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1 INTRODUCTION

We aim to build a business recommender system for Yelp. We aim to predict a random
user’s rating of a random business, regardless of whether the user or the business has
made or received any ratings. The prediction is based on available previous ratings made
by users on businesses. We use matrix factorization as our algorithm to perform this
task, and compare that to baseline models. So far, we have successfully implemented the
baseline algorithms - weighted average and neighborhood - and matrix factorization on
our data set, and have achieved promising initial results. We are definitely on schedule,
and will refine our algorithm to improve our result in the upcoming days leading up to
the final deadline.

2 PROGRESS SUMMARY

2.1 SUMMARY OF PROPOSED MILESTONE GOALS

As stated in the project proposal our milestone goals can be summarized as:
"Upon the time of milestone, we will have explored the training data, implement the

code for both baseline and advanced algorithms, for future tuning and improvement."

So far we have successfully completed most of our milestone goals: finish processing all
the data, building baseline and actual models, obtain results, and improve performance
on them.

What we haven’t been able to do was cross validation (although we wonder if it is really
necessary), and the sole reason for this was it takes around 7-8 hours to run our algorithm
on the millions of data, and we haven’t had time to perform cross validation.

Therefore, our efforts can mainly be divided into four parts:
(1) processing data
(2) Write two python script for baseline models
(3) Write a python script for preliminary matrix factorization model
(4) obtain results and improve performance

We will devote the rest of this section in explain in detail these parts.

2.2 DATA EXPLORATION & PROBLEM FORMALIZATION

Data exploration is the first step and also critical. Initially we are given four dataset, which
are business profile dataset, user profile dataset, review dataset and user login history
dataset. We decided to first abandon the login history dataset both becasue the set is not
well formated and because that we are checking our results against a given test review
dataset whose actual ratings are not revealed by Kaggle, instead of checking against the
users’ record along the timeline. Therefore we can formalize the problem as follows: based
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on three matrices, i.e. user-item rating matrix (Rtr ai n), user feature matrix (Fuser ) and
item feature matrix (Fi tem), our RS should be able to learn a final rating matrix (Rpr edi ct ).

A python script is written for statistical purpose. Counter-intuitively, we found in both
training sets and testing sets, the set of distinct users/items appeared in feature matrices,
is a subset of that appeared in rating matrices. We also found that among the 45981 distinct
users in training user feature matrix and distinct 15001 users in testing user feature matrix,
the overlapped users are only 5017, and for items (or businesses), the three numbers are
11537, 8341, 5544. That means about 66% of users and 25% of items in the final testing set
are "new" to our recommendation system. Finally, we also found that missing entry in a
matrix is a common thing for feature matrices. The above findings would pose challenges
later on, and they are also part of the reason that we decided to start only on the rating
matrix first. Because the feature matrices are not always necessary, though can be a plus
if utilized well.

2.3 BUILDING WEIGHTED AVERAGE MODEL

The first method we are trying to build is weighted averages. As explained in previous
section, we already detected potential "cold start" and decided the {user-item} pairs into
four groups: 1. both user & item appeared in training rating matrix 2. only user appeared
3. only item appeared 4. both are new to the system. We assign each a weighted sum
of user’s average rating, item’s average rating, and global average rating. The weighting
coefficient can significantly affect the results, which would be discussed later. A python
script is written to predict the results and output the results in csv format file so that we
can upload them to Kaggle’s website for RMSE evaluation.

2.4 BUILDING PEARSON CORRELATIONAL NEIGHBOURHOOD MODEL

The second model is based on the idea of neighbourhood. Neighbourhood methods can
either center on user-side or item-side. We chose to implement the user-side model (
though later we find item-side is better ). The key of the model is to calculate a similarity
matrix between each combination of user pairs. Among the three popular methods used
for similarity estimation, i.e. cosine similarity, Pearson correlation, and modified cosine
similarity, we chose Pearson correlation. The equation for Pearson correlation and the
final estimation equation are as follows:

r̂ = r +
∑

v∈S(u,K )∩N (i ) Wuv (rvi − rv )∑
v∈S(u,K )∩N (i ) |Wuv |

(2.1)

Wuv =
∑

i∈I (rui − ru)(rvi − rv )√∑
i∈I (rui − ru)2 ∑

i∈I (rvi − rv )2
(2.2)

S(u,K ) denotes the set of K users who are most similar to user u. N (i ) is the set of users
who have rated item i . rvi is the rating given by user v to user i . rv denotes the average
rating of user v .

