
COURSE MEDIAN PREDICTION VIA SYLLABI

ANALYSIS [MILESTONE REPORT]

CORALIE PHANORD, GRAESON McMAHON, KELSEY JUSTIS

February 17, 2015

1 RECAP

1.1 Problem Statement

We are applying supervised machine-learning algorithms to course syllabi for the extraction and discovery
of content features that play a role in predicting the corresponding median grades.

1.2 Milestone Goals

Below are the goals as defined in our initial project proposal.

1.2.1 GOAL 1: Collect and format data for processing by January 29

Measure of success: Data source and format choice are finalized, data is (largely) ready to process.

1.2.2 GOAL 2: Flexible parser to extract features from syllabi developed by February 12

Measure of success: Code is developed and capable of scanning syllabi for features in raw text and
document formatting.

1.2.3 GOAL 3: Initial development of chosen algorithm started by February 17

Measure of success: Algorithm used to learn features from syllabi via parser is chosen. Early work is
started with emphasis on code structure outside implementations of chosen algorithm are examined for best
practices.

2 MILESTONE PROGRESS

We are happy to report the successful completion of all our milestone goals. Please read below on how these
accomplishments were made possible.

2.1 Data Collection

Data collection was a lengthy process and involved two primary sources: Dartmouth class/department
websites and department heads themselves. By searching the former and reaching out to the latter, we
managed to accumulate upwards of 500 syllabi, largely in .pdf format. 30-40% of these were unusable, either
because their respective courses medians were not listed online or they did not contain parsable text (several
were scans of physical syllabi).

1



Median grades were taken from the registrars website1 and placed into a .csv file using Excel.

2.2 Data Formatting

After collection, we used Xpdf’s2 pdftotext program to convert every .pdf file to .txt to facilitate later
parsing. Each of these .txt files was renamed using the following scheme: DEPARTMENT-COURSE #-
TERM-SUBCOURSE #, closely following the registrar’s course-naming system. We then wrote code in
MATLAB that, given the title of a syllabus .txt file and the columns of the median .csv file (term, class
name, and median), output a syllabus’s corresponding median. This was error-prone, as small inconsistencies
in the registrar’s course-naming conventions made our code generate a large number of false negatives when
attempting to match syllabi titles to entries in the .csv file. Manual examination of each unmatched syllabus
was necessary, preventing us from completely finishing data preprocessing. As a result, we used about 235
syllabi in our milestone tests. We anticipate later tests will include around 100 more.

2.3 Syllabi Text Parser

Upon successfully collecting and formatting the syllabi we were then able to parse through the .txt files and
begin examining the more than 450,000 words of content. The final parser design was decided upon reviewing
best practices found in others’ code online. One script that proved especially impactful was developed by
Suri Like.3 Using heavily modified portions of this work we filled in the skeleton of our program that filters
through the text content for alphanumeric words. This parser is then capable of producing the dictionary
of vocab used in each individual syllabus. The parser was then further extended to handle a desired batch
of syllabi .txt files and enable feature extraction.

2.4 Syllabi Feature Extraction

Although our decision process regarding which features are most relevant for the prediction algorithm’s
success is ongoing, we have started examining a simple set of high-level and low-level features that include:

High-Level: Course syllabus department, number, syllabus length, enrollment, and term offered.
Low-Level: Number of stop words4 used, number of percent signs present (as an indication of the grade-

breakdown), presence of labs, negative word count (using a short list of words we were initially interested
in)

For our milestone tests, only course number, enrollment, syllabus length, and negative word count were
finished and included in the algorithm tests. In the near future we will test more of these features and
incorporate recently found online databases for discovering additional low-level features. These databases
might include Princetons WordNet5 for word and phrase connotations, and various combined databases of
stop words to shift the algorithms focus to more meaningful words/phrases.

2.5 Algorithm

After much deliberation, we decided upon the use of a decision tree-based regression learning algorithm for
training our data. We reasoned that since our data consists of both categorical and continuous numerical
data we would seek a model that optimally addressed both. Our search for such a model led to Ross Quinlan’s
C4.5 algorithm6, which can create a decision tree incorporating both data types.

1http://www.dartmouth.edu/ reg/transcript/medians/
2http://www.foolabs.com/xpdf/home.html
3Suri Like’s Wordcount.m Script
4ranks.nl stopword listxpo6.comGoogle Stopword Project
5http://wordnet.princeton.edu/
6http://en.wikipedia.org/wiki/C4.5 algorithm

2

http://goo.gl/5dMryC
http://www.foolabs.com/xpdf/home.html
http://www.mathworks.com/matlabcentral/fileexchange/19505wordcount/ cont ent/wordcount.m
http://www.ranks.nl/stopwords
http://xpo6.com/list-of-english-stop-words/
https://code.google.com/p/stop-words/
http://wordnet.princeton.edu/
http://en.wikipedia.org/wiki/C4.5_algorithm


The C4.5 algorithm is often used in classification problems, for which it is ideal to create decision nodes
based on the information gain or entropy decrease from choosing to split the data at a certain feature.
Since we are focusing on prediction rather than classification we have designed our algorithm specifically for
regression. Thus, we have used standard deviation reduction to find the feature and threshold providing the
best split.7

Our stopping criteria include: when the standard deviation at a node falls below a preset threshold, when
the current depth equals the maximum depth, or when the sample size at a node is beneath some constant.
Below is the pseudocode for our implementation (given m training examples with n features):

1. Check if stopping criteria are reached; if so, create a leaf node which predicts the mean value of the
examples remaining at that node. Return this node.

2. For each (numerical) feature A, sort the data according to A and try all meaningful partitions (1 :
m,m+ 1 : end), m ∈ [2,m− 1]. Find the partition for which the sum of the standard deviation of each
subset is minimized.

3. Select the feature bestA and partition which produces the smallest total standard deviation, and create
a decision node N encapsulating bestA and its ideal partition.

4. For each sublist created by splitting on bestA, recurse on that sublist and add the result as a child for
N .

Currently the algorithm works with numerical data only, but the functionality for mixed numerical and
categorical data will be added for the next test.

2.6 Results

To test the algorithm, we randomly partitioned the dataset into training and test sets (70% and 30%,
respectively) and built trees with maximum depths from 1 to 30. As previously stated, we worked with 235
examples and 4 basic features (course number, enrollment, syllabus length, and negative word count). The
following graph shows the average mean squared error at each maximum depth (averaged over 10 random
partitions).

7http://chem-eng.utoronto.ca/ datamining/dmc/decision tree reg.htm

3

http://goo.gl/rCAuJn


As expected, the training error declines as we increase the maximum depth of our regression tree. Unfor-
tunately, the increasing test error suggests that we are overfitting at even the lowest depths. The variance of
our target data is displayed in green, implying that our algorithm currently offers no advantage over simply
predicting the mean for every test example. We hope to improve upon these results in a number of ways, in-
cluding updating our feature set, implementing additional components of C4.5 such as post-tree-construction
pruning, and more robust prediction at leaf nodes.

4


	RECAP
	Problem Statement
	Milestone Goals
	GOAL 1: Collect and format data for processing by January 29
	GOAL 2: Flexible parser to extract features from syllabi developed by February 12
	GOAL 3: Initial development of chosen algorithm started by February 17


	MILESTONE PROGRESS
	Data Collection
	Data Formatting
	Syllabi Text Parser
	Syllabi Feature Extraction
	Algorithm
	Results


