CS174: MACHINE LEARNING

PROJECT MILESTONE WRITE-UP

Personalized Song Recommender System

Michael Lau, Binjie Li, Beitong Zhang
February 17, 2015

1 INTRODUCTION

To begin building our music recommendation algorithm, we have implemented a naive collab-
orative filtering neighborhood model. Doing so has allowed us to keep the complexity of the
project low while we figured out the best way to process and evaluate our data. Implementing
the neighborhood model has also provided us with a decent baseline with which we can
compare our future results.

The dataset we've chosen is rich in certain kinds of information, but it does not fit the
standard model. Coming up with adaptations to the standard algorithms has been a nontrivial
obstacle for every step of the process so far, but the solutions we've come up with should
facilitate the second half of our project, matrix factorization with SVD.

2 DATASET AND DATA PREPROCESSING

We are using a real-world dataset [1] [3] containing the listening histories for 1000 different
users from Last.fm. The size of the raw dataset is nearly 3GB which is a really big dataset and
surely quite difficult for us to analyze. Therefore, we first did analysis on the records to reduce
the size of the dataset while keeping its underlying feature distribution as much as possible.
Fig. 2.1 shows the history size distribution in our original dataset and we can tell that the
size ranges greatly among different users. For those users with small history sizes, we believe
that they are not good samples for our analysis based on two reasons. First, if we only know a
little about a user’s history, then it would be difficult to find similar users and infer his taste in

History Size Distribution among Users

200000
180000
160000
140000
120000
100000 History Size
80000

60000

40000 |

Figure 2.1: History Size Distribution among Users

music. Secondly, we aim to recommend new songs to each user, so for the user with a small
history size, we won’t have enough test data to predict the new songs he will listen to. We
decided to filter users with history sizes smaller than 10K, leaving us with only 542 "valid"
users out of 1K as our sample set.

In the raw dataset file, we have more than 100K artists and 1 million songs. Since putting
them all in the user-item matrix is not computationally feasible, we analyzed the popularity
of artists and songs and chose the most popular m artists and n songs to construct our
dictionaries. For now, we’'ve chosen m = 3000 and n = 10000, and we’ve fixed this number
through the different experiments discussed in Secction 4.

We wrote a 200-line Java program to analyze the raw datafile and do the above two main
things. The format of one history record in the raw datafile is as follows:

<timestamp, user_id, artist_id, artist_name, song_id, song_name>

After our program, we output two dictionary files for both artists and songs. Also, for each
user, we create two vectors v, and v corresponding to user-artists and user-songs:

Vg=<ad1,a2....an >
Vs =< 81, 82....8, >

where a; and s; are the times a user listens to the artist i and song j.

3 IMPLEMENTED METHOD

3.1 SIMILARITY

We determined the similarity of users x and y using simply the cosine of their vectors:

- -

Xy
X112 x 117112
In actuality, each user had two vectors, one for the songs they had listened to, and the other
for the artists. We considered adding these together with learned, optimized weights, but
because we are using a significantly different method for learning in the future, we simply
added the two cosines together.

sim(x,y) =cos(X,y) = (3.1

3.2 RECOMMENDATIONS

The goal is to provide user x with a set of songs that he or she will probably like. This set, Xg,
must be derived from the set Xy = S — Xy, where S is the set of all known songs and Xj is the
set of songs x has listened to.

For each song S; € Xy, we project a recommendation score ry; based on the number of
times other users U have listend to S;, weighted by their similarity to x:

éui
S| .
j=17uj

rei= Y, sim(x,u) x (3.2)

uelU
¢, is the number of times user u listened to S;. It is normalized by sum of all the times u
has listened to any song, essentially giving the percent that S; constitutes u’s history.
This function was based off of one for a standard dataset, where a user’s relationship with an
item is deteremined by a rating, not a history. These ratings were normalized by subtracting
the average of all the user’s ratings [2].

rei=Tetk) sim(x,u) x (ry; —) (3.3)
uelU
Ratings and histories differ in their range of values, so normalizing using the original func-
tion was not effective. Also, because we are not predicting a rating, we do not need to incorpo-
rate the user’s average rating or the normalization constant k.
The percent-based normalization we've developed worked adequately, but percentage was
basically a low hanging fruit. It is highly probable that a better normalization scheme exists for
this type of data.