During implementing the algorithm, we have faced two major challenges. First is that
we came across cases where (2.2) fails by dividing a zero. We later found out it happens
when the user gave a single piece of review, or that the user gave all previous rated items a
single same rating. Either case would lead to failure. We address the case by letting Wuv

to be zero, meaning that no explicit correlation when either case happens. We think it
make sense but we are also open for any other suggestions. Another difficulty is still "cold
start". The algorithm simply does not make sense for any user/item that are new to the
system. That means we still have to assign weighted averages when these cases happens.
A python script is written for implementation purpose.
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2.5 BUILDING MATRIX FACTORIZATION MODEL

If time permits we would improve our two simple memory-based models mentioned
above, but first we decided to implement a more sophisticated matrix-factorization model
and review the obtained results. "cold-start" problem can be well addressed in such model-
based algorithms, at the expensive of being computationally expensive. Specifically, in
our model, we want to find matrices P and Q such that we can estimate the known
rating matrix Rtr ai n using R̂, where ˆri j = pT

i qi =∑K
k=1 pi k qk j . The error of each element,

e2
i j = (rr j − ˆri j )2 = (ri j −∑K

k=1 pi j qk j )2. Then, by taking derivatives with respect to each

pi k and qi k , with an inclusion of regularization term, we find that the updated rule of R̂
using gradient descent is:

p ′
i k = pi k +α(2ei j qk j −βpi k ) (2.3)

q ′
k j = qk j +α(2ei j pi k −βqk j ) (2.4)

We then use sum of squared errors to determine when the program should stop (when
the sum decreases by less than 0.001), it’s time for the program to stop optimizing, we also
set a maximum step of 5000.

Same as above, we implemented this algorithm using python, using only NumPy and
SciPy packages for basic manipulation but not the popular Scikit-Learn.

3 RESULTS & DISCUSSION

3.1 INITIAL RESULTS

Our initial result of matrix factorization is fairly good but not as desirable as we want it
to be. We obtained and RMSE of 1.29 for the simple weighted average baseline model
and 1.33 for the neighborhood model, choosing K to be 25. For the matrix factorization
model, we obtained a RMSE of 1.30, choosing D to be 10 (number of latent features in
matrix factorization), which is slightly higher than the simple weighted average model.
That means for now, the simplest method actually performs the best. This is not very satis-
factory, and we wish to improve our results to around RMSE 1.23 (the top on leaderboard
in Kaggle is about RMSE 1.21) in our future endeavor. Below is the table of results so far.
Unfortunately we can not give much visualization of the results, because it is simply just
an RMSE for the testing dataset. We would later let the python program output objective
value at each iteration for visualization purposes.
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3.2 RESULTS REFLECTION

We would present our thoughts and discussion on the results on the three models seper-
ately. For the weighted average model, we have noticed that a balanced rating often gives
us a smaller RMSE. For example, in the case that both user and item exists in learning
datasets, we let the predicted rating be the average of user’s average rating and item’s
average rating, and this gives us much better result (RMSE 1.29), compared to another
case where we give user average weighting of 0.1, and item average weighting of 0.9 (
RMSE in this case is 1.46, the worst), or the opposite.

For neighbourhood model, as mentioned above, Pearson correlation may not be a optimal
choice, and that if time permits we would try modified cosine similarity instead. Also the
results can presumably be improved by implementing a item-side method, so that the
"sparsity" of the matrix is significantly reduced, since the number of items is only 1/5 of
the number of users in given training rating matrix (Rtr ai n)

For the matrix factorization model, our results are not quite as good. Not to mention
that it takes over 7 hours to learn the model. Partial reason is that although we have
implemented the algorithm, we haven’t done much tuning yet because of the relatively
long running time. But more important underlying reasons, as we think, are given in the
following section.

First, we haven’t used some user features and business features that are provided; such as
the number of times a user has rated businesses and locations of businesses. In order to
use such features, we will need to divide our testing data into groups, just like we did with
our baseline models: when both user and business are in training data, when either is, and
when neither is. We will only be able to use these additional features in the first 3 cases,
which only constitute about one-third of our testing data. Therefore, we will need to also
improve the algorithm in other ways to improve our performance on the rest two-thirds of
the testing data. One way we can do this is to increase D, the number of latent features, in
the matrix factorization procedure. However, as D increases, the running time increases
as well, and too large a D would not be suitable since it already costs several hours to run
with D = 10. Thus, we hope to look into algorithms such as SVD ++ to reduce our running
time so we can model with larger D’s for better results. After reducing the running time,
we can implement cross validation to check for our results instead of using the testing
data directly. Thus, there are two keys to improve our algorithm: find a way to use unused
user and business features in our algorithm for a particular group of testing data (those
that appear in the training set: one-third of them), and to reduce the running time.

4 FUTURE WORK

We would try building SVD++ as our next model based on current matrix factorization
model. But still, before that it is essential for us to try to figure out a better way to utilize
the feature matrices. We may divide the user-item pairs into more groups and train
some of them using different yet simple algorithms, and train some others using SVD++.
Having looked at the Netflix prize papers, we feel like that in most cases better results
in recommendation system are achieved using a combination of models, instead of an
single advanced algorithm.
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