http://page.mi.fu-berlin.de/prechelt/Biblio/stop_tricks1997.pdf>.