4 EVALUATION

Using the first n songs that X listened to, X}, to find recommendation scores for R = S - X,,
we tried to predict X, the m most listened to songs in X — X;,. Ry, is the m highest scoring
songs in R. We define success rate z as:

ZrER and re X, 1
Z=—- (4.1)
m

We ran our program in Matlab with different parameters and recommend songs to each of
users. Then we calculate the average accuracy Accu to evaluate our algorithm.

Accu = ZucuZu 4.2)
|U|

where U is the user set containing 542 valid users.

This evaluation scheme suits the context of our problem better than the more general
approach of matrix completion, because we are not attempting to estimate user ratings. We
do not have ratings in our dataset, we have listening history, so it would make sense to try to
predict future listening behavior.

Furthermore, we believe this to be a more aggressive goal. With this evaluation, we are
attempting to predict, out of the songs that they have not yet heard, which ones the users will
listen to the most. Discovering a user’s favorite songs before the user does is a much more
meaningful goal than predicting ratings for songs the user might never listen to.

4.1 RESULTS WITH DIFFERENT NUMBERS OF RECOMMEND SONGS

We choose different number of songs, from 5 to 30, as the size of recommended songs to each
user and we observe the change of the average accuracy Accu.

Accuracy with Various Top K Songs Recommended
(Known User History Size 3K)

0.58
—¥— Accu

0.56
0.54
0.52

0.5
0.48
0.46

0.44

0.42

Figure 4.1: Accuracy with Various Top K Songs Recommended

The result in Fig 4.1 shows that the accuracy goes down when we have a larger number of
recommended songs. It is quite reasonable that when we make a larger number of prediction
with the same size of training data, the accuracy would surely goes down.

4.2 RESULTS USING DIFFERENT SIZE OF TRAINING DATA

Additionally, we ran the program with different size of training data set. We used different sizes
of training data (the known history size) and observed the change of the average accuracy
Accu. The size we used varied from 0.5k to 5k. The number of songs we recommended is fixed
at 20.

Accuracy with Various Known User History Size
(Top 20 Songs)

0.7
—>— Accu
0.6

0.5

0.4

0.3

0.2

0.1

500 1000 2000 3000 4000 5000

Figure 4.2: Accuracy with Various Known User History Size

Fig 4.2 shows that the accuracy goes down when we have a larger history set. The result
is quite counter-intuitive at first glance, but after further analysis we think it is a reasonable
result. We want to recommend songs that the user hasn’t heard before. However, when the size
of listening history becomes larger, the user may tend to listen to some "old" songs instead
of many new ones since a kind of "listening pattern" is formed. Hence, the new songs they
choose to listen may not reflect the listening habit very well and it’s harder for us to predict
the new songs. Also, with larger known history, there is a smaller unknown history for us to
predict.

5 FUTURE WORK

5.1 COMBINATION WITH MORE FEATURES

We have other user profile features that we have not yet incorporated into the analysis, and
there remains the possibility of using additional song features from another dataset.

5.2 MATRIX FACTORIZATION WITH SVD

Matrix factorization with SVD is a popular choice for recommender systems, but it also has
some particularly appropriate applications for our data.

The standard model, as given in the Recommender Systems Handbook [4], has a rating
prediction function:

Fui =+ bi+by+q] pu (5.1)

and a learning function:

min Y (rui—p—bi—bu—q] pu)* +ABF + b +11qil* + 1 pull®) (5.2)
eGP w iyer
Here again we are presented with certain challenges in adapting our dataset. There is no
clearly appropriate value for y, and as we are not predicting ratings, but producing a set of
recommendations, it is unclear whether we need p at all.

5.3 FURTHER REFINEMENT

Our data is rich with temporal information. Intuitively, it makes perfect sense that musical
preferences shift with time and the user’s mood, and that song biases will rise and fall as songs
fade in and out of public consciousness. Matrix factorization lends itself to modeling these
temporal shifts, but it will involve changing the user and item biases by, b; into real valued
functions that change over time. This will not be trivial, and will require further refinement of
both our preprocessing as well as our matrix factorization model.

REFERENCES

[1] last.fm music recommendation dataset. http://last.fm. Accessed: 2015-02-17.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions. Knowledge and
Data Engineering, IEEE Transactions on, 17(6):734-749, 2005.

[3] O.Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

[4] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. Recommender systems
handbook, volume 1. Springer, 2011.

